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1. Introduction

The work described here concentrates on one aspect of the development of
epidemics, namely, spatial propagation, ignoring such features as variable
density of population, the gradual introduction of fresh susceptibles, and, for
the most part, the removal of infected cases. (For an introduction to more
sophisticated models for epidemics see Bailey [1].)
The basic feature of the mathematical models considered here is that the rate

of infection of susceptibles is assumed to be proportional to the product of the
number of susceptibles with the number of infectious individuals. This follows
immediately from the assumption that the infectious influence of an infectious
individual on a susceptible is independent of the state of other members of the
population. Thus, if there are X susceptibles and Y infectious individuals living
at an isolated point-the significance of "at a point" is that they should live so
close together as to affect each other equally-then X, the rate of change of X
with time, is proportional to (minus) XY.

If we wish to study the spatial propagation of infection for such an epidemic
model, we must allow for the dependence of this infectious influence on the
distance between the individuals concerned, so that the rate of infection of
susceptibles at a point s at time t, namely,-X (s, t), is proportional to the product
XY of the number of susceptibles at s with an average value Y of the numbers
of infectious individuals at all points, weighted according to their distances from
s. This weighting function may be taken to be a probability distribution function
V; then Y is the convolution of Y with dV, that is, Jspace Y(s - r) dV(r).
The introduction of such a weighted average Y to our equations causes con-

siderable difficulties in their analysis which have not, to the best of my know-
ledge, been tackled hitherto (Neyman and Scott [12] make allowance for such a
dependence on distance as is considered here, but their approach otherwise
differs widely). I have, accordingly, concentrated on the most simple type of
epidemic model which incorporates this feature, namely, a simple epidemic in
which there are only two types of individual, susceptible and infected; infected
and infectious individuals are taken to be the same. For the most part, too, I
have restricted attention to a deterministic model.

The work described here was carried out during the tenure of an S.R.C. grant in the Department
of Pure Mathematics and Mathematical Statistics at Cambridge University, and (more recently) of
a Research Centre Fellowship at King's College.
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Previous authors have made considerable progress on the manner of spatial
propagation of epidemics (Kendall [7]) and of a dominant gene (Kolmogorov,
Petrovsky, and Piscounov [9]) through a linearly distributed population by
using a local (diffusion) approximation for the effects of cross infection at a
distance; they used Y + k(O'Y/0s2) instead of F. They discovered that propa-
gation as a travelling wave is possible at and above a certain critical velocity.
I have shown [11] that under a negative exponential weighting function
(v(s) = 2 exp {- s|}) waves are possible exactly as for the local approximation.
the critical velocity being only slightly higher.

In the first part of this paper, it is shown that the negative exponential
weighting function is a borderline case: while for less spread weighting functions
we can find waveform upper bounds (Theorem 2(i))* outbreaks of epidemics
which do not satisfy the condition

(1.1) eksdV(s) < ccn for some k > 0

progress at arbitrarily high rate as I -- oc unbounded by any wave (Theorem
2(ii) and Lemma 4)).

It appears then that (1.1) is a necessary condition for diffusion approximations
to be any guide to the behavior of epidemics. This is quite a restrictive con-
dition, which suggests that the faith of previous authors in diffusion approxima-
tions is unjustified. What is more, the importance of (1.1) appears to depend
merely on the basic, roughly linear, dependence of Y on Y for small values of Y.
so that there is every reason to suppose that the same qualitative results will
hold for other models for geographical spread, such as those of Kolmogorov.
Petrovsky, and Piscounov [9], and Fisher [5] for the spread of an advantageous
gene (which are discussed in (v) of Section 2.1), of Marris [10] (see Chapter
4, especially pp. 149-175) for the spread of consumer demand, and of Zeldovitch
[16] for flame propagation. Also there appears to be no difficulty in extending
the (qualitative) results of Section 2 to two (or more) dimensions (see (iv) of
Section 2.1, and Kendall [7]).

Section 3 is devoted to the (more realistic) discrete stochastic analogue of
the continuous deterministic model of Section 2. This is, not surprisingly, more
resistant to analysis, and while the theoretical framework (Section 3.2) is con-
siderably more elegant than that for the deterministic model (Section 2.2), the
results section (also 3.2) is noticeably thinner than Section 2.3. Under rather
stronger conditions on the initial situation than those of Theorem 2 and
Lemma 4, we find (Theorem 3) that in the stochastic case we can replace (1.1)
by the variance of V is finite as the condition for propagation at a finite rate.

The last two subsections ofSection 3 are devoted to simulations ofthe stochastic
model, which have been carried out on TITAN. the computer at the Cambridge
University Mathematical Laboratory. For several weighting functions which
are less spread out than the negative exponential function, and for the negative
exponential function itself (or rather its discrete equivalent). progress is observed
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as might be expected at a steady rate, with a front which, averaged over a period
of time, is wavelike. The simulated outbreaks with V of "just infinite- variance
progress in wilder and wilder great leaps forward, as again might be expected
from Theorem 3.
The interesting case here seems to be the intermediate one. In this case V is of

finite variance but not negative exponentially bounded, and epidemics appear to
progress in a mixture of steady progress and great leaps forward which would
not be forecast by local approximation equations. If, for example, one could
show that the distributions for light windborne objects such as some kinds of
germs and plant seeds are of this type, one might throw new light on quite a
number of problems of geographical spread. It would explain, for instance, why
outbreaks of epidemics, or mutant species, sometimes appear to have several
origins (see, for example., Chamberlain [2]; Davies, Lewis, and Randall [3]:
Norris and Harper [13], and Tinline [14] on the spread of foot and mouth
disease).

2. The velocity of simple deterministic epidemics

2.1. Introduction. The result of Mollison ([11], Theorem 4.1) that waves of
all velocities above a certain minimal velocity are possible for a simple epidemic
under negative exponential weighting, is a full answer to a rather specialized
question. In this paper, we try to answer a vaguer but more general question:
under what conditions does an outbreak of a simple epidemic propagate at a
finite rate?

In Section 2.2, we first consider various possible definitions for the rate of
propagation of an epidemic. including the mean velocity (2.8) and velocity at
level a (2.9). Second, having defined a simple epidemic by its differential equation,
we define as pseudoepidemics a class of differential equations, and prove a result
(Theorem 1) which will allow us profitably to compare outbreaks of a simple
epidemic with "outbreaks" of pseudoepidemics (for both epidemics and pseudo-
epidemics we define an outbreak as a particular solution of the relevant differen-
tial equation). The advantage of this is that we shall be able to choose pseudo-
epidemics with differential equations which are easier to handle than that for a
simple epidemic (mainly in that we can evade the convolution -).

Section 2.3 is devoted to the connection between "the mean velocity is
eventually finite" (that is. "lim sup,-,O (mean velocity) < c'o") and two con-
ditions, one on the epidemic (1.1) and one on the initial situation of the particular
outbreak (2.18). Roughly speaking, each condition says that the relevant
function (dV(s) and y(s. 0), respectively) should tail off at least exponentially
fast as s -* cc. The results of Section 2.3 nearly add up to:

the mean velocity is eventually finite if and only if both (1.1) and (2.18) hold.
The exceptions to this are listed under Corollary 2 (the two conditions are

necessary. but one alone might be sufficient provided it holds sufficiently
strongly).
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The analysis of Sections 2.2 and 2.3 may appear more comprehensible when
regarded as an extension of results which hold for the linear equation, y = y,
which approximates the epidemic equation (y = y(1 - y)) for small values
of y. Thus, Theorem 2 (i) and Lemma 5 are based on the following theorem on
waveform solutions of y = y.
We look for waveform solutions to y(s, t) = y(s, t), s and t e a, that is,

solutions for which y = -cy', where c is a constant (the velocity of the wave).
We may then consider y as a function of just one variable, s, say.
Suppose that f,(k) _,g kek(1 - V(s)) ds converges for 0 < k < k*. Let

(2.1) Ye, k(5)- {y ()ek for s < 0

y(se' or s . 0.
Then the only waveforms y(s) for which YE k(8) e L2((), some £, k with 0 < £ <
k < k*, are of the form E, Eq =x Cv psP- 1 ekes, where the C, are constants, and
k, runs through the solutions off,(k) = ck for which 0 < real part of k < f*, and
q is the multiplicity of the root k,.
The proof proceeds as follows. We have y'(s) = (1/c) SA y(s - u) dV(u),

whence by integration, with the boundary conditions y(- X) = o, y(oo) = 0,
suitable to a wave of positive velocity,

(2.2) y(s) = -- .Jy(s-u)(V(u) - 1) du.

Let 0 <£' < c, k < k' <k*; then

I ! (i - V(u))ee'u for u < 0,
(2.3) fexk(u) -_

1

- (1 V(u))eku for u 0,

is in LV(3), and the overlapping of the intervals (-c, e), (c', k'), (k, x),
ensures that the Fourier transforms y-, (1/c) [1 - V(u)] and P+ have over-
lapping regions of regularity so that we can apply Wiener-Hopf technique to
obtain the theorem as stated (see Titchmarsh [15], Theorem 146, p. 305, whose
proof adapts almost word for word to our problem).

In Theorem 2 (i), we shall show that such waveforms of y = can be used as
upper bounds for the propagation of epidemic outbreaks, and in Lemma 5 we
shall consider more exactly the existence of roots k, for varying values of c (and
varying V). The other main results of Section 2.3 are similarly based on results
for y = ~, and the reader may find their proofs more easy to understand if he
at first ignores the terms corresponding to the (1 - y) factor which occur in
these proofs (for example, the (1 -at) factor in the proof of Theorem 2 (ii)).
To conclude this introduction, we mention some lines of research which will

not be written up here, as they have either not been taken very far or have
proved unprofitable.
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(i) Pursuing the lines of Section 2.3, one would like to know more about the
eventual behavior ofoutbreaks of epidemics for which both (1.1) and (2.18) hold.
In Theorem 2 (i) we define a critical velocity cv, for each such epidemic. It is
tempting to conjecture that under fairly weak conditions on the initial situation
of the outbreak (y(s, 0) _ ae-kvs and perhaps y(s, 0) _ some lower bound) the
mean velocity tends to c,. In particular one might conjecture that it tends to a
waveform, which brings us to (ii).

(ii) Do waveforms exist? Clearly, not unless (1.1) holds. Theorem 2 (ii) shows
this. Several approaches look possible.

(1) A specific differential equation approach as in Section 2. (Kolmogorov,
Petrovsky, and Piscounov [9] use such an approach in their work on a diffusion
model for genetic spread.)

(2) We might also mention here their approach to the analogue of (i), which
is to take the simple initial conditions

(2.4) Y(,8, 0) =~1{ ifs <0

4 otherwise,

and show that y (s, t) tends to the waveform of minimal velocity. We might, for
instance, be able to show that the slope of y(s, t) for fixed y, namely, y'(y) (t),
tends down to a limit. The difficult step appears to be proving that y'(y) cannot
increase (of course this may not be true!). It would then be easy to prove that
this limit must be a waveform of velocity _ c, (applying Lemma 5 (i)), and easy
to extend to a class of initial conditions on y, certainly to those of Theorem 2 (ii).
If it turned out to be unnecessary to assume the existence of a waveform, this
would furnish another approach to (ii).

(3) An elegant alternative approach is to consider waveforms as fixed points
of the continuous function Tc(f) _ 1 - exp {- Pf}, where P denotes con-
volution with V(ct) rather than V(s); and try to apply Tychonov's theorem that
a continuous function from a compact convex subset of a topological vector
space to itself has a fixed point ([4], pp. 456-459). If c > c, the set

{f: fo f < min (eckt, 1)} will do, provided only that fo is monotone non-
decreasing, positive, and < T,(fo); but such an fo has so far eluded discovery.

I have given more space here to (ii) because it appears more tractable than (i).
The latter is, however, surely the more important question, and it may be that
a direct approach, possibly finding a sequence of lower bounds for the outbreak
with initial conditions (2.4), might provide an adequate answer which side-
stepped the "existence of waves" question.

(iii) It is easy to extend the qualitative results of Section 2.3 to two (or more)
dimensions, at least if V is radially symmetric. For lower bounds for rate of
propagation, we can consider a strip of constant width, for upper bounds a

strip of infinite width. We then produce pseudoepidemics for comparison which
are essentially one dimensional epidemics multiplied by an appropriate constant.
Then the qualitative parts of the results of Section 2.3 (for example, those
referring to whether the mean velocity is eventually finite) will apply, suitably
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adjusted in their statement, to epidemics in the plane. Clearly, they will also
hold for any asymmetric V which can be sandwiched between two symmetric
distributions.

(iv) Apart from the problems raised in (1) and (2) above, the matter of
epidemics with removal is clearly the next problem deserving attention in our
line of research into continuous deterministic models for epidemics. Provided
that the differential equations defining the removal rate are sufficiently regular
to allow comparison theorems such as Theorem 1. it seems clear that the progress
of an outbreak of an epidemic with removal will be bounded above by that of a
simple epidemic with similar initial conditions. as it seems implausible that
removals should speed up an outbreak.

Since Theorem 2 (ii) relies in its proof mainly on events in the forward tail of
the outbreak, where the proportion of susceptibles ; 1, there seems hope of
extending this result also.

Rather than continuing with problems (i). (ii)., (iii), and (iv), it has seemed to
me more profitable to raise one's eyes from the problems of continuous deter-
ministic models for epidemics, and to look at stochastic models, more resistant
to analysis but more realistic; Section 3 is, accordingly, devoted to these.

(v) Before abandoning deterministic models, it seems worth mentioning the
problem of genetic spread. Diffusion models have been considered in [9] and
[5] (the former paper considers the case of dominance among genes, the latter
only a particular case of partial dominance, which is in fact covered by the
general type of equation analyzed in [9]). If we replace the diffusion approxima-
tion of Kolmogorov [9] by the exact convolution equation. we find that the
analysis of Section 2.3 applies at least qualitatively, Thus, Kolmogorov,
Petrovsky, and Piscounov are wrong in stating that it is a sufficient condition
for propagation at a finite rate that the first three moments of V should converge
([9], p. 4). This merely ensures that their equation is a good approximation to
the convolution equation.
A more serious error is their failure to point out an assumption that the

Hardy-Weinberg law holds for variably interacting populations with varying
proportions of the different genotypes (which it does not). Nevertheless, whether
it is a reasonable approximation I am unsure; certainly the corrected equations
are horrible. In this uncertain situation, I have preferred to omit work on the
genetic problem from this paper.

2.2. Analytic preliminaries. We consider simple epidemics among a popula-
tion of uniform density a on the line A. If y(s, t) denotes the proportion infected
at s at time t, the basic equation of propagation is o'= xay(1 - y), where
y(s, t) denotes the weighted average S. y(s - u, t) dV(u), and V denotes some
probability distribution function. We may, without loss of generality. take the
constant a = 1/a, so that our basic quation becomes

(2.5) y = y(1 - y).
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The first half of this section will be concerned with defining "the rate of
propagation" of a simple epidemic. Let us first define the epidemic itself more
precisely.

DEFINITION 1. Speaking mathematically, we define a simple epidemic as a
function which determines how infectability depends on the relative positions of
each possible (infectious, susceptible) pair.

In the present case this is just the distribution function V. Then, given a
population P distributed with measurable density over some metric space. we
can set up the equation of propagation analogous to (2.5).

DEFINITION 2. lVe define an outbreak. of a simple epidemic E among a
population P, as a solution of the epidemic equationfor aparticular initial condition,
specifying the numbers y(s, to) infected at each point s at time to.
When, as here. the equation of propagation satisfies conditions ensuring

uniqueness for its solutions (here a Lipschitz condition), an outbreak will be
completely determined by its initial condition; the contrast between this and
the more realistic state of affairs attending a stochastic outbreak (Definition 5)
should be noted.

Without loss of generality, we may take to = 0. Also, we need only consider
propagation in the direction of increasing s (on .A); to apply our results to
propagation in the other direction. one need only transfer attention from
y(s. to) to y(-s., to), and from V(s) to 1 - V(-s).
We must now define our criteria for saying that an outbreak propagates at

finite (or. respectively, infinite) rate. For the whole outbreak the best measure
of rate of propagation would seem to be

(2.6) c(t) f ,Q(s. t) ds.

NOTE. We choose J rather than (a/at)( y) because J y can diverge and
yet J converge, but not vice versa, since J 4 = Jy(1 - y) . J 4 = f y. Of
course. when both coniverge, (a/at) (J y) = f.
For the rate of propagation in the direction of increasing s then, we want to

take an integral of p with respect to some measure which tends to ordinary
Lebesgue measure as s -- o, and to the zero measure as s - cc. Since we
are only interested here in the behavior of outbreaks as t -c, it matters
little which we take, so we may as well take the simplest, which gives

(2.7) c+(t) _ ds.

Further. since we have as yet no distinguished point on the space axis, this so
has only spurious generality; we may as well take so = 0.
Now consider the type of result we might hope to prove regarding the

eventual rate of propagation of outbreaks of simple epidemics. Suppose we

have conditions (1) on the values of y(s. 0) and (2) on the type of weighting
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function. Then we might have that "c+(t) -- some infinite value as t -x cc if (1)
and (2) hold; otherwise c+(t) -- oo". In practice (Section 2.3), the only part of
this ideal which we shall attain will be a realization of condition (2); as regards
(1), we shall have to be content with mutually exclusive, but not exhaustive,
conditions. Also, we shall not be able to prove that c+(t) has a limit when our
conditions hold, or even that it has a finite (upper) bound. In this section, I shall
only deal with the inadequacies of Section 2.3 as regards the velocity c', and
prepare some of the apparatus with which we shall investigate c+.
From the type of proof I provide, it is not possible to tell about the short

term behavior of c'; instead we shall deal with

(2.8) c+(t) -- (f c+(z) dr) t > O,

which I shall call the mean velocity (to time t). The velocity c-+ (t) is not an easy
object to analyze directly, so we introduce one more type of velocity ca(t),
0 < a < 1, and prove that if c,(t) x-+ c, so does c+(t) (under rather trivial
conditions).
We define the velocity at level a,

(2.9) c.(t) - (sup (s: y(u, t) _ ac for 0 . u < s)).

(This is, of course, again a definition for propagation in the direction of
increasing s.) We have the following connection between c, and c`.
LEMMA 1. Let y(s, t) be an outbreak for which ess lim sup,-,, y(s, 0) < 1.

Then, for ac such that ess lim sup y(s, 0) < a < 1,

(2.10) c,,(t) - o as t - oo c-+(t) --+ o as t --+oo.

NOTE. The ess lim sup off(s) as s oc is defined as inf {h: 1u(f-'((h, cc)) n
(s, o) = 0 for some s)}; compare lim supf (s), = inf {h: (f -'((h, cc)) n (S. x) =
0 for some s)}.
PROOF. Choose /P with ess lim sup y(s, 0) </3 < a. Then there exists s*

such that y(s, 0) < /3 for s > s0, except on a set of measure zero. Let s(t) denote
sup (s: y(u, t) _ ac for 0 . u < s). Then

(2.11) t +(t) J (y(s, t) - y(s, 0)) ds _ f (y(s, t) -y(s, 0)) ds

- (a - /3) ds = (a - /3)(s(t) - s*) = (a -,)(tc (t) - s*).
Therefore, c`(t) > (a -/3)ca(t) - (a-, )s*/t; whence it follows that if
c (t) -x cc as t x-. c, so does c` (t). Q.E.D.
Our last preliminary comment on velocities is directed to the converse

problem: circumstances under which c+ (t) is bounded.
LEMMA 2. Suppose y(s, t) is an outbreak bounded by a travelling wave of

velocity c, that is, a function z(s, t) such that y(s, t) _ z(s, t) and z(s, t) =
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z(s - et, 0), for all t > 0 and all s. And suppose that Z,.o z(s, 0) ds < oo.
Then lim sup c`(t) . c.

PROOF. We have

(2.12) tc+(t) .
o

y(s, t) ds _. z(s, t) ds < J| z(s, 0) ds + ct.

Therefore, c+(t) _ c + Z/t. Since the latter term -. 0 as t -. oo, our result
follows.
We now turn to a more basic problem. Consider two outbreaks Yi and Y2 of

the same epidemic, for which it is given that Y1 (s, 0) < Y2 (s, 0) for all s. We
should expect (intuitively) that Yi (s, t) - Y2 (s, t) for all t _ 0. Rather than
proving this directly, we shall derive it as a corollary of a more general result
(Theorem 1) which allows us to compare solutions of two different equations,
which need not be epidemic equations.

DEFINITION 3. We define a pseudoepidemic as an autonomous differential
equation, y = f (y), where f is a function from the space of measurable functions
on A bounded by 0 and some constant b > 0, to the space of bounded positive
measurable functions on A, such that:

(i) there exists K < co such that sup, 1f(g(s))j _ K and sup f(g1)(s) -
f(g2) (s) < K sup. g 1 (s) - Y2 (s) |for all g, gi in the domain off, except (possibly)
at sfor which either gi = b;

(ii) g _ O=>f(g) _ 0;andf(g(so)) = Oifg(so) = b.
NOTE. This definition of pseudoepidemic suffices for this section; it is not,

however, clear that it is the right analogue of the more elegant definition given
in the stochastic case (Definition 4), so it should be regarded as provisional.
As in the epidemic case, we define an outbreak as a particular solution of the

pseudoepidemic. We can apply the well-known fixed point theorem on the
existence and uniqueness of solutions to differential equations (see, for example,
[8], pp. 46-47), to obtain Lemma 3.
LEMMA 3. Given a pseudoepidemic = f (y), and an initial condition y(s, 0)

(specified for all s, and bounded):
(i) the outbreak y(s, t) is uniquely defined for all s, and all t > 0;
(ii) there exists a (fairly) concrete representation of y(s, t), as follows: there

exists r > 0 such that if for 0 _ t* < I . t* + z we define

(2.13) **(g)(s, t) y(s, t*) + ,ff(g(s, 0)) dO,

for g a measurable bounded function defined for all s for t e [t*, T], then

(2.14) y(s, t) = lim o*(x) (s, t),
n 0-

where x(s, t) y(s, t*).

PROOF. (i) To apply the fixed point theorem cited above, we must strengthen
it slightly, to make it applicable to a space of functions which is more complex
in two ways, but, if we refer to the fixed point theorem for a complete metric
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space itself ([8], p. 43), we shall find that only routine adaptation of the proof
given on pp. 46-47 there is necessary. More specifically, (a) we are dealing here
with functions of s and t, rather than just of t; however, with the sup norm
(taken over s) replacing the modulus, the mathematics is formally identical;
(b) for the outbreak to be properly defined we require that y(s, t) should be
>0: the condition "g _. => f(g) > 0" ensures this, provided that we are
considering increasing t as we are here. (Since we cannot guarantee that y(s, t)
remains .0 as we decrease t, we cannot in general extend the outbreak to times
<0.) This completes part (i) of the lemma.

(ii) The proof of this part consists of footnotes to the fixed point theorem on
solutions to differential equations. The proof of the metric space theorem
([8], p. 43) involves showing that, for any g in the appropriate metric space
fr(g) tends to the fixed point of f (the solution of the differential equation) as
n - oo; clearly, x is in this space. The only remaining point is that c may be
chosen independent of t*, because we have a bounding constant K independent
of g, gi in the conditions of Definition 3 for a pseudoepidemic. Q.E.D.
We shall say that one pseudoepidemic E1 is dominated by another E2, written

as E1 << E2, if and only if there exists K12( < cc) such that

(2.15) f1 (g1)() - f2 (g2) (s) K12(g2(s) - 91 ()),
for each s, whenever g, . g2. (Note that any pseudoepidemic is dominated by
itself.) We shall say that an outbreak 01 of E1 is dominated by 02 of E2 if and
only if y1 (s, t) _ Y2 (s, t) for all s and t for which the outbreaks are both defined.
THEOREM 1. Let Oj, i = 1, 2, be outbreaks ofpseudoepidemicsEi. IfE1 << E2

and y1(s, 0) _ Y2((, 0), then 01 << 02 (regarding Oi as being defined only for
t 0O).
PROOF. Suppose first that y1(s, 0) _ Y2(s, 0). Consider z(s, t), defined by

(Y2(s, t) - y1(s, t)) exp {K12t}. Then

(2.16) z(s, t) = (f2(Y2)(s, t) - f1 (y1) (s, t)) exp {K12t}
+ K12(Y2 (s, t) -y1 (s, t)) exp {K1 2t},

and

(2.17) f2(Y2) -f1(Y1) _ -K12(Y2 -Y1),
sipce E1 << E2, so z _ 0 (provided z > 0); z(s, 0) > 0, so z(s, t) > 0 for all
t _ 0.
Second, suppose y1 (s, 0) = y2 (s, 0) for at least one s. In this case, define

Y2, (s, 0) Y2(8, 0)(1 + 1/n) for n > 0. By the above y1(s, t < Y2,M(s, t) for
all t > 0Oall n. Now for each fixed t, Y2,. -. y2(s, t) as n -. oo (since Y2, (s, t) -
y2(s, t) _ (Y2,.(8, 0) - y2(s, 0)) exp {K2t}, where K2 is the Lipschitz constant
for E2): whence y1 (s, t) _ Y2 (s, t) for all _ 0. Q.E.D.

2.3. Conditions for finite propagation. Here we establish the importance of
the condition given in (1.1), fa eks dV(s) < oc for some k > 0, in determining
the nature of the propagation (in the direction of increasing s) of simple
epidemics on the line Ai. Over a wide range of initial conditions, (1.1) turns out
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to be a necessary and sufficient condition for propagation at a finite rate
(lim suptO c+(t) < cc being taken as criterion), though there are initial con-
ditions under which c + cc almost regardless of V (see Corollary 1).
We shall start with a result (Theorem 2) which contains the two essential ideas

connected with the influence of (1.1); to keep the proofs as clear as possible, we
leave refinements of both halves of this result to a series of corollaries and
lemmas which follow this theorem.
THEOREM 2 (i). If E is a simple epidemic for which (1.1) holds, and if 0 is an

outbreak of E for which the initial condition

(2.18) y(s, 0) _ ae bs

for some a, b > 0. holds, then lim sup,-,,, c` (t) < as.
(ii) If 0 is an outbreak of a simple epidemic E. for which there exist 6. P3 such

that y(s, 0) _ 6 > 0 for s . 0. and ess lim sup.-, y(s. 0) . P3 < 1, and if
lim sups, 0c+(t) < o. then (1.1) holds.

PROOF. (i) Letf,(k) J ek dV(s); from (1.1) we have thatf,(k) converges
for some k > 0. The convergence or otherwise of f,(k) for k _ 0 depends on
that of lo eksdV(s), since then f . eks dV(s) . so X dV(s) . 1. The integral

S 0 eks dV(s) is monotone with k, so the set of positive k for whichf, (k) converges
is an interval, [0. k*) or [0, k*]. Choose k such that k < b and 0 < k < k*;
let c _ f,(k)/k. Consider g(s) _ a'e -ks. Then

(2.19) g(s) fg(s-u)dV(u)

= g(s) j' eku d V(u) = (k)g (s).

(We are motivated here by a desire to produce a solution to the "linearized"
equation j = -.) Now suppose we turn g(s) into a travelling wave of velocity c

by multiplying by the factor ekct. We shall then have a function, h(s, t) say, for
which A = ckh = f,(k)h = h _ k(l - h). Thus, at each moment the rate of
increase of h is greater than it would be if h were an outbreak of a simple epidemic
(h being a solution of the linearized equation). Also,

(2.20) h(s, 0) = a'eks min (ae-bs, 1) _ y(s, 0)

for all s if we choose a' appropriately.
To turn these observations to advantage, we must adapt h to become an

outbreak of a pseudoepidemic which dominates E. Let E* be the equation

(max (f,(k)y, -) for 0 _ y < 1,
(2.21) j=}ofry=1

Then it is easy to see that E* is a pseudoepidemic as defined in Definition 3, and
that E << E* (we may take the relevant constant K12 = 0, see (2.15)).

Let y*(s, t) _ min (h(s, t), 1). This satisfies E* (note that for y* < 1,
f,(k)y* = f,(k)h - h > *, so that f,(k)y* > -* for all s and t), so it is an
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outbreak, 0* say, of a pseudoepidemic which dominates E. Also (by our choice
of a', k) y* (s, 0) > y(s, 0) for all s.

Hence, 0 << 0* (Theorem 1). Thus, 0 is dominated by a travelling wave of
velocity c. Since lo y* (s, 0) ds = a'/k < o, we may apply Lemma 2 to conclude
that lim sup,-r c+(t) < c < oo as desired.

(ii) If V(0) = 1, IM eksdV(s) _ |
.
dV(s) = 1 for all positive k; so (1.1)

holds. So we assume V(0) 76 1 henceforth. Here also we apply Theorem 1, this
time comparing 0 with outbreaks of pseudoepidemics dominated by E. We
divide the growth of 0 into two stages. Choose at such that fl < a < 1.

(a) For 0 _ t _ 1 we compare 0 with an outbreak 0* of the pseudoepidemic
E* defined forO _ y* (s, t) < a by

(2.22) f*- f(' 0) (1 - xa) ify* a ands >
0,f* (Y*'5', -) 10 ify* = a ors . 0.

Then f*(y*(s, t)) _ y*(s, t)(1 - y*(s, t)) for all s, t, whence E* << E (by
Theorem 1). Define 0* by

(2.23) y*(, 0) = { for s < O.

(0 for s >0.

Then y*(s, 0) _ y(s, 0), so (by Theorem 1) y(s, 1) _ y*(s, 1). Therefore,

(2.24) y(1 {(V(s))( a) fors > 0,y-s1) P(s)( - a) for s > 0,
where 17(s) denotes 1' dV(s), = 1 - V(s).

(b) Define E. forO < y, a by

(2.25) g(y) = {(1 -at) min (P(0)y., ) if s _ u and y. < ax,
0 ifs > uory. = a.

This pseudoepidemic is also easily seen to be dominated byE. Define an outbreak
0, of E. (for t _ 1) by

(2.26) YU(s, 1) = a)- F)(U) if s
.

U,{(( ifs. > U.

Since y.(s, 1) _ y(s, 1), 0. << 0. Now we may write

(2.27) yM(s, t) = {(1 - a) 1(u) exp {(1 -)V(O)(t - 1)} ifs _ u,

(Clearly, this solves the equation E", with initial condition y,(s, 1), and, there-
fore, it is the unique solution for y.(s, t).)

Restricting attention to u sufficiently large that y.(s, 1) < ax, let t, be the
time at which y.(s, t) = ax for s < u. Since 0, << 0, we have that y(s, t.) _ cx
for s < u; whence, u < tuc,,(t.) (see (2.9)).



SIMPLE EPIDEMICS 591

Now since lim supt,-, c+(t) is finite, so is lim sup ,ca(t) (by Lemma 1); let
the latter _ c. Then for all E > 0, we can choose t* such that c,(t) < c + e for
t _ t*. Chooseu* such that t. . t* for u _ u*. Then for suchu, u < t_(c + a).
Inserting this inequality in the equation which defines t. ((2.27) with y, = a),
we have

(2.28) a _. ( -a) PV(u) exp {(1 -a)V(O)(0 + -1

Hence,

(2.29) V(u) . k1 exp {-ku} for all u _ u*,

where k1 aexp {(1 -a)V(0)}/5(1 - a), k =(1 -a)V(O)/(c + e). There-
fore, Z. e' dV(s) converges for k < ke and thus for k < (1 -a) V(O)/c (since
e may be taken arbitrarily small); whence, |. e' d V(s) converges for 0 _ k <
(1 - a)V(0)/c. Thus, condition (1.1) holds, as was to be proved. Q.E.D.
COROLLARY 1. Provided that V(O) HE 1, if lim supt c (t) < co, then (2.18)

holds.
PROOF. This follows the line of reasoning of the second stage of the proof

of Theorem 2 (ii), replacing V(u) by y(u, 0).
Thus, we start (at time 0) with the outbreak of E. defined by

(2.30) Y. s( 0) {y(u, 0) ifs < U,

and deduce that y(u, t) _ y(u, 0) exp {(1 -a)V(0)t} (compare (2.27)), whence
we may derive y(u, 0) < k1 exp {-knu} for u _ u*, where now k1 _, k1,
(1 - x)V(0)/(c + e) (compare (2.29)).

Hence, y(s, 0) _ aebs for all s, where a and b (both > 0) must be chosen such
that (1) b < (1 -a)V(O)/c, and (2) a _ a, and y(s, 0) _ ae bs for s < u* (note
that u* depends on E, and hence on the choice of b). At worst a = exp {buzz
will suffice. Q.E.D.
The conditions on y(s, 0) required for Theorem 2 (ii) seem excessive, as they

exclude any outbreak where the initial set of infected locations is bounded.
Ideally, we should like to replace them by the absolutely minimal condition
that the numbers initially infected should be nonzero, that is, that f9 y (s, 0) ds >
0. It turns out that we can do this provided that V has a density v which is mono-
tone decreasing with s for s positive (we are, as usual, thinking just of propaga-
tion in the direction of increasing s); in fact, it will be clear from the proof that
it would suffice for v to be greater than some scalar multiple of such a density.
Thus, we offer the following alternative to Theorem 2 (ii).
LEMMA 4. Suppose V has a density v, monotone decreasing for positive s, and

that V(O) + 0 or 1. Suppose 0 is a nontrivial outbreak, one for which
Jy (s, 0) ds > 0. Then if lim supy,O c (t) < so, (1.1) must hold.
PROOF. Again we follow the lines of the proof of Theorem 2 (ii).
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(i) Without loss of generality, we may assume that Ja y(s, 0) > 0. some finite 3.
Considering E, for 0 _ t _ 1, we obtain

(2.31) y(s, 1) > y,(s, 1) = (1 - a) y(u,)v(s - u) du.

(ii) In place ofy (s, 1) _ y, (u, 1) fors < u, we have (from the condition on v)
that y(s, 1) _ y, (u, 1) for 0 . s . u. So we define E*, which replaces E., by

(2.32) =*(*) l(1 - o) min (key"*, y"*) for 0 . y* <
<1 mm fory*

where ku info<".u (V(s) - V(s - u)) which is monotone increasing with u
and >0 for sufficiently large u, since V(O) =& 0 or 1.

Define O0* by

y* (U, 1) forO .8.s u,(2.33) YU*S 1) = {Y* ' o -_saO elsewhere.

Then fu* (y*) = (1 - o)kuy* since ` > ky* everywhere, and so, for t _ 1.

(2.34) y"*(s, t) = y*(u, 1) exp {(1 - ac)k(t - 1)} for 0 . s < u,
U0 elsewhere,

whence y(u, t) _ (1 - x)(fa y(s, 0)v(u - s) ds) exp {(1 - a)ku(t - 1)} (com-
pare (2.27)).
From this point we follow the same line exactly as for Theorem 2 (ii), to

deduce that

(2.35) 1 y(s, 0)v(u - s) ds . k1 exp {-ku} for u _ u*,

where k =_ a/(1 - a) exp {(1 - a))ku}, k =(1 -a)ku /(c + c) (compare (2.29)).
Therefore

(2.36) -( X y~s o~r~u s) dsdu < k, exp {-kEuo}

for uo . u*. Interchanging the order of integration on the left side, we have
fo y(s, 0) V(uo- s) ds, which is > V(u0) fa y(s, 0) ds.

Thus, V(u) < k*c-ku for u _ u*, where k* = k1(kE fo y(s, 0) ds)1, whence
(1.1) holds (for 0 . k < ks). Q.E.D.

With Theorem 2, Corollary 1, and Lemma 4, we have nearly established that
the lim sup of the mean velocity is finite for a simple epidemic if and only if
(1.1) and (2.18) both hold. It may be convenient to list the exceptions to this.
COROLLARY 2 (Corollary to Theorem 2, Corollary 1, and Lemma 4). For a

simple epidemic on the line a, lim sup1,-, c+(t) < oc if and only if (1.1) and
(2.18) hold, except possibly when (i) J, y(s, 0) ds = 0, or V(0) = 0 or 1, or (ii)
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there is no 6 > 0 and no s* such that y(s, O) _ 6 or s _ s*; and V does not
have a density greater than some scalar multiple of a density which is monotone
decreasing for positive s.

Note that inspection of the proof of Corollary 2 reveals that we could replace
"positive" by "sufficiently large".

Lastly, we refine Theorem 2 (i). We there established that, if (1.1) and (2.18)
hold, the outbreak is bounded by a wave of finite velocity c, where we may
take c = f,(k)/k for any value of k for which f,(k) converges and k . b. It is
of interest to know how low we can choose c.
LEMMA 5. (i) If V(O) :E 1, f,(k)/k has a minimal value c, > 0. There exists

k, > 0 such that if y(s, 0) . a exp {-ks} for some a > 0, the outbreak is
bounded bya wave of velocity c.If we only have that y(s, 0) < ae-bs, 0 < b < kv,
the best we can do is some c,(b) > c,.

(ii) If V(O) = 1 and if y(s, 0) < aebs for arbitrarily large b, the outbreak is
bounded by waves of arbitrarily low velocity. If we only have that y(s, 0) < ae-bs
o < b < oo, the best we can do is some c,(b) > 0.

(iii) If V is symmetric, cl/ w2 _ c* = sinh k,, where k, is the positive root
of sinh k = cosh k/k, and W2 is the variance of V; c,~ 1.509.

(iv) For the negative exponential distribution (density jfie-101s) c, coincides
with the minimal velocity found in [11]; thus, cl/ w2 = 3V¶/2,/2_ 1.834
(note how close to c* this is).
PROOF. (i, a) If V(0) 7E 1, f (k) together with all its derivatives (fV7(k) =
'sneksdV(s)), tends to oo as k -. oo . Hence,f (k)/k - oo both ask 1° and as

k - oo; it is > 0 on (0, x ), so it has a minimum value, c, say, which it attains
because it is a continuous function of k. The set {k f (k)/k = c,} is a closed
nonnull set bounded below by 0, and, therefore, has a least member, k, say.
It is then immediate from the proof of Theorem 2 (i) that if y(s, 0) < ae-kvs, the
outbreak is bounded by a wave of velocity c,; and that, with the line of argument
of that theorem, we can do no better.

(i, b) If it is only given that y(s, 0) < ae-bs for some b < k, we cannot even
do so well. In this case what we want is cv(b) _ min {f,(k)/k: k e (0, b]}.
Since f,(k)/k is continuous, >0, and -+cc as k4,0, this minimum is >0 and is
attained, at k,(b) say, so we can find a wave of velocity c,(b) which bounds the
outbreak.

(ii) IfV(0) = 1,f,(k) = f° 0 eks dV(s) _ 1 for allk > 0. Therefore,f,(k)/kO-0
as k -- oc. Thus, if y(s, 0) . ae-bs where b can be taken arbitrarily large (for
example, if the initial set of infected is bounded on the right), we can take c
arbitrarily small. Otherwise (i, b) applies and we have some minimum value
c,(b) ( >0) for c.

(iii) We use the expansion f,(k) = E wnkl/n!, where wn _ sAdV(s),
valid for any k for which both f,(k) and f,(-k) converge. If V is symmetric,
f,(-k) = f,(k), and wn = 0 for all odd n, so f,(k) = X;O w2 k2`/(2n)!, for all k
for which f,(k) converges, and hence, for all k.
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Contracting V by a factor w, that is, putting V(1)(s) = V(sAv2), is
equivalent to multiplying the time scale by V1; thus, c. = .\IWc,,(1), and it
suffices to consider V whose variance (w2) = 1.
We next prove that the sequence (w2n) is convex, that is, that w2.+2_

l(w2n + w2n+4); since wO = W2 = 1, it will follow that (w2.) is monotone
increasing with n. Rewrite w2. as

(2.37) 2 | (82m dV(s) + 8~2m dVQ))

For all s, (s2 + s-2) _ 2, so

(2.38) W2n+2 _ (82 + S-2)(s2n+2 dV(s) + s-(2n+2) dV())

= 2(W2n + W2n+4).
Thus, (w2.) is monotone increasing with n, and thus, w2. . 1 for all n.
Therefore, f,(k) _ E ks/n! for all symmetric V (of variance 1). Thus, f* (k)
E' ks/n! is the minimalf (k) (among such V); it corresponds to the distribution
concentrated on +1. Then f* (k)/k _ f, (k)/k, so the minimal value for cv, will
be that off*(k)/k, c* say.
The velocity c* may be found by solving f*(k*) = f* (k*)/k*(= c*), k*

positive. Since f* (k) = cosh k, this equation is sinh k* = cosh k*/k*. The
solution of this is approximately c* = 1.509. Thus, for all symmetric V,
CV > c*W ; 1.509v'§P.

(iv) For the negative exponential distribution with density 'fie-01 1, w2, =
(2n) !/fl2'. Thus, if w2 = 1,

-D k2n 1(2.39) f,(k) = 12 = 2'o 2n 1-'k2
We find c,, by solving f, = flk
(2.40) _k1

(1 - k2)2 k (1 -k2
whence, kv = (1)1/2 c_ = (2)3I2 1.834. Q.E.D.

Lemma 5 (iv) agrees with [11], where it is shown that, when V is negative
exponential, waveforms exist for exactly those velocities for which P = (the
linear approximation to (2.5) for small y) has waveform solutions, that is, for
c = cv(=3 3v/2V'/f for the negative exponential). This encourages the con-
jecture that waves of (only) velocities > cv exist for simple epidemics for which
condition (1.1) holds or, further, that a large class ofoutbreaks of such epidemics
tend to waves of velocity cv as t - oo. We have as yet nothing substantial
towards proving such results.

Indeed, in the case where (1.1) holds, we have found no lower bound for the
rate of propagation. We can make good this deficiency, in some degree, provided
that V(s)eks diverges as s -+ oo, for some k > 0.
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Suppose, as for Theorem 2 (ii), that there exists 3 such that y(s, 0) > 6 > 0
for s < 0; for simplicity we assume here that ess lim sup,-. y(s, 0) = 0.
COROLLARY 3 (Corollary to Theorem 2 (ii)). Under the above conditions

lim infer , cl(t) _ (1 - a) V(0)/k.
PROOF. The analysis of the proof of Theorem 2 (ii) yields

(2.41) V(u) < k, exp {()
for u _ u*, and this contradicts " V(s) eks diverges" unless c,, t) _ (1 - a) r(0)/k.
Q.E.D.

NOTE. If we divide the growth of our outbreak into three stages rather than
the two used in the proof of Theorem 2 (ii), we can do slightly better. Let stage
(c) consist of growth from level E to level a; for this j) _ (1 -at) V(O)y, so this
stage only takes time . (1/(1 - a) V(0)) log (a/) -a constant. Thus, we can
obtain cl(t) _ (1 - c)V(O)/k, for all 8, a with 0 < e _ a < 1. Letting £-+ 0
we have cl(t) _ V(0)/k. Applying Lemma 1, we have that c+(t) _ V(0)/k (for
sufficiently large t), since we may take the constants a and P3 of that lemma as
near to 1 and 0, respectively, as we like.

Thus, for instance, for the negative exponential distribution of variance 1,
for which we may take any k < /2, we have the lower bound 1/(2/2) ( 0.354)
for lim inf c+ (t).

3. Simple stochastic epidemics

3.1. Introduction. The study of spatial propagation in a simple deterministic
epidemic has, I trust, now been carried far enough for it to seem necessary to
offer some indication of how far the results obtained apply to more realistic
models. Consistent with the emphasis I have laid on comparison of exact con-
volution equations with their diffusion approximations, I shall again begin
with a simple epidemic among a population of uniform density on an infinite
line. The difference here will be that the population will consist of discrete
individuals, with a constant number a living at each integer point of .A, and
that nfection will be a stochastic rather than deterministic process.
Not being a statistician, it was my original intention merely to simulate such

a model on a computer, to obtain some idea of how closely its behavior was
related to what one might expect from a deterministic model. However, it
turned out to be unexpectedly easy to obtain necessary and sufficient conditions
for propagation at a finite rate (Theorem 3), corresponding to those obtained
for the deterministic case (Theorem 2). The derivation of this result is preceded
by the precise setting up of a stochastic model. It is followed by the presentation
of a program for computer simulation of the stochastic model (Section 3.3),
and by an account of some results obtained from it (Section 3.4); the program
can, suitably modified, be used to simulate general epidemics (where allowance
is made for removed cases) as well; indeed, the modified program for this is in
some ways simpler than the original program.
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I shall end this introductory section with an account of the details of the
stochastic model sufficient for the reader who wishes to go straight on to the
sections dealing with computer simulation.

As in the deterministic case we make the following assumption.
ASSUMPTION 1. The infectious influence of one individual on another depends

solely on their states (infectious or susceptible) and on their spatial separation.
Thus, for each (infectious, susceptible) pair we assume that cross infection is

a Poisson process of frequency cx(n), where n is the separation of the pair. Of
course, we must regard this process as being operative only between the times
when the former and the latter, respectively, become infected: it will never be
operative at all if they become infected in the other order.

Looking at the role of the infectious individual, we introduce a notion of
germs; we may think of each individual as emitting germs in a Poisson process
of frequency a E' -OO x(n); let cc _ ET,, a(n). If x = xo, a single infectious
individual would almost surely infect an infinite number of susceptibles in any
nonzero time interval, so that the epidemic would proceed at what can only be
described as an infinite rate. Accordingly, I shall ignore this case. Let v(n)
a(n)/a: v(n) is a probability density on the integers, corresponding to the
weighting function dV(s) of the deterministic model.

These germs are only active if the emitting individual is infectious, and they
travel instantaneously to a random individual at relative position N, where N
is a random variable with the distribution v(n); naturally. a germ only causes a
new infection if the victim chosen is susceptible.
The convenience of this way of looking at the model is that it is easy to see

how to program a computer to simulate an epidemic, using a random number
routine to produce and distribute germs (see Section 3.3). It also provides a
concept to hold onto as we float through the abstract sample spaces of the
next section.

In one respect, however, this notion of germs runs counter to intuition: the
rate at which an individual emits germs increases linearly with the population
density a. A realistic situation to which our model corresponds would be one
where each individual emits a large number of germs, whose probability of
causing an infection at their terminal location is proportional to the number of
susceptibles there; then the "successful germs" would correspond to what I
have called germs.
We should also note that, as in the deterministic case. changing the rate of

emission of germs by a scale factor is equivalent to speeding events up by that
factor, so that the differences in our model resulting from different assumptions
about the dependence of the rate of emission on a may be easily calculated. In
contrast, because of the discrete nature of the stochastic model, the dependence
of the rate of development of the epidemic upon a is nonlinear; and the linear
dependence on the first moment of v of the deterministic case has no relevance
here, as we cannot vary a discrete distribution in the way we can a discontinuous
one. Thus, the proportionality to a/f of the deterministic rate of events can have
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no correlate here. However, it is still true that scale changes to DC. a. and any
reasonable approximate substitute for /3, will not affect the necessary and
sufficient condition for finite propagation (see Theorem 3).

3.2. Pseudoepidemics and finite propagation. If P is a countable population,
we may define a class of models on P. of which simple stochastic epidemics will
form a subclass.

DEFINITION 4. We define a pseudoepidemic among P. E say as consisting of:
(i) a product space (Q, A, pu) [_1 (Qpq, Apq. llpq), where the product is taken

over all ordered pairs (p, q) of distinct members of P. and each probability triple
(Qpq, Apq, tlpq) represents a Poisson process of frequency a(p, q); we impose the
conditions XpeP c(p, q) < (x) andE~qP a (P q) < co;

(ii) almost sure rules (that is, ones which work except on a subset of measure 0)
for deducing, given o in 51 and the set Q of individuals infected at time T. the set
Q(t) of individuals infected at time t, for all t _ z.

DEFINITION 5. An outbreak of E is then defined as a triple (cw Q. c). where
cw E Q, Q - P, and z e M.
We give as examples the three pseudoepidemics with which we shall be con-

cerned in Theorem 3. In each case, P is a homogeneous population of density U

on the integers. Let n(p) denote the integer at which the individual p lives. In
each case the product space ((i) above) will be the same; it is the infection rules
((ii)) that we shall vary.
We shall, in the first instance, assume that ot (p, q) depends solely on the spatial

separation of p and q (Assumption 1), that is, that ac(p, q) = ocv(n(q) -n(p)),
where v is a probability density on the integers. We shall not, in general,
demand that v be symmetric, which would represent a directionally unbiased
pseudoepidemic.
EXAMPLE A. The infection rules for simple stochastic epidemics are given

in terms of the notion of a chain of infection. A chain of infection is a strictly
increasing sequence {tq qj+,1: 0 < i < n} for which tqi, qi+ E coq, qi + 1 for each i,
which means that tqiqi + 1 is a time at which a germ passes from qi to qi+1 A
chain of infection from p to r between times t1 and t2 is one for which qO = P,
qn = r, and t, < tqO,q, < * < tq- 1,q. . t2. Then, given (co, Q. r), let Q(t)
{r: for some p e Q there exists a chain of infection from p to r between times T

and t}.
EXAMPLE B. For a cliff edge pseudoepidemic, we relax the infection rules

somewhat. We define a chain of *infection as a sequence {tqi, qi + 1 } for which for
each i either tq,,q,+ > tqi- l qi and tq ,q, + 1 E Coqjqi l (as for the simple epidemic)
or tqjqj +1 _tqi tq, and n(qi+ 1) _ n(qi). Then the set of infected at time t, Q* (t)
is defined as {r: for some p e Q there exists a chain of *infection from p to r

between times c and t}.
The effect of the alternative infection rule is to ensure that as soon as an

individualp becomes infected, so do all the remaining susceptibles q with n(q) .
n(p). Thus, the set Q*(t) = {p: n(p) . m}, for some m depending on t, so that
a diagram showing the numbers infected at each integer always has a "cliff edge'
shape.
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EXAMPLE C. For a noninfectious pseudoepidemic, we have infection rules
more restrictive than in Example A. We define a chain of *infection as a
chain of infection for which qi e Q for i . n - 1, and define Q, (t) similarly
to Q* of Example B.

In this pseudoepidemic, the only effectively infectious individuals are those
in Q, that is, those initially infected.
Even without the conditions we have imposed on the partial sums of

{a(p, q)}, all three pseudoepidemics are well defined, and satisfy the following
two conditions which we might reasonably demand.

CONDITION 1. The set Q(t) is nondecreasing with both Q and t.
CONDITION 2. If t _ 0 _ r, Q(0) (t) = Q(t), where Q(0) (t) denotes the set

of infected at time t for the outbreak (ca, Q(0), 0).
First, if Q1 (t1) c Q2(t1), it is immediate from the definition of chains of

infection that a chain of infection from a member of Q1 (t1) to r between times
t1 and t2 is also a chain of infection from a member of Q2(t1) to r between
times t1 and t3 for any t3 _ t2; so Q1(t2) C Q2(t3); whence Condition 1. For
Condition 2 note that if c1 is a chain from p to q between z and 0 and c2 a chain
from q to r between 0 and t, then the concatenation c1 o c2 is a chain from p to r
between r and t; while conversely, if C3 is a chain from p to r between r and t,
we can split it into c1 o c2 by taking cl c3 n (tqjq1 + < 0), c2 c3 n (tqqj + 1

> 0).
Note that in the case of the noninfectious pseudoepidemic, the time T was
distinguished by the further property that only members of the set Q were.
infectious; thus, for Condition 2 to hold in this case, we must cheat by retaining
Q as the set of infectious individuals, rather than taking Q (0) (as we should if
we were honest), for the outbreak (cw, Q(0), 0). Q.E.D.
The restrictions on {a(p, q)} yield two further conditions.
CONDITION 3. Define tq = inf {t: q e Q(t)}: the time at which q becomes

infected. If we ensure that the probability of q receiving an infinite number ofgerms
in a finite time interval is zero, by demanding that Ep2,Q at(p, q) < oo, we can
deduce that there exists, almost surely, a chain of infection from p to q between
times T and tq, for some p e Q; of course tq,_ 1 ,q must = tq for such a chain.
CONDITION 4. Similarly, we can ensure that the probability of an individual

emitting an infinite number of germs in a finite time interval is zero, by demanding
that YqcQ at(p, q) < oo; whence, if Q is finite, so (almost surely) is Q(t) for all
finite t (>,T).

(These conditions are equivalent for pseudoepidemics among a homogeneous
population on the integers, with a(p, q) = av(n(q) - n(p)), such as we are
considering, since all of the partial sums, of both kinds, equal ma.)

Consider an outbreak in which Q includes no individuals p with n(p) > 0;
we interest ourselves in its progress among the positive integers.

DEFINITION 6. Let us define the front of the pseudoepidemic at time t as the
set of integers >0 at which there exist both infected and susceptible individuals.
Two possible measures of the progress of the pseudoepidemic are the least

and greatest integers in the front; it seems reasonable to suppose that the latter,
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F(t) sup {n(p): p e Q(t)}, is the more interesting. A third possibility, inter-
mediate between these two, is the mean front M(t), defined as (I/a) Q(t) n
{n(p) > O}|; this is more obviously a good measure of the progress of the
pseudoepidemic (M(t)/t corresponds to the mean velocity defined in the deter-
ministic case-see (2.8)) but is less susceptible of analysis.
For a full analysis of how simple stochastic epidemics progress, we should

also need to consider statistics of the size and distribution of the front, to
mention but one deficiency of the present investigation, in which we shall
merely consider F(t).

Consider outbreaks (wt, Q, c) for fixed Q and r. If the expectation of F(t) is
differentiable with respect to t, let e(t) -(d/dt) [E(F(t))], the expected velocity
of the front. If E(F(t)) is not differentiable, we take e(t) . k to mean
[E(F(t + dt) - F(t))]/dt . k for sufficiently small dt.
THEOREM 3. Consider the outbreaks {(o, Q, c): co e Q} of a simple stochastic

epidemic. If Q satisfies the conditions
(i) F(lr) is finite, and
(ii) there exists k such that for each M . k there exists q e Q with n(q) = m,

then e(t) is finite if and only if I s2v(s) is finite.
More precisely,
(i') if X is2v(s) isfinite, e(t) S=o22Xsa s ± 1)v(s) (for all t _ I);
(ii') if X1 s2v(s) is infinite, so is the expectation of F(t)for all t > '.
REMARKS. If v is, for example, directionally unbiased, we may replace

E' s2v(s) by the variance of v.
We prove a stronger result, that condition (i) implies conclusion (i') and

condition (ii) implies conclusion (ii'). These two independent parts have been
stated as one theorem partly for convenience, and partly because of an interest
in outbreaks with pretensions to moving as a waveform; it seems reasonable to
suppose that such an outbreak would satisfy both conditions, whatever
definition of "moving approximately as a waveform" we adopt for the
stochastic case.

Another theoretical approach might lay its chief emphasis on outbreaks for
which Q is finite-clearly a case of practical importance; such a Q of course
satisfies Condition (i), but not (ii).

PROOF. Conditions (i) and (ii) may be restated as Q - Q1 and Q - Q,,
respectively, where Q1 - {q: n(q) . F(z)}, and Q2 contains for each m . k
exactly one individual with n(q) = m, and no individuals with n(q) > k;
without loss of generality, k = 0.

(i) We compare the epidemic outbreak (co, Q, z) with the outbreak (cc, Q1, r)
of the cliff edge pseudoepidemic defined earlier (Example B). From the
definitions, any chain of infection is a chain of *infection, whence, for each co
and all t _ z, Q1(t) - Q*(t) and Q(t) - Q1(t) (Condition 1), so Q(t) - Q*(t).
Hence F*(t), _ sup {n(p): p e Ql*(t)}, _ F1(t), again for each cc and all t _ T.
Now the epidemic and this pseudoepidemic share the same product space

with positive measure pu (see the paragraph following Definition 5). Hence,
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(3.1) E(F(t)) = {F(t) dp(co) . Fl*(t) dp(w) = E(F*(t)).

Here we might pause to point out that exactly similar arguments will apply,
with the inequalities reversed, to a comparison of the outbreaks (CO, Q, z) with
the outbreaks (co, Q2, T) of the noninfectious pseudoepidemic (Example C), so
in that case we shall have

(3.2) E(F(t)) _ E(F2 (t)) for all t > z.

Returning to the proof of (i), we investigate E(F,*(t)). The cliff edge pseudo-
epidemic advances in jumps, with F* (t) increasing from m. to m + s. say.
Before the jump Ql*(t) = {q: n(q) . m}. Infections ahead of m by a distance s
occur as a Poisson process of frequency Y' aa2v(u), since each of the a indi-
viduals p with n(p) = m + s - u has cross infection frequency owv(u) with each
of the a individuals q with n(q) = s. Thus, jumps of F,*(t) take place in a
Poisson process of frequency OC2 y, E' v(u) (convergent because E' uv(u) .

1 u2v(u), which is convergent by (i)); and independently of the time interval
between jumps, jumps have the distribution E' v(u)/IE l v(u), where s takes
values _ 1. Therefore. the expected increase in Fl*(t) in any time interval
(tl, t2] is

(3.3) (12-t )acr2 is v(u) = Oa2(t2 -tl) 21s(.s -+- l)v(s)
1 s 1

It is finite because E s2V(s) is finite.
Now F(T) = F* (T) and E(F(t)) . E(F* (t)) for all t _ T: whence,

(3.4) E(F(t) - FF(T)) . OaC2(t - ) 4s(s + l)v(s).
1

The behavior of simple epidemics is homogeneous with time (Condition 2), so
the same applies with T replaced by any to with T . to . t. Therefore,

(3.5) E(F(t)) - E(F(to)) . xa.2 + 1)v(s)(3.5) ~~~t- to
0er 1'2

if T . to < t. which we may paraphrase as

(3.6) e(t) . Xa2 Z 4s(s + l)v(s).

(ii) As remarked above (3.2). comparison of (ca. Q. T) with the outbreaks
(CO, Q2. T) of the noninfectious pseudoepidemic yields
(3.7) E(F(t)) _ E(F2*(t)) for all t _ T.

We prove that E(F2*(t)) is infinite if .14 s2v(s) is infinite by showing that the
expected location of the first infection with n(q) > 0 is infinite.
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The individuals with n(q) = s > 0 are exposed to a Poisson process of germs
of frequency otu E' v(u). This is the same as in (i) except for the loss of a factor U.
so we may skip several stages in the argument to arrive at

(3.8) E(F2*(t)) > (1 - exp {-k1(t - )})>aa E8(8 + I)V(''s)

where k1 = Ha E E ' v(u). so that (1 - exp {-k1(t - -)}) is the probability
of having at least one infection to the right of 0 in (r. 1]: k, may diverge, but
this will not distress us as all we require is that it be nonzero. Now we are
assuming that E, S2V(S) is infinite, so E' -s(s + 1) v(s) diverges. Therefore,
E(F2*(t)) diverges; whence, E(F(t)) also diverges (for all t > z). This concludes
the proof of Theorem 3. Q.E.D.
The immediate theoretical problem which offers itself beyond this theorem

is whether some similar result to conclusion (ii') holds when condition (ii) is
dropped; this problem is analogous to that satisfactorily answered in Lemma 4.
The other interesting question that I can see concerns the behavior of epidemics
which satisfy the condition that E' s2v(s) be finite. but not the corresponding
condition for the deterministic model considered in earlier chapters (Condition
(1.1): ETO p'v(n) converges for some p > 1). The computer simulations of
such an epidemic (3.10) suggest that this is an interesting problem, whose
theoretical analysis (if possible) should prove rewarding.

3.3. An epidemic Simulating program. Our starting point here is the germ
model first described in Section 3.1.

First, consider just one infected individual q. at location n(q). Individual q
produces germs in a Poisson process of frequency a., which are distributed to
locations n(q) + s according to the probability density v(s): a germ causes a
new infection with probability X (n (q) + s)/u. where X (k) denotes the number of
susceptibles at k.

Simulating a Poisson process or a choice between two events of given proba-
bility (such as whether or not a germ causes a new infection) is trivial, given a
computer subroutine which produces (pseudo-)random numbers between 0 and
1. So we shall be able to simulate the infections caused by a single individual,
provided only that we can also use this subroutine to simulate the probability
density v(s), as we shall if v can be characterized in a finite manner acceptable
to the computer.

Next, suppose we have finitely many infected individuals, say m of them.
Since they emit germs as independent Poisson processes (each of frequency oj).
the cumulative effect is of a germ emittive Poisson process of frequency mwau,
with conditional probabilities 1/rm of each particular individual being responsible
for a particular germ. independent of the past history of the outbreak. Thus, it
is hardly more difficult to simulate the infections caused by finitely many
individuals than those caused by one.

Clearly, we cannot allow for an infinite set of infected individuals if they have
to be dealt with separately; for a start. we could not store their locations.
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However, what we can and shall do is to simulate simple epidemics in which all
individuals to the left of some location 1' are infected. Since there are then no
susceptibles to the left of {, we need only simulate those germs which terminate
to the right of, or at, 1. Summing over all locations to the left of {. we see that
such germs terminate at 1' - 1 + s in a Poisson process of frequency
ca2 ES V(u). Thus, we can allow for such an infinite set of infected individuals,
provided that two conditions are satisfied:

(i) the overall frequency of such germs, say (*m)oa, = a2 ; ; v(u) =
W2 E sv(s), is finite (and calculable);

(ii) the conditional densities (Y' v(u))/XE sv(s) can be simulated.
Germs from the left of 1' and other germs are emitted in independent Poisson
processes, so no difficulty arises in their simultaneous simulation; we just
simulate a Poisson process of frequency xu(*m + m) and assign each germ to
(being from) the left of( with probability *m/(*m + m). If all the individuals at
1 + 1 become infected, we can replace I by I + 1, and it is convenient to do so.

This completes the theoretical background to the simulation of simple
stochastic epidemics among a population of uniform density inhabiting the
integers. The program I have used to implement the simulation is best explained
by a flow diagram (see Figure 1). The complete program for the computer differs
from this mainly in possessing output sections and error catching devices, and
in being rearranged in an illogical order to facilitate alteration. A glossary for
Figure 1 is as follows:

*t is used for time (instead of t):
t and k are, respectively, the least and greatest integers in the front (see

Definition 6); thus, k =F(t);
.si is used for a;
Y[Q] is the number of infected at Q. = .si - X[Q].

The computer only has finite store, and so cannot deal with more than a
certain number of separate locations, here taken = 3001. By reusing storage
for locations to the left of A, it is possible to keep going indefinitely, as long as
k - _. 3000, but this sophistication has been regarded as unnecessary for
the present program.

Lastly, we deal with the adaptation of our program to deal with the simplest
type of epidemic with removal, where each infected individual is liable to
removal with probability /3 dt in time dt, independent of the behavior of others.
This just gives us one more Poisson process to combine with those we already
have for germs.
Now in an epidemic with removal we have no need to deal with infinite

numbers of infected individuals such as we had in the simple epidemic case;
for example, a waveform will contain only finitely many infected individuals,
in contrast to that case. This is perhaps just as well, as the complications of
removals would now prevent us from using the notion of "germs from the left
of 1" even if we wished to.
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0o & 1: set parameters to initial values

1

2: when is next germ emitted?
(update *t to this time) - - - - - -

1 1t
3: (output current situation if time is appropriate)

is it time to end simulation?

1 1 1
if no if yes t

1 1 1
4: is next germ from left of ,? 17: end

1 1 1
if no if yes -

1 1 t
5: whence does germ originate? t

(Q, between t and k) 4 I

6: does it terminate at Q?, to the right (o = 1)?,
or to the left of Q (o = -1)? t

8: where does it terminate?
|7: how farfrom Q? (atQ +p) (atlz-1 + p) I

1~~~~~~~~~att+p
4 1

9: does the germ infect? I
(probability Y[Q + p]/.si that it doesn't) if no - - - - - - - -

1 1
if yes. add I to Y[Q + p] t

4 1

10: change ( if necessary (if Y[(] = .si)

4 1

1 1: change k if necessary (if Q + p > k) - - - - - - - - - - - - I

FIGURE 1
Flow diagram for simulation of simple epidemic.

Let us refer to both germ emissions and removals as happenings. When there
are m infected individuals, to obtain the next happening we simulate a Poisson
process of frequency (as + fl)m, and choose the next happening to be a removal
with probability fl/(oca + f), a germ emission otherwise.
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Again we explain the program for implementing this by a flow diagram (see
Figure 2). The terminology differs from that of Figure 1 as follows:

k is used for supt,*t F(t) (because of removal, F(t) is no longer necessarily
monotone with time);

1 now becomes the leftmost infected location, its former definition being
appropriate only to simple epidemics.

0 & 1: set parameters to initial values

2: when is next happening?
(update *t to this time t

4, ~ ~ ~~~~~~~~~~~~~~~~~~TT1, T t

3: (output current situation if time is T T
appropriate) if yes |17:end 14: change k if necessary t

is it time to end simulation? t T

if no 13: change 6 if necessary

5: whence does next happening originate if none if some

1, 1 1
(Q, between 6 and k) I4,eweneadk

are there any infected individuals?
1 t t t t

6: of which type is it? if a removal 12: subtract 1 from Y[Q]
,1 if a germ 1

does it terminate at Q? I
to the right (o = 1)?, 1
or to the left of Q (o = -1)?

7: how far from Q? (at Q + p)

t

9: does the germ infect? if no -* - - - -
(probability X[Q + p]/.si that it does)

1 if yes 1
add 1 to Y[Q + p], subtract 1 from X[Q + p];t
change 6 if necessary I

4, 1
4, 1

11: change k if necessary - - - - -

FIGURE 2
Flow diagram for simulation of epidemic with removal.
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3.4. Results of simulations. It has been my aim here, not to provide statistical
tests of specific hypotheses about the behavior of epidemic outbreaks, but to
take a quick look at a varied selection of epidemics to see whether they conform
to the expectations aroused by the theoretical work of this paper, and to look
for phenomena which may suggest further lines of research (this approach
has already yielded Theorem 3, which was provoked by the results of the first
few simulations). Despite the lack of statistical tests, we refer to the results of
our simulations as though, for each epidemic considered. they covered all facets
of its behavior. We may justify this approach, apart from its convenience for
descriptive purposes, by noting that, with the exception of E3 (see (3.11)), out-
breaks of all the epidemics simulated return with considerable frequency to
roughly the same state, where the front of the outbreak is of small extent: thus,
while great deviations from the types of progress observed may be possible,
they may well be of great rarity, and thus, would be more suitably investigated
theoretically than experimentally.
The first question that springs to mind is whether outbreaks of simple

epidemics with expected finite velocity travel in a regular. approximately wave-
like manner. So we consider first two epidemics where v is of finite variance:

(3.9) E1. defined by v, (s) = (21)I/3
(geoms-letric distribution of variance 4). which satisfies (1.1); and

(3.10) E2 defined byv2(s) = (72/5)(H (Ist ± )

(roughly inverse fourth power, of variance 4). which does not satisfy (1.1).
Inspection of graphs of their progress (Figures 3 and 4) shows that 01 advances
regularly with approximately constant velocity, while 02 does so only inter-
mittently, being interrupted by great leaps forward.
The average velocity of 01 is approximately 1.21W2 (w2, the variance, = 4),

rather less than the minimal velocity found in Theorem 4.1 of [11] (cO0
1.834 w2) for its deterministic equivalent. A graph of velocity for outbreaks of
E1 with varied population densities a (0, was with a = 10) (Figures 5 and 6
show the mean waveforms for these values of a) is consistent with the conjecture
that the (average) velocity for E1 tends upwards to a value near cO as a -x cc.
We cannot expect such a result for E2, though its velocity does not appear to
increase at the rate of the upper bound (= 1.2 a) guaranteed by Theorem 3 (see
Figure 7).
To return to E1, at any one time the shape of the front is naturally subject

to relatively large stochastic variations; but if we average over 20 epochs evenly
spread over 100 time units, using the mean front M(t) (see discussion following
Definition 6) as origin. we obtain pretty regular sigmoid curves which we may
call mean waveforms (Figure 8). An obvious question is whether we can provoke
E1 into travelling at any velocity other than the average velocity found for 01.
So, for instance, we may choose an outbreak 0'1 for which initially the front is
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XX k/,*

400 X /4-)-
XXk't/
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K~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 50 100 150 200

TIME

FIGURE 3
Simple epidemic 01 with a = 10, v(s) = IISI/3.

The mean front M(t) is indicated by *; 6 and k are the two ends of the front
(sketched in at shorter time intervals to show all sizeable discontinuities).

The x, 6', and k' are for 0'1 (see Figure 9).

Of the same sigmoid form as the mean waveform of 01 but of three times the
extent, which should give roughly three times the velocity. The effect of this
initial "fast waveform" turns out to extend rarely beyond its initial nose, and
the behavior of the two outbreaks subsequently appears as identical as one could
hope (Figure 9). We conclude that E1 appears to have just one mean waveform,
of velocity closely comparable to the minimal velocity suggested by deter-
ministic analysis.

Before leaving E1, we might mention the dependence of this velocity on w2.
In the deterministic case, the dependence of velocities on 4/~ is exactly linear;
here it is not, because the negative exponential has been replaced by a discrete
density, but the average velocity does not seem to deviate much from linearity
(Figure 10). Two other examples of epidemics satisfying (1.1) have been
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800

_ k (~~~~~~~~~~

_ kA

400~~ ~~~

A£~~~~~~~~

600

_ ~~~k-

k. k
400

4 D4

200-, ,*f

_ / n/

0 50 100 150 200
TIME

FIGURE 4
Simple epidemic 02 with a* = 10, v(s) = (72/5) (14=i(Js1 + U))-1.

The mean front M(t) is indicated by *; t and k are the two ends of the front
(sketched in at shorter time intervals to show all sizeable discontinuities).

simulated, the uniform density on [-3, 3] (E4, say) and the density concen-
trated on +1 (E*). Outbreaks of both of these progress much like 01 (not
appreciably more regularly), but with slightly lower velocities, 0* having the
least (roughly 0.87 w2 when a = 10; this is in roughly the same ratio to that
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POPULATION DENSITY (o)

FIGURE 5
Velocity of simple epidemic as a function of population density

(average of M (t) against a), plotted on semilog grid.
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FIGURE 6
Mean waveforms of simple epidemic for varying a.

2.0 4

15_

1 3 10
a.

FIGURE 7
Velocity of simple epidemic as a function of a;

v(s) = (72/5)(f4= I (1sI + u))- 1 (plotted on log log grid).
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FIGURE 8
Mean waveform for simple epidemic with a = 30, v(s) = lIsl/3

Shown for comparison. 1/(1 + eslc), the waveform of = y(l -y)
of same velocity.
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01

5 -zI ~2
o~~~~
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0
0

40 o0 60 70 80 90
Q

FIGURE 9
Attempt to provoke the simple epidemic E to velocities higher than usual.

(Plotted on semilog grid. See Figure 3 also).

of 0, as that of the corresponding critical velocities c, for the deterministic
case-see Lemma 5 (iii) and (iv)).
The great leaps forward of °2 are in each case initiated by a single infection

far ahead of the front of the outbreak. Between these leaps the outbreak seems
each time to settle to roughly the same velocity, and for a period such as
(100, 200] of the outbreak 02 (Figure 4) we can evaluate a "mean waveform"
which is not much more irregular, or indeed faster, than that for O, (Figure 11,
crosses) (for a period covering a large leap such as (0, 100] for 02, such a
procedure is nearly meaningless (Figure 11, dots)). This is, in a way, more
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FIGURE 10
Velocity of geometrically weighted simple epidemic for varying w2.

(Plotted on log log grid.)
Symbol I indicates range of values of velocity.
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M(t)-20 M(t) M(t)+20

FIGURE 1 1
Waveforms for 02, outbreak of simpleepdmic with

v(s) = (72/5)(H[i(ISI + U))1, o = 10.

impressive evidence for the practical uniqueness of waveforms in epidemics than
that provided by the attempt described earlier to provoke E1 to higher velo-
cities, since in E2 the outbreak is-continually provoking itself in the direction of
speeding up by the leaps it takes.

Lastly among simple epidemics we consider E3, defined by
3 -((3.11) V()-3 [ ll+u

u=l
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FIGURE 12
Simple epidemic 03 with a = 10, v(s) = 3(H41 (jsj + U))-.

The mean front M(t) is indicated by *; t and k are the two ends of the front
(sketched in at shorter time intervals to show all sizeable discontinuities).

For details of times [60-80], see Figure 13.
(Note different scales from Figures 3 and 4.)

The density V3 is of infinite variance (though "only just": ,s2- v(s) con-
verges for arbitrarily small e), and as we might expect from comparison with
02, 03 progresses in wilder and wilder leaps forward (Figure 12), and shows
no sign of ever settling to a steady velocity-not surprisingly as its expected
velocity is infinite. The output for 03 for t = 60, 65, 70, 75, and 80 is given in
Figure 13, to illustrate the process of catching up on a great leap forward.
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FIGURE 13
Details of 03 for times 60-80

(to illustrate how an outbreak catches up with itself after a great leap forward;
in this case the front has jumped from 867 to 1298 in two leaps which have taken

place just before this diagram begins).
Locations are lumped together in sets of 5;

averages of Y[Q] are rounded up to the nearest integer.

As a check that it is indeed the tails of the densities v2 and V3 that cause the
irregular behavior of their respective epidemics, simulations have been run for
the deficient densities v*, v*, and v*, which are obtained by setting v*(s) = 0
for 1si > 10 and reallocating the missing weight to s = +10. Outbreaks of all
these three progress in a manner not noticeably different from that of 01; 01*
is, in fact, the fastest of the three (their mean waveforms are shown in Figure 14).

Simulations of epidemics with removal are not yet at a stage where it is
worth reporting on the results at any length (for a start, the possibility of
extinction-for any waveform eventual extinction is a certainty-means that
larger numbers of simulations are required). The only lead so far is that it
appears that removal reduces the velocity (during any period when the
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FIGURE 14
Mean waveforms for 0O, °2 and 03.

The scale for 03 is different because it is of noticeably larger variance:
-%1w ;- 2.81, as opposed to ~1.99 for each of the other epidemics.
Contraction by a factor ; 2.81/1.99 is, thus, needed to make its

waveform comparable.

epidemic travels approximately as a wave) more than is suggested by the
deterministic analysis of Kendall [7]; for example, for E1 with removal rate
(b) = 0.5, the velocity is reduced to about one fifth that for the simple epidemic,
instead of to the proportion (1 - b)1/2 ; 0.7 suggested by theory.
The most unexpected and interesting discovery of these simulations is the

behavior of E2. It would be interesting to know whether this mixture of steady
progress and great leaps forward is typical of all epidemics with densities which
are of finite variance, but do not satisfy (1.1). Further simulations would of
course help here, but I think the next step should be a return to theory; the
first problem there will be to characterize the two types of progress with
sufficient precision.
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