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1. Introduction

Since the pioneer work of A. M. McKendrick in 1926, many authors have
contributed to the advancement of the stochastic theory of epidemics, including
Bartlett [4], Bailey [1], D. G. Kendall [12], Neyman and Scott [13], Whittle
[16], to name a few. Mathematical complexity involved in some of the epidemic
models has aroused the interest of many others. For example, the general sto-
chastic epidemic model where a population consists of susceptibles, infectives,
and immunes (see [2], p. 39), has motivated Kendall to suggest an ingenious de-
vice. Other authors also have investigated various aspects of the problem. (See,
for example, Daniels [8], Downton [9], Gani [11] and Siskind [15].) The model
discussed in the present paper deals with a closed population without removal
of infectives, a special case of which has been studied very extensively by Bailey
[3]. Following Bailey, we label it "a time dependent simple stochastic epi-
demic."

In a simple stochastic epidemic model, a population consists of two groups of
individuals: susceptibles and infectives; there are no removals, no deaths, no
immunes, and no recoveries from infection. At the initial time t = 0, there are
N susceptibles and 1 infective. For each time t, for t > 0, there are a number of
infectives denoted by Y(t) and a number of uninfected susceptibles X(t), with
Y(t) + X(t) = N + 1, the total population size remaining unchanged. Our pri-
mary purpose is to derive an explicit solution for the probability distribution
of the random variable Y(t),
(1) P1n(O, t) = Pr{Y(t) = nIY(O) = 1}, n = 1,** N + 1.

For each interval (T, t), 0 : T . t <0, and for each n, we assume the exist-
ence of a nonnegative continuous function #%(T) such that

a) -#[(T) form = n,
(2) t Pn.(Tt)| =.e 6n(T) form = n + 1,

O otherwise.

Under the assumption of homogeneous mixing of the population, we let
147
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(3) jBn(r) = n(N + 1 - n)j3(r) = a.fl(T),
where
(4) an = n(N + 1 -n).
The quantity :3(r), which is a function of time r, is known as the infection rate.
Thus, in this model, the intensity of spreading of disease may vary with time
during an epidemic. It follows from (2) that, for each t > 0, the probability
function Pin(0, t) satisfies the following system of differential equations

d
dt P,n(O, t) = -a13(t)Pn(0, t)

(5) d
dt Pln(0, t) = -an4(t)P1n(0, t) + an_1(t)P1,n-1(0' t)

for n = 2, * * *, N + 1, with the initial condition P11(0, 0) = 1.
Equations (5) are essentially the same as those studied extensively by Bailey

[1], [2], [3], except that in those publications the infection rate is assumed to be
independent of time (that is, ,8(t) = ,B) and the random variable is X(t), the num-
ber of susceptibles remaining at time t. Bailey used the Laplace transform, the
generating function, and a very skillful mathematical manipulation to provide
the solution. However, the computations involved are too complex. Yang has re-
cently established a relationship between the density function of the time of
infections and the probability of the number of infections to arrive at a solution
[17]. In the present paper, we offer another approach to the problem.
The present solution of system (5) requires the following two lemmas.
LEMMA 1. Whatever may be distinct real numbers a,, * * *, an,

n 1
(6) = 0.

i-i II (a;-a.)
a-l,a#i

Lemma 1 may be found in P6lya and Szego [14]. Several proofs of the lemma
have been given in Chiang [5], [6], pp. 126-127.
LEMMA 2. Whatever may be k, for 1 _ k < n, the probabilities in (1) satisfy

the equality
(7) Pin(0, t) = fl Pik(O, r)ak#(7')Pk+l,n(T, t) dT.

Equation (7) may be easily justified. Let k be an arbitrary but fixed integer,
1 . k < n, the (k + 1)th infection must take place somewhere between 0 and t.
Let it take place in interval (T, r + dT); then there are k infectives at T, and
(n - k - 1) infectives occurring during (T, t); the corresponding probability is

(8) Plk(0, r)akf(r) dr Pk+l,n(T, t),
where Pk+1,n(T, t) is the conditional probability of n infectives at t given k + 1
infectives at T. Since the events corresponding to the probability (8) for different
T are mutually exclusive, we may integrate (8) from T = 0 to T = t to obtain the
required equation (7). Equation (7) holds true whatever may be 1 _ k < n and
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regardless of whether the ai are distinct. For a general discussion on the lemma,
the reader is referred to Chiang [7].

2. Solution for the probability Pl,(O, t)

Solution of the differential equations in (5) depends on whether n < (N + 1)/2
or n > (N + 1)/2. The two cases are presented separately below.

Case 1: 1 _ n _ (N + 1)/2. For these values of n, al, * , a. are all dis-
tinct; the differential equations in (5) have the solution

(9) Pin(O, t) l)--la, ... an-, exp {-ajX(t)} 1

N N+ 1n= l- or 2 a

where

(10) X(t) = l :(T) dr

is assumed to be such that limt-., X(t) = oo. We assume that ao= 1 and
7r(ai = aa) = 1 for n = 1.

Solution (9), which can be verified by induction using Lemma 1, is similar to
that in the pure birth process (see, for example, Feller [10] and Chiang [6], pp.
51-52), except that, in the present case, 1r(T) is a function of time.
When f3(T) = ,B, X(t) = ,Bt, and solution (9) becomes

(11) P1n(0, t) = (-)la, .. an , xP {a- n],
a= (a1i-a.)

N N+1.n=1..X2 or 22
For at defined in (4),

(12) a, ... an-1 = (n-1)! N !
(N + 1-

(13) ~~ ~~~~~~ni(i -1)!(n - i)!(N -)(13) aIH (ai- a.) = (-1) N2+1) -in!

and solution (11) may be rewritten
(14)

nt= (N - 2i + 1)(n - 1)!N!(N - i - n)! exp {-aj3t})= (-1) (i - 1)!(N -i)!(N + 1 - n)!(n -i)!
for n = 1, 2, , (N/2 or (N + 1)/2), which is the same as that obtained by
Bailey [2].

Case 2: (N + 1)/2 < n . N + 1. Formula (9) no longer holds true when
n > (N + 1)/2 for the reason that in this case the ai are not all distinct, and in
particular,
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(15) a; = i(N + 1-i) = aN+1-j.

However, solution of the differential equations in (5) can be obtained by using
Lemma 2. In applying equality (7) to the present problem, the integer k must be
chosen so that the ai in the probability Pu.(O, T) are distinct and the as
in Pk+1,,(r, t) also are distinct. When N is even, k = N/2; when N is odd, k
(N + 1)/2.
With these values of k, we apply formula (9) to the two probabilities in the

integrand in equation (7) to obtain

(16) Plk(0, T) = (-1)*lai ... akIi[ exp { ai(T)1
iL ] (a -a)

and
n ep(aj[(t)- X(T)]

(17) Pk+l,,.(r, t)
=

1) n-k-1ak+1 ... an-I
[

n

x{a,Xj=k+l II (a;- as)
5=k+1,50sj

Substituting (16) and (17) in (7) gives the basic formula

(18) Pi.(0, t) = (-)nal .. an1
k n texp {-ajX(r)j exp {-aj[X(t) - X(r)]}
i=1kn=+ fl(7) dr.i=1'j=k+1 10 II (ai-a.) II (a,-aa)

a=l,aoi 5=k+1,60j

The integral in (18) depends on the values of ai and aj. According to the definition
of X(t) in (10),

(19) f exp { aiX(r)} exp {-ai[X(t) - X(T)]}/r(T) dr

= a~- a, [exp {-aiX(t)} - exp {-ajX(t)}], as 6 ai,
and

(20) f|, exp {-aiX(r)} exp {-aj[X(t) - X(r)]}jr(T) dr
= X(t) exp {-aiX(t)}, a, = ai.

There are (n - k) terms where ai = a, with i + j = 2k + 1 when N = 2k, and
i + j = 2k when N = 2k-1; they are

(21) a2k+l_n = an, a2k+2-n = an,, a,k = ak+1,
for N = 2k, and

(22) a2k-n = an, a2k+2-n = a"_,, , ak-i = ak+,

for N = 2k - 1. The probabilities Pln(O, t) assume slightly different forms for
N = 2k and for N = 2k - 1.

(i) N is even: N = 2k. Substituting (19) and (20) in (18) gives the desired
formula for the probability
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(23) PI,,(0, t) = )(--)la, n1r k X(t) exp { ai?X(t)}
i=2k+1-n I (ai - aa)

_ a~~~C=I,a.O^ai
k n exp {-a,X(t)}- exp {-ajX(t)}

+ E E k na=fj-a+i (a - a,) ]I (ai - aa) I (aj - as)
a=1,a i 6=k+1,80 _

for n = k + 1, *, N, where k = N/2.
Note that in the product IIa- I (a, - a.) in formula (23) there are two values

of a for which aa = ai; namely, ai and aN+1-j; they are both excluded from the
product.
The probability P1,N+1(O, t) may be computed from

(24) P1,N+1(O, t) = f P1,N(O, T)aNI7(T) dr

k |O (T) exp {- aiX(T)} f(T) dr
= a, **. aN e N

j=1 II (ai- a.)a=1,a0 #ai

_ N f|t [exp {-aiX(T)} - exp {-ajX(T)}],3(T) dT

i-1j-k+1 ]I (a, - aa) H (a, - as)(ai - a,) I
a-i 5=k+l

The first integral of (24) is evaluated to give

(25) X0A(T) exp {-a,X(T)}(T) dT = 1 _exp {-aiX(t)} _ X(t) exp {-aiX(t)}
Jo ~~~ ~~ ~~atat a,

Thus, the first term inside the brackets in (24) becomes
(26)

k k1 exp {-aiX(t)} - AX(t) exp {-aiX(t)}
L.d N -' N - N

H1 (ai - aa)at HI (ai- aa)at '= I (ai-a)ai
a =I,eva Oai a= Lsa. Oai a = Lwa= ,aai

The second integral in (24) is

(27) f [exp {-ajX(T)} - exp {-a,X(T)}]3(T) dT

a,-a, _ [exp {-a,X(t)} _ exp {-ajX(t)}1
a,a, L ai a J

and the second term inside the brackets in (24) becomes
k N 1

(28) E E k N

i=lai1;cs+a II (a, - a.) II (a, - aa)aia1a=1 a8k+l
+ NE [exp {-aX(t)}/ai]- [exp {-aJX(t)}/aj]+ F, [xp N
ai,=Z-1 II (a.-aa) II (aj- as)(a - a,)

a=1,aoi 8=k+1,80j
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Combining the two constant terms in (26) and (28), and using Lemma 1, we have

k 1 k N 1
(29) E N + E E k N
i I (ai- a,)at a= £ai II (ai- a.) II (a - as) aia1
a=1,aa0ai a=1 S=k+l

=[t aI-I(ai- aa)at]a [] II1ai

In the second term in (28), the running indices i and j are interchangeable, so
that

ic N [exp {-aiX(t)}/ai] - [exp {-ajX(t)}/aj](30) E N
ati9aI+ II (ai- aa) II (a1 - as)(ai- a1)

a=1 5=k+l

k N exp {-ai1X(t)}
2 k- N

aik+l H (ai - aa) H (a1 - aa)(ai - aj)aj
5 =k+1

With the simplifications in (29) and (30), we substitute (26) and (28) in (24)
to obtain the formula

(31) P1,N+1(0, t)
=1-a*.. k X(t)exp {-aJX(t)} + k exp {-a1X(t)}

(ai-aa)ai II (ai - aa)at
a= 1,a. 7ai a= 1,a. F-ai

kc N exp {-ajX(t)} 1

ai=aik+l II (ai- aa) (aj- aa)(ai-aj)a
a= l,aOi 3=k+1,8#j_

where k = N/2 and X(t) = ft ,B(r) dr.

(ii) N is odd: N = 2k - 1. The essential difference between this case and
the preceding one is in the limits of the summations and the value of ak (that is,
a(N+l)/2) which is now distinct from all other ai. Keeping these differences in mind,
we again substitute (19) and (20) in (18) to obtain the probabilities

(32) Pln(0, t) = (-1)'-1a . a.-1r(t) exp {-aiX(t)}
i=2k-n II (ai - a.)

a= 1,a. oai

+ n exp {-aiA(t)} - exp {-ajX(t)} 1
i=1 =k+l II)a,da, H (ai- a) H (a1 - as) (ai - a1)

a=1,a#i 5=k+1,56j

for n = k + 1, -,N; with k = (N + 1)/2, and
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(33) Pl,N+1(0, t) = 1 - a ... aN [NE1 (X(t) + al) exp {-a1X(t)}.
[1=1 II (ai - aa)ai

a=l

k NE [exp {-aiX(t)}/ai] - [exp {-ajX(t)}/aj]i=3j=k+l II (a -aa) II (a1-aa)(ai- aj)
a=l,a#i 5=k+1,60j_

In formulas (9), (23), and (32) of the probabilities Pln(O, t), every term con-
tains a factor exp {-ajX(t)} with ai > 0. Therefore, as t -+ X, Pln(O, t) 0,
for n = 1, - -*, N; whereas formulas (31) and (33) show that P1,N+1(0, t) -1
as t -a oo. This means that in the simple epidemic model considered here, all the
N susceptibles will be infected sooner or later; and the epidemic is said to be
complete (see Bailey [2]).

3. Infection time and duration of the epidemic

The length of time elapsed till the occurrence of the nth infection is a con-
tinuous random variable taking on nonnegative real numbers. Let it be denoted
by T., for 1 < n _ N + 1, with T, = 0. When n N + 1, TN+l is the duration
of the epidemic. The purpose of this section is to derive explicit formulas for the
density fn(t), the distribution function Fn(t),. the expectation and variance of

The density function fn(t) has a close relationship with the probability
PI,,,-(0, t) of n - 1 infectives at time t. By definition, fn(t) -dt is the probability
that the random variable T. will assume values in the interval (t, t + dt). This
means that at time t there are n - 1 infectives and the nth infection takes place
in interval (t, t + dt); the probability of the occurrence of these events is
P1.n-1(O, t)an, iB(t) dt. Therefore, we have the density function
(34) fn(t) dt = P1,.,l(O, t)a._.j#(t) dt,
'and, hence, the distribution function

(35) Fn(t) -fj Pi,n_1(O, T)a,.4I3(r) dr, n = 2, * , N.

Using the formulas of the probabilities Pln-l(O, t) in the preceding section, we
can write down explicit functions forfn(t) and Fn(t) for each n. We give two exam-
-*ples beloW.

EXAMPLE 1: n _ (N + 1)/2. We substitute formula (9) in (34) and (35) to
obtain the density function

(36) fn(t) dt- (-1)n-2a, ... an, 9(txp {-aid(t)}1dt
=1 II (ai - aa)a=l a#i4

and the distribution function
n-' 1 - exp {-aiX(t)}

(37) F.(t) = (_l)n-2a, ... an-1 n-e
i=l II (ai-a)aav 1.a#i
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forn = 2, *-- ,N/2or (N+ 1)/2, andO < t <o. Ast-+oo,fn(t)Oand
n-I

(38) Fn(-) = (-')"-2a, a.n-, E =1,
j_1 II (ai- aa)ai

asl= a fi
since Lemma 1 implies that

n-1
(39) n-1 n-i1i1 II (ai- aa)ai 1 (-ai)

a-i,a#i i=1

ExAMPLE 2: the duration of epidemic TN+,, when N = 2k. In this ease for-
mula (23) for n = N is used in (34) and (35). The density function and the dis-
tribution function for TN+1 are, respectively,
(40)

fj+=(t)dt 1(-)al . aNr X(t) exp {-ajX(t)}
fN -1 II (ai- aa)

L a =il,Ga Rfa;

+ N exp {-ai)(t)}j {-a,X(t)}
+ -ij-kN (t) dt,

ai0ai,+l I (a;- aa) II (a - as)(ai - a)

where k = N/2, and

(41) FN+l(t) = (-1)al aN 1
[=l a[II (ai- aa)

_ a=l,a.aia

x(t) 1-exp {-aiX(t)}1exp {-a r(t)) 2a, at
k N 1

+ iEl jE+ k Ni-i j=Ic+i Iaida; (ai -aj) II (ai-aa) II (a- as)
a=l,a^s 8=Ic+i,8fj

1 - exp {-ajX(t)} _ 1 - exp {-a,X(t)}
a, a1

for 0 < t <00. As t -X co, fN+l(t) 0 and FN+l(t) -* 1. To prove the last asser-
tion, we take the limit of (41) as t - ,

(42) FN+1(oo) 1ai1... aNvFI 1
I'~ H (ai -a.)

a=1,aa#as

b N

a=,?kl,i =+,jSainc ][i (ai - as)aj N an a,- ah
a l.Le 8iIc=+1,50j a~

Since a, aN+11j and k =N/2, the limits of j (in the summation) and 5 (in the
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product) in (42) may be changed from (k + 1, N) to (k, 1), and (42) may be
rewritten

(43) FN+1(O) = a1 aN [E k (1 ]

1 II (ai - a)aj

where k = N/2,
(44) a, ... aN = (a, ... ak)2,
and, in light of Lemma 1,

k -
(45) E k

(45 I1: (ai- aa)aj II (-ai)
a = l,a i i=l

Substituting (44) and (45) in (43) yields

(46) FN+1(-) = 1.

In the same manner, it can be shown that whatever may be n = 2, * , N + 1,
Jn(t) -O 0 and Fn(t) -- 1 as t -- o, and the corresponding random variables Tn
are all proper.
The expectation and variance of Tn can be computed directly from

(47) E(Tn) = if tf.(t) dt
and

(48) f2,O [t -E(T)]2fn(t) dt.

For the duration of epidemic TN+1 with N = 2k, for example, we substitute
(40) in (47) to obtain the expectation

kA f| tX(t) exp {-ajX(t)}fl(t) dt
(49) E(TN+l) = (-1)a1 ... aN ex

t1II (ai- aa)
a= l,aa Oa;

IC N Jo0t(exp{- ajX(t)} - exp {-ajX(t)})f(t) dt
+ E YE k N.

i=l j=k+l II (ai- aa) II (a3 - aa)(ai - aj)
a = l,a Hi =k+ 1,30-d

Obviously, explicit formulas of E(Tn) and AT.. depend upon the infection rate
,8(t). When the infection rate is independent of time so that ,(t) = 13, the corre-
sponding formulas may be obtained by an alternative method.
The length of time elapsed till the occurrence of the nth infection may be di-

vided into two periods: a period of length T1_1 up to the occurrence of the
(n - 1)th infection and a period of length Wn between the occurrence of the
(n - 1)th and the nth infections. The sum of the two periods is equal to the
entire length of time, or

(50) Tn = Tn_l + Wn.
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Equality (50) can be easily verified. When ,8(t) = f3, Tn_l and W. are inde-
pendently distributed nonnegative random variables. The density functions of
Tn_, and Wn can be derived from (34); they are

(51) fn.l(t) = Pl,n.2(0, t)an-2f3

and

(52) g9(t) = Pn_i,n_ (0, t)a.43,
respectively. According to (50), the distribution of Tn. is the convolution of the
distributions of T.-, and Wn. Therefore, the corresponding density functions
satisfy the relationship

(53) fn(t) = |0 fn-i(r)gn(t - r) dr.

To prove (53), we recall identity (7) in Lemma 2,

(54) Pl,_n 1(0, t) = fo PI,w.2(0, r)a.-2#Pn_l,n_l(r t) dr,

and multiply both sides of (54) by an-l, to obtain

(55) Pi,,ln(0, t)a.-3 = f, [Pl,.2(0, r)a.-2#3][P _l(,r, t)an.-L] dT,

which, in light of (34), (51), and (52), is identical to (53), proving (50). Equation
(50) is a special case of a general equality, for which the reader is referred to [6],
p. 110.
Now, the probability in (52) is

(56) Pn_,n_1(O, t) = exp {-an._1/t};
therefore, the random variable W. has an exponential distribution with the
density function

(57) gs(t) = a.-,# exp {-a,_i_t}.
The expectation and the variance of Wn, thus, are given by

(58) E(n) =
and

2 1(59) 0W.. =
032

respectively.
Equation (50) can be easily extended. Let

(60) Wi = Ti - Ti-. i =2. ---.N +1.

be the length of time elapsed between the (i - 1)th and the ith infections. Using
the arguments in proving (50), we can show that

(61) T. = _2 TI
- TI W. nT= 2t N
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where the Wi are independently distributed random variables, and each has an
exponential distribution (see equation (57)) with

(62) Effi) =a1 oWi =<,1 i = 2, * ,N + 1.

It follows that the expectation and variance of T. are
n-i 1 n-i 1

(63) E(Tn) or T= 2,2 n = 2* N+ 1.

For the duration of the epidemic TN+,, we may use the relationship at =arl_;
to have

k l 2 k 1
(64) E(TN+i) = 2 2

,+ 2=la2 2j=1 aij3 1=1 2

when N is even with k = N/2, and
k-il1 1 2 k-il1

(65) E(TN+I) = 2 X OT+ - 2 E 22+22
a13 akf3 i=i a af

when N is odd with k = (N + 1)/2. They are the same as those derived from the
cumulant generating function in [2], p. 47.
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