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§7. Some applications

In this section, we use the theory developed in §1 - §6 to show that various
propositions imply the existence of an inner model with a Woodin cardinal.

A. Saturated ideals

Shelah has shown, in unpublished work, that Con (ZFC + There is a
Woodin cardinal) implies Con (ZFC + There is an wo-saturated ideal on wy).
(For earlier results in this direction, see [Ku2], [SVW], [W], and [FMS].) Here
we shall prove what is very nearly a converse to Shelah’s result. We shall
show that Con (ZFC + There is an wjp-saturated ideal on w;+ There is a
measurable cardinal) implies Con (ZFC + There is a Woodin cardinal).

The best lower bound on the consistency strength of the existence of an
wy-saturated ideal on w; known before our work is due to Mitchell ([M?]).
He obtained Con (ZFC + Jk(o(k) = £**)), which of course is as far as the
models studied in [M?] could go.

Actually, our proof does not require that the given ideal be on wj, nor
does it require wg-saturation in full. A generic almost-huge embedding will
suffice.

Theorem 7.1. Let 2 be measurable, and let G be V-generic/ P for some
P € V. Suppose that in V[G] there is a transitive class M and an elementary

embedding
j:V-oMC V[G]

with critical point k such that
Va< j(k)(*MNV[G] C M).
Then K° |= There is a Woodin cardinal.

Proof. Suppose toward contradiction that K¢ has no Woodin cardinals. This
supposition puts the theory of §1- §6 at our disposal. In particular, by 5.18
we have that KV = KVIG]. Moreover, by 6.15, the agreement between M
and V[G] implies that if P is a properly small premouse of cardinality < j(k)
in V[G], and a < j(), then

(M =P is a-strong) < (V[G] | P is a-strong) .

It follows that K™ agrees with KVIS) below j(x). That is, 7K = gK"*
for all a < j(x).

Since k = crit(j), « is a regular cardinal in V, and thus j(x) is a regular
cardinal in M. Since P(a)™ = P(a)VI¢ for all « < j(k), j(x) is a cardinal
of V[G]. Thus j(k) is a cardinal of both K™ and KVIC],

We claim « is inaccessible in KV. For otherwise, we have 3 < & such
that & = (8+)K". This means j(x) = (3+)K" = (5H)K""" = (Bt)k" a
contradiction. So « is inaccessible in KV. But then j(x) is inaccessible in
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KM and j(k) is a limit cardinal in KV[®]. Also, since KV and KM agree
below j(k), k is inaccessible in KM.

Let E; be the extender over V derived from j. We shall show that for all
a < j(k):

Ein([o]xKY)e K" .

This is a contradiction, as then these fragments of E; witness that & is Shelah
in KV. (That is so because j(KY) = KM agrees with KV below j(k).)

So fix & < j(k), and take « large enough that (fc+)KV <a.Let WeV be
a weasel which witnesses that Jof{ Vs Agp-sound. We may assume « is chosen
to be a cardinal of KV and W. It will be enough to find an extender F on
the W sequence such that crit(F) = &, v(F) > a, and for all A € P(k)N K"V,

(A Na=jA)Na.

Working in V[G], we shall compare W with j(W). Notice that by 5.12, there
is in V[G] a (unique) §2 + 1 iteration strategy X' for W. We shall show that
there is a (unique) §2+1 iteration strategy I" for the phalanx ((W, j(W)), («)).
Let us assume for now that such a I exists, and complete the proof.

Let 7 on W and U on ((W, j(W)), (a)) be the iteration trees resulting
from a (X, I') coiteration. (Coiteration was defined only for premice, but it
makes obvious sense for phalanxes. Here we start out comparing j(W) with
W, iterating the least disagreement, but the tree &, which begins on j(W),
goes back to W whenever it uses an extender with critical point < «.) Let
M, be the ath model of T and N, the ath model of &/. In order to save a
little notation, let us assume 7 and U are “padded”, so that [h 7 = [h U.
Let Ih T =1lhU =0 + 1, where § < £2.

We claim that root¥(8) = 1. For otherwise, root¥(#) = 0; that is, Nj is
above W = Ay in Y. Now W is universal, and therefore there is no dropping
on [0,8]y or [0,6]r, so that il(f’g and ioT‘o are defined; moreover, My = Nj.

Let

A={y<2]ige(v) =ige(r) =7},
so that A is thick in W and Mj. The construction of i guarantees crit il()”v <
a. It follows that crit 2'%’,9 is the least 4 such that y ¢ HMe(A). From this we
get crit é2 , = crit & ,. Using the hull property for W at crit i ,, we proceed
to the standard contradiction. '

So N is above j(W) = N; on U. Now j(W) is universal (in V[G]) since
the class of fixed points of j is a-club in §2 for all sufficiently large regular
@, so that j(W) computes at correctly for stationary many o < §2. Thus
Ny = My, and iLxl,a and ig—,a and defined.

Let

F={y<2|igs()=ifp0i(r) =1},

so that I' is thick in W and Mg = Ny. Now & = crit(& 4 0 j), so

Kk = least p s.t. n ¢ HVo(I).
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It follows that k = crit ioT,o- Similarly, using the hull property for W at «,
i 9(A) = & g0 j(A)

forall ACkst. A€ W.
Let n+1 € [0, 8] be such that T-pred(n+1) = 0. Now all extenders used
in 7 or U have length > «, and sup of generators > «. So crit inT+1,o > a.

Also, crit iLlly,, > a by construction. So for all 4 € P(k)",
i£"+1(A) Na=jA)Na.

Let F be the trivial completion of EﬂT | @. Then F'is on the sequence of MnT

It follows (using coherence if > 0) that F' is on the sequence of W = M7 .
Moreover, for AC ks.t. Ae W,

I

i5n+1(A) Na ig/,, A)Na

iy (A)Na.

So F is as desired.

It remains to show that the phalanx ((W, j(W)), («)) is 2+ 1 iterable in
V[G]. We claim that the strategy of choosing the unique cofinal wellfounded
branch is winning in the length §2 + 1 iteration game. If not, then as in 6.14
there are properly small R < W and § < j(W) such that o € OR® N OR?,
and a putative iteration tree on ((R,S), («)) which is bad; that is, which has
a last, illfounded model, or is of limit length but has no cofinal wellfounded
branch. Since §2 is weakly compact, our bad tree has length < §2, so that its
sharp exists. Using this for absoluteness purposes, as in the proof of 6.14, we
can find in V[G]

P —TR (where R A W),
rQ =8 (where § 4 j(W)),

such that P and @ are of cardinality < « and
o | « = 7 | a = identity,

together with a countable bad tree on ((P,Q), (¢)). Now P is a-strong in
V[G]), as witnessed by o. Also, @ is a-strong in M, as witnessed by 7; note
that 7 € M as M<i(*) C M in V[G]. Since M and V[G] have the same subsets
of o, 6.11 and 6.14 imply that @ is a-strong in V[G]. But then the (1)—(2)
direction of 6.11 implies that ((P, Q), (a)) is £2+ 1 iterable, a contradiction.

O

Corollary 7.2. Let £2 be measurable, and suppose there is a pre-saturated
ideal on wy; then K¢ |= There 1s a Woodin cardinal.

We conjecture that the measurable cardinal is not needed in the hypothe-
ses of 7.1 and 7.2.
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B. Generic absoluteness

One of the most important consequences of the existence of large cardinals
is that the truth values of sufficiently simple statements about the reals can-
not be changed by forcing. For example, if there are arbitrarily large Woodin
cardinals, then L(R)Y = L(R)"I% for all G set-generic over V. (This result is
due to Hugh Woodin.) We shall show that this generic absoluteness implies
that there are inner models with Woodin cardinals.

Hugh Woodin pointed out this application of §1 - §6. The key is the
following lemma.

Lemma 7.3. (Woodin) Let §2 be measurable, and suppose K° has no Woodin
cardinals. Then there 1s a sentence ¢ in the language of set theory, and a
partial order P € Vy,, such that whenever G is V-generic over P

wa(]R))V E e iff (LWI(R))V[G] Fo.

Proof. Here (L, (R))VI¢] = L via (RVIG)). Using the formula ¢ described in
1

6.15 (2) which defines (Jf€ | § < w1) in all generic extensions of V by posets
P € Vi3, we can construct a sentence ¢ such that (provably in ZFC + “f2 is
measurable” + “K¢ |= There are no Woodin cardinals”) we have

L, (R)E ¢ iff w; is a successor cardinal of K .

Our hypotheses guarantee (a*)X = at for some a. If (L, (R))" ¥ ¢, then
take P = Col(w, @); letting G be V-generic / P, we have (L, (R))VI¢! |
¢ by 5.18 (3). On the other hand, if (L., (R))Y E ¢, then take P =
Col(w, < a) where a < {2 is inaccessible; letting G be V-generic/P, we have
(Lo (R)VIT ¥ . 0

Theorem 7.4. (Woodin) Suppose that §2 is measurable, and that whenever
G is V-generic/P for some P € Vi, (Luw,(R))Y = (Lu, (R))VICL. Then K¢ =
There is ¢ Woodin cardinal.

It is well known that weak homogeneity can be used to obtain generic
absoluteness. We can therefore use 7.4, together with standard arguments,
to show

Theorem 7.5. If every set of reals definable over L, (R) is weakly homoge-
neous, then letting K¢ be the model constructed in §1 below §2, where £2 is
the least measurable cardinal, we have K¢ |= There is a Woodin cardinal.

Proof. If any set is weakly homogeneous, then there is a measurable cardinal.
Let £2 be the least measurable cardinal. For any weakly homogeneous tree
T, let T* be the tree for the complement coming from the Martin-Solovay
construction. (The notation assumes the homogeneity measures for T' are
given somehow.) So
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p[T"] =R - p[T]
is true in V[G] whenever G is generic for P with card (P) < additivity of
homogeneity measures for T', hence whenever G is generic for P € Vj;. Let

Sn = universal X,(Ly, (R)) set of reals
P, = universal IT,(Ly,(R)) set of reals

for 1 < n < w. Pick weakly homogeneous trees U, such that P, = p[U,]
and let 7,41 be the canonical weakly homogeneous tree which projects to

FRp[U,] in all V[G]

pTot1] = FFp[Us] in all V[G].
(Thus in V, p[Tn41] = Sn+1.)
Claim. If G is P-generic, where P € Vp, then for all n > 2

VIG] F plUn] =R - p[T5] .

Proof. Fix V[G]. Since p[U,] N p[Tn] = 0 in V, this remains true in V[G] by
absoluteness of wellfoundedness. On the other hand, if z € RG] and z ¢
(p[Un]UP[TR]), then = € p[U}] N p[T] because U and T, project absolutely
to the complements of the projections of Uy, T,,. But then p[U;] Np[T;] # 0
in V by absoluteness of wellfoundedness. This is a contradiction as p[Uy,] =
R — p[T}] in V. O

It follows that in all V[G], G generic for P € Vy,
p[Un+1] = universal IT}(A) set of reals, where A = p[Ui].

But now the fact that A is the universal IT; (L, (R)) set of reals is a 173, fact
about A. So in all such V[G]

P[Un+1] = universal ITn41(Ly, (R)) set of reals.
Thus for any sentence ¢ of the language of set theory
(Luy(R))Y | ¢ iff (La, (R)" |2 .

By Theorem 7.4, K¢ |= There is a Woodin cardinal, where K¢ is con-
structed below 2. a

Woodin has shown (unpublished) that if there is a strongly compact car-
dinal, then all sets of reals in L(R) are weakly homogeneous. So we have at
once:

Theorem 7.6. Suppose there is a strongly compact cardinal, and let K¢ be
the model of §1 constructed below §2, where §2 is the least measurable cardinal.
Then K¢ |= There is a Woodin cardinal.
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We shall give a more direct proof of Theorem 7.6 in §8, a proof which does
not rely on Woodin’s work deriving weak homogeneity from strong compact-
ness.

We conclude this section on generic absoluteness by re-proving a slightly
weaker version of the following theorem due to Woodin:

Con (ZFC + Aj-determinacy) = Con (ZFC + There is a Woodin cardinal) .

Because the theory of §1 - §6 relies on the measurable cardinal cardinal §2, we
do not see how to use it to prove Woodin’s theorem in full, although we be-
lieve that should be possible. We can, however, prove the theorem with its hy-
pothesis strengthened to: Con (Z FC + A}-determinacy+Vz € R (2! exists)).
Modulo the theory of §1 - §6, our proof is simpler than Woodin’s.

Our proof relies on the observation that the theory of §1 - §6 uses some-
what less than a measurable cardinal. Namely, suppose A is a set of ordi-
nals and A" exists. Let ¢o be an indiscernible of L[A], let j : L[A] — L[A]
have critical point cp, and let U be the L[A]-ultrafilter on cp given by:
X €U & ¢y € j(X). Working in L[A], we can construct (K°)L4] below
¢o just as we constructed K¢ below 2 in §1. Let us assume that L[A] satis-
fies: There is no proper class inner model with a Woodin cardinal. We can
then conduct our proof of iterability within L[A] (using 2.4 (b) rather than
2.4 (a)), and we have that indeed (K°):4] exists and (by 2.10) is (w,6)
iterable for all #. Further, the proof of 1.4 shows that for & a.e. a < cq,
L[A] E (a7)X° = a*t. (The main point here is that we don’t really need
U € L[A] to carry out the proof; it is enough that if E; is the (co, j(co))
extender over L[A] derived from j, and A € L[A4] and |A[*4] < ¢, then
E; 0 ([§(co)]<¥ x A) € L[A]. That these fragments of E; are in L[A] is well
known.) This implies that L[A] = “co is Ag-thick in K°”. We can therefore
carry out the arguments of §3 - §6 within L[A], and we get that K4l exists,
is absolute for forcing over L[A] with posets P € Vc{,’[A], and inductively de-
finable over L[A] as in §6. (The only serious use of the measurable cardinal £2
in these sections occurs in the proof of 4.8. Once again, it is clear from that
proof that we only need the fragments E; N ([j(co)]<“ x A), for |A[F4] < ¢,
to be in L[A].) We also have that for U a.e. @ < cg, L[A] | ()X = at.

Theorem 7.7. (Woodin) IfVz € “w (z' ezists) and all A} games are deter-
mined, then there is a proper class inner model with a Woodin cardinal.

Proof. According to a theorem of Kechris and Solovay (cf. [KS]), A} deter-
minacy implies that there is a real = such that for all reals y >r z, L[y]
“All ordinal-definable games are determined”. Fix such a real z, and let ¢
be the least indiscernible of L[z]. We may suppose that L[z] = “There is no
proper class inner model with a Woodin cardinal”. As we have observed, this
means that KLl?] exists and is absolute for size < ¢o forcing over L[z], and
that for U-a.e. a < co, L[z] | (et)¥ = at, where U is the L[z]-ultrafilter
on ¢o given by z!. Let o < ¢p be such that L[z] = (e™)X = o, and let
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y = (z, z) where z is (a real) generic over L[z] for the poset Col(w, a) collaps-
ing a to be countable. Then in L[y], K exists and is inductively definable as
in §6, and w; is a successor cardinal of K. Moreover, OD determinacy holds
in L[y]. Let us work in L[y]. Now OD determinacy implies that every OD set
A C w; either contains or is disjoint from a club, and therefore that w} is
measurable in HOD. On the other hand, K C HOD, so since w} = (a*)X,

wl = (a"')HOD. But HOD [ AC, so HOD [ all measurable cardinals are
inaccessible. This contradiction completes the proof. O

C. Unique branches

The Unique Branches Hypothesis, or UBH, is the assertion that if 7 is
an iteration tree on V, then 7 has at most one cofinal wellfounded branch.
Martin and the author showed that the negation of UBH has some logical
strength, in that it implies the existence of an inner model with a Woodin
cardinal and a measurable above. (Cf. [IT], §5.) Woodin then showed, in un-
published work, that if there is a nontrivial elementary j : Vi1 — Viga,
for some A, then UBH fails. The gap between these two bounds on the con-
sistency strength of -UBH is, of course, enormous. Here we shall improve
the lower bound to two Woodin cardinals. (However, we must add “There
is a measurable cardinal” to -UBH because the basic theory demands it.)
We conjecture that -UBH is equiconsistent with the existence of two Woodin
cardinals.

Theorem 7.8. Let 2 be measurable, and suppose there is a normal itera-
tion tree T on V such that T € V and T has distinct cofinal wellfounded
branches. Then there is a proper class inner model satisfying “There are two
Woodin cardinals”.

Proof. Assume toward contradiction than there is no such model.

We shall need a slight generalization of the K¢ construction in §1. Let X
be any transitive set, X € Vi where §2 is measurable. We can form K°¢(X) by
relativizing the construction of §1. So My = X, and all hulls used in forming
Cu(Ne(X)) = M¢(X) contain X U {X}, so that X € Ne(X) for all £&. We
require that all extenders added to the K°(X) sequence have critical point
> ORN X. We require that the levels V¢(X) of the construction be “l-small
above X, that is, if & is a critical point of an extender from the N¢(X)

sequence, then for no § > ORN X do we have J,fv‘(x) = é is Woodin. By
K°(X) we mean the limit as £ — 2 of the M¢(X). Let us call a structure
with the appropriate first order properties of the M¢(X) an X-premouse.
If there is no 6 > (ORN X) such that K¢(X) | § is Woodin, then as in §2
we get that K°(X) is (w, 2+ 1) iterable “above X”, that is, via extenders on
its sequence and the images thereof. (All such extenders have critical point
> OR N X, so none of the embeddings move X.) Of course, any two £ + 1
iterable-above-X X-premice have a successful coiteration. As in 1.4, we also
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have (at)X“(X) = ot for y; a.e. @ < §2, where g is a normal measure on
£2. The rest of §3 - §6 adapts in an obvious way. (We shall not need §6.)

Now let T be our iteration tree on V having distinct cofinal wellfounded
branches b and ¢. We have 7 € Vp;, where §2 is measurable. Let

§=6(T)=sup{lh ET |a+1<1hT}.

By the results of §2 of [IT], whenever f : § — 6 and f € M7 N M7, then
MT = “6 is Woodin with respect to f”. (Equivalently, M7 satisfies this.)

Notice that i%,(£2) = i7,(£2) = £2. Working in M7 and M7, let us form
the models

R = K (VoM |
S = Ke(VHM:.

T T
Notice here that V6M° = V6Mc ; setting X = V‘SM;I, we have that both R and
S are 1-small above X.

Claim 1. Let o > § be a successor cardinal of R such that JF ¥ Jk(§ <
k A k is Woodin); then JX is £2 + 1 iterable above X. Similarly for S.

Proof. Our “proper smallness above X” requirement on « guarantees, as in
§6, that no iteration tree on J2 which is above X can have distinct cofinal
wellfounded branches. Our standard reflection argument (cf. 2.4 (a)) shows
that it is enough to prove the following.

Subclaim. Let m : P — JE be elementary, with P countable, and let (X)) =
X. Let U be a countable putative iteration tree on P; then either i has a
last, wellfounded model, or I/ has a cofinal wellfounded branch.

Proof. Since P is countable, 7 € M7, and of course JE € M7 . Since
MT is wellfounded, an easy absoluteness argument gives us an embedding
oc:P — Jf such that o € M,,T But also U € MbT We can therefore carry
out the iterability proof of Theorem 2.5 within M7 using the background

extenders given by the construction of R = K °(V5)MbT. |
Claim 2. P(6)NR=P(6)NS.

Proof. Let o = (6*)F and 8 = (§*)%. By Claim 1, both JF and Jj are 2+1
iterable above X. It follows that they have a successful coiteration above X,
and since neither can move without dropping, we get 7t < J; or J5 9 JF.
Suppose without loss of generality that JF < Jl;g .

It follows that P(§)NR C S, so P(§)N R C M7 N M7, so that R |= 6
is Woodin. We are done if R has another Woodin cardinal above §, so we
assume otherwise. But then, whenever 7 is a successor cardinal of R above
8, then J7R ¥ k(6 < k A k is Woodin). Claim 1 then shows Jf is 241
iterable, and since this is true for all v, R itself is £2 + 1 iterable above X.
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Theorem 1.4, applied within M7 to R = K°(X), implies that M7 sat-
isfies “for %, (uo) ae. @ < 2, at = (@)X X)” But for po ae. a < 2,
iT,(a) = @ and i%(at) = at. Thus it is true in V that for po a.e. @ < £2,
at = (at)R

Since R and Jﬁs are £2 + 1 iterable above X, they have a successful coit-
eration above X. Since R computes successor cardinals correctly po a.e., and
J[;"' cannot move without dropping, ._7[,5 < R. This completes the proof of the
claim. |

Inspecting the proof of claim 2, we have:

Claim 3. 6 is Woodin in both R and S. Both R and S are {2 + 1 iterable.
Finally, (at)® = (at)® = ot for yg a.e. a.

Let us emphasize that R and S are (w, £2 + 1) iterable in V, not just in
the models M7 or M7 .

We wish to compare R with S, but first we must pass to models for which
the comparison will have a large set of fixed points. Working in M7, let R*
come from R by taking ultrapowers by the order zero total measure at each
measurable cardinal of R. Thus R* is M7 definable (from § and §2), R* is a
linear iterate of R, and if § < k¥ < 2 and « is strongly inaccessible in M,,T,
then k is not the critical point of a total extender on the R* sequence. Let
S* be obtained from S, working inside M7 | in a similar fashion.

Now let (U, V) be a successful coiteration of R* with S*, according to their
unique §2 + 1 iteration strategies. Since R* and S* compute at correctly for
a.e. a < £2, U and V have a common last model Q. Let j : R* — @ and
k : S* — @ be the iteration maps. Let

Z = {a < 2] j(i5(e) = k(ile(e)) = o}
be the set of common fixed points of j o iZ, and k o iZ,. We have then that
po(Z) =1, and for o a.e. @, Z is cofinal in ot and ot = (at)?.
Now let ag € b — ¢, and define
Bn = leasty € (c— ay),

any1 = least y € (b - ,Bn) .
Let us assume that aq is chosen large enough that § € ran i?;l,b Nran i;{l, e
It follows, of course, that R* € ran iz;‘ » and S* € ran igl ¢ Set

T

k=crit i,

and
H = transitive collapse of HullQ(V,;M FuzZu {6}).

The next claim comes directly from the proof of the uniqueness theorem of

§2 of [IT] (see also 6.1 of [FSIT]).

Claim 4. Hull? (VM U Z U {6}) n VM = vMe
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Proof. (Sketch) For all i > 1, a; and f; are successor ordinals, and
crit(EZ'_l) < crit(EZ,:_l) < strMe, (EZ_)

and
crit(E';,:_l) < crit(EZ—'“_l) < strM5, (Eg—'_l).
Here str™(E) is the strength of E in the model M. Now suppose t is a

T
sequence of parameters from v uzu {6}, and

T
QEJwe V™ o(a,1).
Let &; = crit(EZ _;) and v; = crit(EZ,:_l). Since sup{«; | i € w} = sup{y; |
T
i € w} = 6, we can let i be least such that for some z € V,c/:"” , Q@ E olz,1].

T
Fix such an z in V,;j:4 ® . We claim 7 = 1; since k; = & this will complete the
proof of claim 4. Suppose then i =e + 1.

Since k is the identity on I{,Mz U Z U {6}, we have k((z,t)) = (,t), so
S* k= [z, t]. Let B = T-pred (B), and let

i3,.((5,0) = (5*,1).

Now v, = crit ig,c, and Keq1 < ig,c(ue). Since ig}c is elementary and z €

V,;fg, we have z’ € V,,/:";r such that S |= [z',7]. But then S* | p[2’, ], and
hence Q = p[z’,1].

We can now go apply the argument of the last paragraph to ¢
a = T-pred(a.), using R* and j instead of S* and k. We get 2"’ € V,;'I:A"T such
that @ = ¢[z”,1]. This contradicts the minimality of i, and completes the
proof of claim 4. O

T

ab where

Let # : H — Q be the collapse map, so that n(k) = é and H | & is
Woodin by claim 4. The properties of Z guarantee that (a*)# = ot for
po a.e. @ < £2, and that in fact §2 is A-thick in H, where A = {a < 2 |
« is inaccessible}.

Now, working in R, let

M= K(V)R.

Claim 5. M = k is Woodin.

Proof. Assume otherwise; letting o = (k*)™, we then have that JM is prop-

T
erly small above V,;Mb . We get that M is £2 + 1 iterable (in V, not just in
R) by the same argument we used to prove claim 1. But then H and IM are

T T
V,;M b _premice which are 2 + 1 iterable above yMe , so they have a success-

T
ful coiteration above Vo' . Since JIM = k is not Woodin, there is a subset
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of k which is in JM but not H. This means JM must iterate past H. On
the other hand, H computes o correctly for yo a.e. a < £2, so Jé” cannot
iterate past H. O

Now k < 6, 6 is Woodin in R, and M = K¢(V,)®. A standard argument
shows that for some v such that K < v < §, M |= v is Woodin. (See the proof
of 11.3 of [FSIT]. Thus M |= There are two Woodin cardinals, and the proof
of 7.8 is complete. n]

D. X} correctness and the size of u;

We say that a transitive model M is T} correct iff whenever z € M N“w
and P is a nonempty IT3(z) set of reals, then PN M # 0. The proof of the
following theorem was inspired by, and relies quite heavily upon, an idea due
to G. Hjorth.

Theorem 7.9. Suppose K¢ = “There are no Woodin cardinals”, and suppose
there is a measurable cardinal p < §2; then K¢ (or equivalently, K) is X}
correct.

The remarkable insight that there are theorems along the lines of 7.9,
and the proof of the first of them, are due to Jensen (cf. [D]). Jensen’s work
was later extended by Mitchell ([M2]), and by Steel and Welch ([SW]). The
smallness hypotheses on K in these works are, respectively: no inner model
with a measurable cardinal, no inner model with a cardinal x such that
o(k) = k**, and no inner model with a strong cardinal.

The smallness hypothesis on K in Theorem 7.9 is necessary. For if K¢ |=
“There is a Woodin cardinal”, then K¢ is not I} correct. [Let P = {z €
“w | z codes a countable, IT} -iterable premouse which is not 1l-small}.
The existence of the measurable cardinal £2 gives P # 0. On the other hand
PNK*® =0, since if M is coded by a real in P, then ch < M for a = wK°.
(Cf. [PW], 3.1.)] However, if we liberalize our definition of K¢ so as to allow
levels which are not 1-small (but still retain some weaker smallness condition,
e.g. tameness, which suffices to develop the basic theory of K¢), then we can
simply drop the hypothesis that K¢ satisfies “There are no Woodin cardinals”
from 7.9. This is because if there are arbitrarily large @ < wX® such that JX°
is not 1-small, then K¢ is X} correct. (In fact, if z is a real coding a countable,
wj + l-iterable, non-1-small mouse M such that y € M, and P is nonempty
and IT(y), then 3z € P(z <r z). This result is due to Woodin; cf. [PW],
§4.)

Where we have assumed in 7.9 that there are two measurable cardinals,
[D] requires only that every real has a sharp, and [M2] and [SW] require only
the sharps of certain reals. We believe that it should be possible to eliminate
the hypothesis that there is a measurable cardinal < 2 from 7.9. Of course,
the need for §2 itself is also problematic, here and elsewhere.



64 §7. Some applications

Proof of 7.9. Our proof descends from a proof of Jensen’s X} correctness
theorem which is much simpler than Jensen’s original proof. That simpler
proof is due to Magidor.

Suppose that K¢ |= “There are no Woodin cardinals”, and let u < §2 be
measurable. For o > 1, we let u, be the ath uniform indiscernible relative
to parameters in Vj,, that is

uo = ath ordinal 8 such that Vz €V,
(B is an indiscernible of L[z]).

Thus u; = . Magidor’s argument is based on the following lemma.

Lemma 7.10. (Magidor) Suppose uX = u,; then there is a tree To € K such
that p[T] is the unwversal IT} set of reals, and thus K is X} correct.

Proof. (Sketch) We first show that for all o, uX = u,. The proof is by
induction on «; the cases & = 1 and « is a limit are trivial. Let « = 8 + 1.
Let

n(y, z) = least indiscernible of L[z] whichis > 7.

We have
upa1 = sup{n(up,2) | € V,},

and

sup{n(ui,z) | z € V,}
sup{n(u1,z) |z € V,‘K} ,

U2

since u = uf. But then for any z € V,, we can find y € VX so that
n(uy,z) < n(u1,y), and thus n(ug, ) < n(ug,y) by the uniform indiscerni-
bility of the u,’s. It follows that

Up+1 = sup{n(Up,:c) | TE€ VMK} )

as desired.
It is well known that for any ordinal 7, these are an ¢ € V, and
a term 7 and uniform indiscernibles uq, < -+- < Uy, < 7 such that

n = TL[”](uo,o “+Uq,). (This result is due to Solovay; the proof is an easy
induction on 7.) Since u, = uX for all @, we can take z € K in the above.

By T,, we mean the Martin-Solovay tree for IT} constructed as follows.
Let L = [J{L[z] | z € V,}. Let S on w x w x u be the Shoenfield tree for a
Buniversal X} set. For u, v € w<¥ such that dom(u) = dom(v), let S, ) =
{w | (u,v,w) € S}. We define an ultrafilter on P(S(yv)) N L as follows. For
XCpuandn<w,let [X]" = {{ao - an-1) |ao < a1 < - <an_1AVi<
n(a; € X)}. Letting n = dom(u) = dom(v), there is a unique permutation
(40, -yin—1) of n such that Sy ) = {{aiy - @i,_,) | (@0 an-1) € [u]"}.
For A C S(u,v) with A € L, we put
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Buo)(A)=1&  3C(Cisclubin p AV(ag---an-1) € [CT"
(o -~ @in_y) € 4)).

Since Vz € V,(z! exists), fi(u,v) is an ultrafilter on P(S(u,v)) NL.If u C r and
v C s, then py ) is compatible with i, 4y, so we have a natural embedding

M(u,),(r,s) * Ult(L,,u(u’U)) — Ult(Lyﬂ(r,s)) .

The ultrapowers here are formed using functions in L. The result of Solovay
mentioned above yields

(Yig1y .-y Uip_41) = [identity]“u '

where (4o, ...,in—1) is the permutation of n = dom(u) used to define py, ),
and the u;’s are the uniform indiscernibles. By convention, p(g ) is principal
and Ult(L, p(p 9)) = L. We then have:

)u(u,v)(A) =1 iff (uio+11 HEE) uin-—1+1> € W(o,a),(uy”)(A) .

Except for the fact that they are not total on V, the measures py v)
witness the weak homogeneity of S. In particular z € p[S] iff Jy € “w (the
direct limit of the Ult(L, p(ztn,ytn)) under the m(z1n yin) (ztn+1,ytn+1) 18 well-
founded). The tree T3 builds a real z on one coordinate, and proves z ¢ p[S]
on the other by showing continuously that all associated direct limits are
illfounded. More precisely, let (r; | i € w) enumerate w<“ so that ro = @ and
r; Crj =i < j, and put for u € w<* with dom(u) = n,

(u, (@0, ...,an-1)) ETr iff ag=pAVi<j<n-1
(ri G 7 = Ty1dom r,,r.)(utdom r,,r,)(a") > aj).
Then plT3] = “w  p[S].

Since K |= Yz € V(2! exists), we can form TF inside K. In order to see
that T = T, we must see that for any u,v € w<* with dom(u) = dom v

706,00, (u,0) (1) = T(4,0),(u0) (1)

and if u C r and v C s and dom(r) = dom s,
Tl () | = T, ro) [ b

for u* = m(9,0),(r,s)(1t). Now clearly, ,u{f‘,v) = fi(u,0) N K for all (u,v). We are
done, then, if we show that for any (u,v) and f : Sty v) — p such that f € L,
[f]4(u,.) has a representative in K. We may assume that for some z € V, and
term 7, f(w) = 7L [w] for all w € S(u,v)- Let w* = [identity]“(m) < Ky,
where n = dom(v), so by the result of Solovay mentioned above, applied
inside K, we can find a y € VX and a term o such that o?W)[w*] = rLE=1[w*].
It follows that for p(y . a.e. w, olW[w] = 7LE][w]. Letting g(w) = o*W¥1[w]
for all w € S(u,v), we have g € K and [g],(, ,, = [fluq..y-
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This completes the proof of 7.10 O

Now let
F={MeV,| Mis 2+1 iterable and properly small} .

Recall from 6.12 that a premouse is properly small just in case it satisfies
“There are no Woodin cardinals” and “There is a largest cardinal”. There
can be at most one cofinal wellfounded branch in an iteration tree based on
a properly small premouse, so any M € F has a unique 2 + 1 iteration
Bstrategy Xa. For M, N € F, let P and Q be the last models of 7 and
U, where (T,U) is the unique successful (Zaq, L) coiteration of M with
N. We define M <* N iff P € Q. Thus <* is just the usual mouse order,
restricted to F. The Dodd-Jensen lemma implies that <* is a prewellorder.
Set
8 = order type of (F,<*).

Also, for M € F, let [M|<+ be the rank of M in the prewellorder <*.
The following lemma is part of the folklore.

Lemma 7.11. § < u¥.

Proof. It is easy to see that if U is any normal ultrafilter on p, then (o)X =
a?t for U a.e. @ < u. B(We prove this as part of the proof of lemma 8.15 in
the next section.) It follows that K NF is <*-cofinal in F. For let M € F, and
let (7,U) be the successful coiteration of M with Jf determined by 241
iteration strategies for the two mice. Since J#K computes successor cardinals
correctly almost everywhere, max(lh 7,lh U) < p, and the last model P of T
is an initial segment of the last model of /. Let a < p be a successor cardinal
of K and such that {h E? <aforall{+1<!hU;then we can regard U as
tree on JX, so that (7,U) demonstrates that M <* JK.

It suffices then to show that if M € KNF, then [M|<. < u¥X. Fix M, and
let G be V-generic for Col(w, < p), and let zg be a real coding M in V[G].
Choose 2o to be generic over L[M], so that (ut)Lleo] = (ut)LIM] < 4K For
z and y reals in V[G], let

R(z,y) iff  (z and y code properly small premice M, and My, and
there is a successful coiteration (7,U) of M with M,
such that 7 and U are simple, and the last model of T

is a proper initial segment of that of U ),

and let
S(.‘L‘, y) iff R(E, y) N R(ya :l:o) .

It is easy to check that S is a X} (o) relation on the reals in V[G].
Claim. S is wellfounded.
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Proof. Suppose not, and let S = S, where S represents the natural defini-
tion of S from M over V[G]. Working in V, we can construct a countable,
transitive P and an elementary 7 : P — Vi with (M) = M and 7(fi) = p
for some M, ji. Let G in V be P-generic for Col(w,< f). Then Sg is ill-
founded, and this implies that the mouse order below M is illfounded. Since
T M: M — M,and M € F, this is a contradiction.

Since S is wellfounded and X} (o), its rank is < (u* )Ll by the Kunen-
Martin theorem. Clearly, (]M|<+) is less than or equal to the rank of S.
This proves 7.11. O

In view of 7.10 and 7.11, we would like to show that § = uy. The key idea
for doing this is due to Greg Hjorth.

Lemma 7.13. (Hjorth) Suppose § < uy; then there is a set M € V, such
that F N L[M] is <*-cofinal in F.

Proof. Since 6 < uz, we have an z € V), and a term 7 such that § = rLE [z, u].
Now let ¢ € V;, where n < p, and let (Z,€) < (Vqa, €) be such that card(Z) <
u, Vop € Z,and p € Z. Let M be the transitive collapse of Z, 7 : M — Vq
the collapse map, and 7(z) = p. Let U be such that M = U is a normal
ultrafilter on i, let N be the uth (linear) iterate of M by U and its images,
and let : : M — N be the iteration map. By an argument due to Jensen,
there is an embedding ¢ : N — Vy such that 7 = o o 4. Now (1) = p,
so o(p) = o(i(i)) = () = p. We also have 7 [ V, = i [ V; = identity,
so 0 | V, = identity, so o(z) = «. Thus o(rEl) [z, u]) = 7L][z, y]; that
is, o(6) = 6. It follows that (FN,<* M) has order type 6. Now if P € FV,
then o [ P : P : P — o(P) and o(P) € F, and thus P is §2 + l-iterable.
Thus FN C F. It is easy to see that (<*)¥ =<* NN. Since N € L[M],
FN C F N L[M], and we are done. a

We will actually use the proof of 7.12, rather than the lemma itself.

So far we haven’t worked with K above u, and indeed Hjorth formulated
his lemma with p = 2. But now let M and N be as in the proof of 7.12.
We would be done if we could find P € F such that YQ € FN(Q <* P).
There is a natural candidate for such a P, namely K™ . (K™ is not actually
properly small, but this problem is easily finessed.) Of course, the iteration
map i : KM — KV comes from an “external” iteration of all of M, but
suppose we could absorb its action into an internal iteration of K™ . We’d be
done. Since crit(¢) = &z, we must use the part of K™ above ji to do this. So
we must work with u < £2.

The following lemma is the key to absorbing the map from K™ to KV
into an iteration of K™ . Its proof borrows Lemma 8.2 from §8, a lemma we
originally proved as part of the proof of 7.9.

Lemma 7.13. Let j : V — Ul(V,U), where U is a normal ultrafilter on
u; then there are almost normal iteration trees T on K and U on j(K),
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having common last model @ and associated embeddings k : K — Q and
£:j(K)— Q, such that k={£o3j.

Proof. Let W be a weasel such that {2 is thick in W, and W has the hull
property at all @ < £2. Lemma 4.5 shows that such a weasel exists. By Lemma
8.2, there is an iteration tree 7y on K having last model W whose associated
embedding ¢y : K — W satisfies BDef(W) = tjK. In fact, 7y is a linear
iteration by normal measures. Notice that j(7p) is an iteration tree on j(K)
with last model (W) and associated embedding j(Zo). Since the class of fixed
points of j is thick in W, 2 is thick in j(W) and Def(j(W)) = j” Def(W).

Now let (71,U,) be the successful coiteration of W with j(W), using their
unique §2 + 1 iteration strategies, and let Q be the common last model of 7;
and Uy. BLlet t1 : W — @ and u : j(W) — @Q be the associated iteration
maps.

We have the diagram:

/ TQ

A ] (W)
to i(to)

K i i(K)

The bottom rectangle commutes: j oty = j(tg) o j because j is elementary
on V. The upper “triangle” may not commute, but it commutes on ran(to),
since

/(g K) = t{ Def(W) = Def(Q)
= u" Def(j(W)) = u"(;" Def(W))
= WGEE)).
1t follows that, setting T = Ty~ T;, k = tyoto, U = j(To) " U1, and £ = uoj(to),
the conclusion of 7.13 holds. u}

We can now complete the proof of Theorem 7.9. By 7.10 and 7.11 it is
enough to show § = uj, so assume § < uy. Let M, N, i, and fi be as in
the proof of 7.12. So M € V,, and i : M — N is the iteration map coming
from hitting a normal meaAsure of M on j repeatedly, p times in all. LeAt
iap : Mo — Mp be the natural map, where M, and My are the ath and Sth
iterates of M. So i = ig,.
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We define premice Qq, for @ < u, by induction on @. We shall have that
Qa+1 is the last model on an almost normal iteration tree 7, on Qq, With
an associated iteration map kg o+41 @ Qo — Qot1. We shall simultaneously
define embeddings £, : KM~ — Q so that for a < 8 < p

ko,p
Qa Qﬂ
Ly £
KM KMs
iag

commutes. (Here we are setting ko y4+1 = Ky y41 © kay, and kox : Qo — Qa
to be the canonical embedding into @y = dir lim,<Qq for A limit.)

Set Qo = KMo and £ = identity. Now, given Qo and £,, we apply 7.13
inside the model M, to the ultrapower which produces M,4,. This gives an
almost normal iteration tree 7 on K™= with last model Q and iteration map
k: KM« _ Q, and an embedding £ : KM=+t — Q such that k = £o la,at1-
Note T € M. Let Ty = £, T be the result of copying 7 to a tree on @, and
let Qq+1 be the last model of 7. (KM° is a model of ZFC, 7 doesn’t drop
on its main branch, and k and £ are fully elementary. So, by induction, all
Q4 are ZFC models, no 7, drops on its main branch, and all k,, and £, are
fully elementary. So we can copy.) Let u : @ — Qq+1 be given by the copy
construction, and £o4+1 = uo£. The commutative diagram below summarizes
the construction of Qy+1 and £o41:

KMa-l-l
ia,a+1

For A alimit < g, let £x(iqa(z)) = kar(£a(z)) whenever @ < A and z € KMe.
This completes the inductive definition of Q. and £,.

The Q4’s are not properly small, but we can easily finesse this problem.
Let ¥ : V. — Ult(V,U) be the canonical embedding, where U is a normal
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ultrafilter on £2. Let P = J¥%)| where o = 2+ = (2+)¥(). Clearly, P is
properly small, its largest cardinal being 2, and K = J}. Also, P is 2 + 1
iterable in V, since P is (§2+1) iterable in Ult(V,U) and Ult(V, U) is closed
under 2-sequences. It follows that any iteration tree on K of length < 2 +1
which is built according to the unique 2 + 1 iteration strategy for K can be
regarded as an iteration tree on P. Now we can assume that the hull Z < Vj
collapsing to M is such that Z =Y N Vy, for some Y < V4 (for § > §2 large)
with 2, P € Y. Let M’ be the transitive collapse of Y and @ be the image of

P under this collapse. Thus Q) € F and Qo = (70, , where « is the collapse
of £2. We can interpret 7y as a tree on @ according to its unique 2 + 1
iteration strategy, and let @) be the last model of Tp, so interpreted. Then

Q= TJo ', where « is the largest cardinal of @/, and Q) € F. Proceedmg

similarly by induction, we define @/, for & < u so that Q4 = Jﬁ « for B the
largest cardinal of Q.

Now let R € FN. Working in N, we see that R <* JﬁKN for some 3 < p.
Since KV is elementarily embedded into @, by ¢,, and @), is an almost
normal iterate of Qp by its unique §2 + 1 iteration strategy, R <* Q. Thus
FN is not <*-cofinal in F; Q) is an upper bound. The argument in the proof
of 7.12 now yields a contradiction. a

We can use our X} correctness theorem to show that certain apparently
weak consequences of A; determinacy actually imply A} determinacy. The
ideas here are due to A. S. Kechris; what we have contributed is just Theorem
7.9.

Corollary 7.14. Suppose Vz € “w (z' ezists), and Yz € “w (the class of
Z1(z) subsets of w has the separation property). Then A} determinacy holds.

Proof. We show that A} determinacy holds; the proof relativizes routinely
to an arbitrary real. By a theorem of Woodin, it is enough to show that there
is a transitive proper class model M and an ordinal é such that M = 6 is
Woodin, and VA{I is countable.

Let z be a real which codes up witnesses to all true X3 sentences; that
is, let = be such that whenever P is a nonempty X3} set of reals, then 3y € P
(y <t z). Using the Jensen-Mitchell £} correctness theorem, we get a proper
class model N such that € N and N | “There is are two measurable
cardinals”. For if there is no such N, then Kpjs(z) is X} correct, where
Kpj(z)is the Dodd-Jensen-Mitchell core model for two measurable cardinals,
relativised to z. Now Kpj(z) =" There is a A}(z)-good wellorder of R”, and
thus KDJ(:L') = “There are X}(z) sets A, B C w such that ANB =0 and for
all Al(z) sets C, ACC = BNC # 0. Since Kps(z) is I} correct, there
really are such sets A and B, and thus X}(z) separation falls

Now let N be as described in the previous paragraph, and let N | “u
and 2 are measurable”, where p < 2. If (K°)N =" there is a Woodin
cardinal”, then we get the desired proper class model M with one Woodin
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cardinal § such that VM, is countable. (Let P be the transitive collapse
of a countable elementary submodel of V4., and i : P — P, the result of
iterating a normal measure on the image under collapse of §2 through OR, and
let M = i((K°)¥).) But if (K°)" satisfies that there are no Woodin cardinals,
then KV is X} correct in N by 7.9. The choice of z guarantees that, since
Z3N P(w) has the separation property in V, it has the separation property in
N. The correctness of KV implies that £} N P(w) has the separation property
in K¥. But KV k= “R has a A}-good wellorder”, so KV k= “X1 N P(w) does
not have the separation property”. O

If IT3NP(“w) has the reduction property, then for all £ € “w of sufficiently
large Turing degree, Z3(z) N P(w) has the separation property. [Let (A4, B)
reduce a universal pair of IT} subsets of “w x “w. Then whenever A and B
are IT}(z), Z3(z) N P(w) has the separation property.] Thus the proof of 7.14
shows that Vz € “w (z! exists) + “II3 N P(“w) has the reduction property”
implies A} determinacy. We do not know whether Vz € “w (z! exists) +
“X3 N P(“w) has the separation property” implies Al determinacy.

We conjecture that Vo € “w (z! exists) plus “X} N P(w) has the sepa-
ration property” implies A} determinacy. If one tries to prove this lightface
refinement of 7.14 by the method of 7.14, then the fact that our X} correct-
ness theorem required two measurable cardinals, (rather than none) becomes
a problem.

Another application of our X} correctness theorem in “reverse descriptive
set theory” can be found in [Hj], where Hjorth uses it to show that IT; Wadge
determinacy implies IT é determinacy.

A problem which is closely related to the £} correctness problem is: what
is the consistency strength of ZFC + V& € “w(z!exists) + 83 = wy? Woodin
has shown that the strength of ZFC+ “there is a Woodin cardinal with a
measurable cardinal above it” is an upper bound. It is shown in [SW] that
ZFC + “There is a strong cardinal” is a lower bound. We conjecture that
the lower bound can be improved to ZFC + “There is a Woodin cardinal”.
Unfortunately, our proof of 7.9 does not seem to help with this conjecture,
because of our use of the measurable cardinals p and §2. One wants to replace
p with w; (and V, with HC), and avoid £2 altogether, and we don’t see
how to do this. However, our proof of 7.9 does give the consistency strength
lower bound ZFC + “There is a Woodin cardinal” for a certain variant of
ZFC + “Vz € “w(z! exists) + 63 = wy” which we now explain.

Let ¢ < 2 be measurable, and let u, be the ath uniform indiscernible
relative to elements of V,, as in the proof of 7.9. Notice that in yColw.<s)
is the oth uniform indiscernible relative to reals, and so us = (6;)"001(“’0).
One can ask whether VCOUw.<K) k= §1 = w,; we do not know whether it is
consistent relative to any large cardinal hypothesis that this be true. But
if we replace VCo@:<#) by its L(R), then the resulting proposition follows
from ADY®) in yColw,<#) which of course holds if there are enough Woodin
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cardinals in V. We now show that “VCol«:<#) = (L(R) |= 63 = wy)” is at
least as strong as the existence of one Woodin cardinal.

Theorem 7.15. Let p < £2 be measurable, and suppose VCIW:<H) = §1 =
wé'(m); then K° = There is a Woodin cardinal.

Proof. Suppose K¢ |= There are no Woodin cardinals. Letting u, be the
ath uniform indiscernible relative to parameters in V,, we have u¥ = u¥
from the proof of 7.9. Now let G be V-generic/Col(w, < p). It is easy to see
that u} is the second uniform indiscernible relative to reals in V[G], so that
uy = (63)VIC. Thus uf = wf(m‘), where R* = RVIG]. On the other hand,
J¥ is Z,(L,(R*)) definable, by §6 and the fact that K = KY€, Since Tk

is essentially a subset of u, we get u¥ < wf (R.), a contradiction. o





