IV THE THEORY OF CONFIDENCE INTERVALS

The procedure of estimation, as I formulated it here, is
also called estimation by & point. For practical applications
the estimation by intervals seems to be much more important.
That 18 to say, we have to construct two functions of the ob-
servations @ (E) and @ (E), where E denotes a point of the sam-
ple space, and we estimate the parameter to be within the in-
terval §(E) = [g (E), © (E)]. In connection with the theory
of interval estimation,R. A. Fisher introduced the notion of
fiducial probabllity and fiduciel limits, while Neymlne) dev-
eloped the theory of interval estimation based on the classical
theory of probability. I shall give here a brief outline of
Neyman's theory.

Before the sample has been drawn the point E 1s a random
variable and, therefore, the values of @ (E) and @ (E) are also
randam verisbles. Hence, before the sample has been drawn we
can speak of the probability that

(3) @9 (B)=o0 =7 (B)
even 1f @ is considered merely as an unknown constant. After
the sample has been drawn and we have obtained a particular
ssmple point, say E,, it does not make sense to speak of the
probabllity that

(¢) o (B,) = 0s0(8,),
if @ is merely an unknown constant. Each term in the inequal-
ity (4) is a fixed constant, and the inequality (4) is either

8) See reference 15
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right or wrong for those particular constants. It would be pro-
per to talk about the probability of (4) if ¢ itself could be
considered as a random variable having a certain probability
distribution, called an a priori probability distribution. 1In
this case we understand by the probability that (4) holds the
conditional probability, called also a posteriorli probability,
under the assumption that E = Eg ocourred. If an a priori dis-
tribution of @ exists and if it 1s known then, using Bayes'form
ula, we can easily calculate the a posteriori probability dis-
tribution of ©. However, in practical applications we seldom
meet cases where the assumption of the existence of an a priori
probability distribution seems to be justified; and even in
those rare cases in which the latter assumption can be made, we
usually do not kmow the shape of the a priori probability dis-
tridbution and this makes the application of Bayes' theorem im-
possible. For these reasons the theory of interval estimation
has to be developed in such a way that its validity should not
depend on the existence of an a priori probability distributiomm.
Hence, in thies theory we shall speak only of the probability of
(3) but never of the probability of (4).

For any relationship R we will denote by P[RIOJ the proba-
bility of R calculated under the assumption that © is the true
value of the parameter. '

A palr of functions @ (E) and © (E) 1s called & confidence
interval of @ if

1) 8 (E)= @ (E) for all points of E
2) p[g (BE)= 6= (E) | o] = aq for all values of o,
where g 18 a fixed constant called the confidence coefficient.
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The practical meaning and importance of the notion of the
confidence interval is thiss If a large number of samples are
drawn and if in each case we make the statement that & 1s in-
cluded 1n the interval[ @ (B), T (E) ], then the relative fre-
quency of correct statements will approximately be equal to a.

In general, there exist infinitely many confidence inter-
vals corresponding to a fixed confidence coefficient a, and we
have to set up some principle for choosing from smong them. It
is obvious that we want the confidence interval corresponding
to a fixed confidence coefficient to be as "short" as possible.
We have to give a precise definition of the notion "shortest"
confidence interval.

A confidence interval §(E) -[:g (E), @ (Eﬂ is called a
shortest confidence interval corresponding to the confidence
coeffictent a 1f

(2) P[o(B)s 05T (B)1 6] =a ma
(b) for any confidence interval §' (E) which satis-
fies (a)
P[o ()% 0187 ()]0 s e’ (m) = 012 o (& )lo]
for all values @' and O" of 6.
If a shortest confidence interval exists, it seems to be the
most advantageous. Unfortunately, shortest confidence inter-
vals exist only in quite exceptional cases. Therefore, we have
to introduce some further principles on which the choice should
be based. Such a principle is the principle of unblasedness.

A confldence intsrval &(E) is called an unbiased confidence

interval corresponding to the confidence coefficient g 1if
He (B)s 0=3(B) | 6] =a
and Mo () 02T (E) | 0] £ a for all values o'ande'.
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A confidence interval J(E) is called a shortest unbiased
confidence interval corresponding to the confidence coefficient
a 1f S(E) 18 an unbiased confidence interval with the confiderce
coefficient a and if for any unbiased confidence interval d'(E)
with the same confidence coefficlient, we have

p[e ()% 02T (B) | eﬂé P[o' (B1= or= 3t (m)} o)
for all values @' and 6".

If we accept the principle of unbliasedness, the shortest
unbiased confidence interval seems to be the most favorable one.
Even shortest unblased confidence intervals exist only in a
restricted, but importent, class of cases. If & shortest un-
blased confidence interval does not exist, Neyman proposes the
use of & third type of confidence interval, which he calls
Mshort unbissed" confidence interval. An unblased confidence
interval J(E) with the confidence coefficient g 18 called &
short unbiased confidence interval 1if

;:‘f‘.!' {g(n)so'd(x)loﬂ - 3%; P[er (B)= 0'6T" (%) | 0%

o"=9" o"=9!
for all @' and for all unblased confidence intervals d!'(E) with
the confidence coefficient a.

I have discussed only the case of a single unknown para-
meter. In the case of several unknown parameters some new prob-
lems arise, which do not occur in the case of a single para-
meter. However, I shall not discuss them, since the case of a
single parameter already provides a good illustration of the
basic 1ldeas of the theories of Fisher, Neyman and Pearson.



