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1. Introduction

1.1. Limiting distributions of sums of independent random variables have
been exhaustively studied and there is a satisfactory general theory of the
subject (see the monograph of B. Gnedenko and A. Kolmogorov [6], or
advanced text books on probability theory such as that of M. Loeve [10]). Our
knowledge of the corresponding theory for dependent random variables is much
more meagre. Although a great number of papers have been published on the
subject, not many general results are known. In recent years the author has
shown ([4], [5]) that the necessary and sufficient conditions for convergence in
distribution to any specified, infinitely divisible law remain sufficient also in
the most general dependent case, provided that quantities such as means and
the like, are replaced by conditional means, and the like, the conditioning being
relative to the preceding sum. (The necessity of the conditions requires, in
general, further assumptions.)

In the present paper we are concerned almost exclusively with asymptotic
normality. Though our general results about asymptotic normality can be
obtained by direct specialization of the results mentioned above, we preferred
to develop them here independently. We hope that the greater accessibility of
the present proofs will compensate for this sacrifice of brevity.

After establishing the general results we give a few applications. It would be
quite easy to extend the list of applications indefinitely by going through various
results in the literature and seeing how they can be improved by using our
general theorems.

1.2. We consider random variables arranged in a double array

(1.1) X1,1,X1,2',2 , X1,ki
X2 1, X2,2' X2,k2

Xn, 1, Xn, 2, Xn,kn
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and, putting
k

(1.2) S, k = E X,, j for k = 0, 1, , kn,
j=1

we establish conditions which imply that the row sums in (1.1) are asymp-
totically standard normal, that is that

(1.3) lim P(Sn,k~_ U) = e v2/2 dv

for all real u.
Let n, k = (Sn, k). Throughout the paper X() denotes the a-field generated

by the indicated random variable or variables. (n, o is the trivial field). Most of
our results assume that the random variables in (1.1) have finite second
moments; then the conditional means

(1.4) ILn,k = E(Xl,k|jF,k- l)
and the conditional variances

(1.5) an, k = E(Xnk IjF,k, )k- n,k
exist almost surely.
Our main results are given in Section 1. Theorem 2.1 asserts (1.3) under the

assumptions that the random variables are centered at their conditional expecta-
tions, that the conditional variances in each row add up to 1 and that the
Lindeberg condition,

kn

(1.6) lim Y E [Xn,kI(IXnl,kl > 8)] = 0 for every £ > 0,
n=o k=1

holds (the symbol I(-) denotes the indicator function of the set within the
parentheses). Equation (1.6) is the ordinary Lindeberg condition; it is stated for
the variables in (1.1) themselves, not for those obtained from them through
conditioning.
The crucial new feature of this result is that no assumptions are made about

the conditional variances being nearly constant in some sense. Most results in
the literature (for example, S. Bernstein [1], Loeve [10], [11], J. L. Doob [3],
B. Rosen [14], and W. Philipp [13]) are similar to Corollary 2.1 in making some
near constancy assumptions about the conditional variances or related quantities.
A most remarkable exception is furnished by P. Levy ([9], p. 243, and earlier
work quoted in [9]), and Theorem 2.1 may be considered as a further develop-
ment of Levy's ideas.
Theorem 2.2 relaxes the conditions of Theorem 2.1. Instead of assuming the

conditional means to be zero, it is assumed that their sum in each row tends to
zero in probability. About the conditional variances it is only assumed that
their sum in each row tends in probability to one; equation (1.6) is also
similarly relaxed. Corollary 2.2 gives a simple extension and Theorem 2.3 gives



DEPENDENT RANDOM VARIABLES 515

a more interesting extension to the case when no moment conditions are imposed
on the random variables (1.1). Theorem 2.4 is much easier than the previous
ones. It suffers from a "near constancy" assumption and is indeed not new (see
for example Loeve [11], p. 375), but we need it to illustrate some applications.

1.3. In order not to interrupt the proofs of the results of Section 2, we
establish four lemmas in Section 3. Lemma 3.1 is of independent interest. It
allows us to assume without loss of generality that the partial sums (1.2) in each
row form a Markov sequence. Remark 3.4 raises a warning about disregarding
measurability conditions (see also Section 6.1). We also draw attention to
Lemma 3.3, especially to its simplest case.

1.4. Basing our argument on the preceding lemmas, we prove in Section 4
our main results.

1.5. Before giving some illustrative applications of the general results, we
study in Section 5.1 a measure of dependence (Definition 5.1) used in connection
with the study of asymptotic normality ofstationary sequences by M. Rosenblatt
[15], I. A. Ibragimov [8], W. Philipp [13] and others. The lemmas proved here
are used in Sections 5.2 and 5.3. Theorem 5.1 may be regarded as a generalization
of some results of Bernstein [1] and their descendants. The reduction of this
theorem to those of Section 2 follows the method introduced by Bernstein and
used by all his followers. Theorem 5.2 and Corollary 5.1 improve the results of
Ibragimov [8] and Philipp [13]. In Section 5.4 we show how an improved form
of a result of R. J. Serfling [16] follows from Theorem 2.2. Theorem 5.4 shows
how to reduce to our general theorems the study of random variables (1.1) in
which the conditional mean of each random variable depends nearly linearly
on the preceding sum. The results of Rosen [14] follow from this theorem.

1.6. The last section contains a counter example and some remarks on
further applications as well as generalizations.

2. Main results

2.1. We start with a special case patterned after a classical version of
Lindeberg's theorem on sums of independent random variables. It exhibits
many features of the more general results and subsumes many theorems on
sums of dependent random variables.
THEOREM 2.1. If the random variables (1.1) satisfy

(2.1) Pn,k = 0,
kn,

(2.2) 2k = 1,
k= 1

and (1.6), then (1.3) holds.
We already discussed the main feature of this theorem in Section 1.2. Here

we note that the conditioning in our theorems is relative to the preceding row
sum, not relative to the richer a-field generated by all preceding random
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variables in the same row, which, in cases like (2.1) or (2.2), would constitute a
more stringent requirement.
The one on the right side of (2.2) could, of course, be replaced by any constant,

provided a corresponding change of scale is made in (1.3). This condition
cannot, however, be weakened to the condition that the sum in (2.2) be a random
variable whose distribution is the same for all n. The weaker condition does not
even ensure the convergence in distribution of the row sums of (1.1) (see 6.1).

2.2. The following generalization of Theorem 2.1 is perhaps the basic result
ofthe present paper. Hereand in the sequel P denotes convergence in probability.
THEOREM 2.2. Let the random variables (1.1) satisfy

k,
(2.3) EZ . k °

(2.4) anak-~~-
k= 1 n-0

and

(2.5) __ E[X2kI(IXn0k| > |0 for every E > 0.
k=

Then (1.3) holds.
We note that (2.5), a conditioned Lindeberg condition, is indeed a weaker

assumption than (1.6), the ordinary Lindeberg condition. In fact, the sum in
(2.5) is a nonnegative (possibly generalized) random variable, whose expectation
is the sum in (1.6). Thus (1.6) implies not only (2.5), but even the convergence
to zero in L1 norm. It is trivial to construct examples where (2.5) holds but (1.6)
is not satisfied.

Specializing to near constant conditional means and variances, we have the
following useful result.
COROLLARY 2.1. Let an, k and bn,k,for n =1, 2, * * and k =1, **k*, be

numbers satisfying
kn,

(2.6) lim Y a,k = 0
n=oD k=l

and

(2.7) im bnk= 1" c k=1

If the random variables (1.1) satisfy

(2.8) lim E El,tf,k - an,kI = 0,
n='0 k=l

(2.9) lim E Eln,k - bn,kl = 0
na(. k=1

and (1.6), then (1.3) holds.
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Indeed, (2.6) and (2.8) imply (2.3), while (2.4) is implied by (2.7) and (2.9).
For future reference we make the following remarks.
REMARK 2.1. Equation (2.3) is implied by

(2.10) kE 19.,kl B X
which implies also

(2.11) E lin,k n 0°
k=1 0

When (2.11) holds, then (2.4) is equivalent to

(2 .12)E E nX, k I 9;n,k-1) ,

2.3. We state next two versions of the asymptotic normality result which do
not assume any moment conditions. The first is an immediate consequence of
Theorem 2.2.
COROLLARY 2.2. Let Hnf k, for n = 1, 2, * - - and k = 1, * kn be positive

numbers, and put Xn,k = Xl,kI(lXn,kl < Hn,k) If
kn

(2.13) lim P U (|X.,kl > Hn,k) = 0

and the Xn, k satisfy the conditions imposed on Xn, kin Theorem 2.2., then (1.3) holds.
Note that ifHfnk _ H, for n = 1, 2, * * * and k = 1, * *, k, then the ordinary

Lindeberg condition can be expressed more simply. Indeed, if the random
variables (1.1) are uniformly bounded, then (1.6) is equivalent to

kn,
(2.14) lim Y P(IXfl,kI > 8) = 0 for every e > 0,

Our next extension of Theorem 2.2 is more interesting.
THEOREM 2.3. Let the random variables (1.1) satisfy

(2.15) Y- P(lXn,kl > 81I.n,k-1) n--- - 0 for every E > 0,
k=1

(2.16) YEE (I +X2l,k1) 0
k= 1 V1n,k

(2.17) E FE(XkXk l Nfl2 p0,
k=1 LX +Xnl,k

and

(2.18) E ( X2|k n,k-1 lY XI + X2n,ok= 1 n,k

then (1.3) holds.
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We note that the expectations in (2.16) and (2.17) exist. Notice also that (2.15)
is implied by (2.14) and that (2.15) is equivalent to (2.5) when the random
variables (1.1) are uniformly bounded.

It is worth commenting that the theorem no longer remains valid if (2.18) and
(2.17) are replaced by the single condition that the difference of their left sides
tend to 1.

2.4. After these general results we state a much simpler one. It involves a
near constancy assumption about the characteristic functions of the random
variables (1.1) and, as stated in Section 1.2, it is not new.
THEOREM 2.4. Let X*nk, for n = 1, 2, . and k = 1, * , kn, have the same

distribution functions as the random variables Xnf k of (1.1) and let the Xn,k in each
row be independent. If

(2.19) lim Y E E(eitx Ink -I)-
tx - k = 0.

n=Ico k=1/

then the sequence Sn, k converges in distribution if and only if the sequence
kn,

(2.20) n, k = E n, kn
k= 1

converges in distribution. In the case of convergence the limits are the same.
For the applications in this paper we need only the sufficiency part of the

following corollaries. We stated the theorem because it follows immediately from
one of the lemmas in the sequel and illustrates one of the ways to derive necessary
and sufficient conditions about convergence in distribution of sums of certain
classes of dependent random variables.
COROLLARY 2.3. Let the random variables (1.1) satisfy

(2.21) EXn, k = 0,
kn,

(2.22) lim E EXnk,= 1,
n=x k=1

and (2.19). Then (1.3) holds if and only if (1.6) is satisfied.
COROLLARY 2.4. Let the random variables (1.1) satisfy (2.19), (2.21) and

kn
(2.23) lim E EX 2k = 0,

n=o k=1

then Sn,kn converges in probability to 0.
These two corollaries follow at once from the preceding theorem and from

classical results on independent random variables.

3. Some lemmas

3.1. The first lemma is very simple but most useful as it permits replacing
the conditioning by .4(Sn, k- I) in the preceding theorems by a finer conditioning
relative to an increasing sequence of a-fields.
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LEMMA 3.1. Let S1, S2' * Sn, be random variables defined on some proba-
bility space (Q, X4, P). Then there exists a probability space (El, s4, P) and random
variables S1, S-* * , Sn, defined on it such that

(3.1) P(9k _ U, 8k-1 < v) = P(Sk _ U, Sk-1 < v), k = 2,* , n,

for all real u, v, and

(3.2) P(Sk|.k-l) = P(SkjTk-l) k = 2, n,

where Fk = 4(91, .... , Sk) and #k = _4(sk).
Condition (3.1) is equivalent to P(9, . u) = P(S1 < u) and

(3.3) P(gk - U ISk-1 = v) = P(Sk < u ISk-1 = v), k = 2, n,

while (3.2) asserts that the conditional distribution of Sk given Sk - 1 is unaffected
by specifying the values assumed by Si with i < k - 1. This illustrates clearly
the Markovian nature of the lemma.

PROOF. There is nothing to prove for n = 1, 2. Now let n > 2 and assume
the lemma proved for n - 1. Denote by S1... ., S'_ I and (Q', d ' P') respec-
tively the random variables and probability space whose existence is asserted by
the lemma for n - 1 applied to S1, *. *, Sn-1 and (Q, X, P). Let R be the real
line and - the Borel a-field on R, and put Q2 = Q' x R and s?= 64' x .

Let f (v, B), for B E EJ and real v, be a regular version of the conditional
probability P (S. c BI S, - 1 = v).

Define Sk(co', r) = S'(co') for k = 1, , n - 1 and S(co', r) = r. Further-
more, let P be defined by

(3.4) P(A' x R) = P'(A)

for every A' E s4" and

(3.5) P(9, c-BI| $ = Vl, * n-2 = Vn-2,S,n-1 = Vn-1) =f(vn1,B)
for allB fe-. and real v1, * , Vn

It is easy to check that Si, *. *, Sn, (, sa?, P) satisfy the conditions of the
lemma. Indeed, we have only to verify (3.1) and (3.2) for k = n. Since
VI, * * *, vn-2 do not appear on the right side of (3.5), we at once have (3.2).
Again by (3.5),P(SneBIS-I = vn-) = P(SnEBISn,- = vn-1).TakingB =

(-o, u] and integrating on Vn-1 from -oco to v, we obtain (3.1) since by the
induction assumption, P(S_n-I < v) = P'(Sn'1 _ v) = P(Sni _ v) for all v.
This completes the proof.
REMARK 3.1. The lemma with the same proof holds also for infinite

sequences of random variables and even for more general directed systems.
Also .k can be replaced by still larger a-fields, for example by applying the
lemma to random variables T1, SI, * * *, Tn, Sn and then disregarding T1, * * *, Tn.
REMARK 3.2. Let X1, * **, Xn be random variables; we shall usually apply

the lemma to the sequence of partial sums Sk = 1 Xj for k = 1, * , n.
Putting Xk = Sk- 1k- with So = 0, conditions (3.1) and (3.2) are equivalent
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to the conditions obtained from them by replacing Sk and Sk by Xk and Xk (but
keeping Sk -.1 and gk -I in (3.2)). Note also that Fk = .(X,* * *, Xk).
REMARK 3.3. For technical reasons it is very convenient to work with an

increasing sequence of a-fields, and this is precisely what Lemma 3.1 lets us do.
When studying the distribution of a sum of random variables, X1 + * * - + X,
it is clear that this distribution is determined by the conditional distributions of
the summands relative to the sum of the preceding terms. The purport of our
lemma is to remark that these conditional distributions can be preserved while
introducing a Markovian structure. Thus, in particular, if the conditional
expectations of Xk given Sk_ are almost surely zero, it may be assumed, when
convenient, that X1, * - *, X. is a martingale difference sequence.

3.2. In the next lemma it is important that the a-fields be increasing. It
should be noted that .Fo need not be the trivial field (though in the applications
given in the present paper it will be). We denote by N(-, *) the normal distribu-
tion with the indicated mean and variance.
LEMMA 3.2. Let .Fo c= JF c ... c inl be a-fields in a probability space. Let

a1, - - *, a. be nonnegative random variables with ak measurable .jFk_ and let
Yk, for k = 1, * , n be N(0, 1) mutually independent and independent of i..
Then if

2 = 2 + 2+2
(3.6) a =a1+ +
is iFo measurable, we have

n n 1/2
(3.7) EajYJ=(2, Zk, k = 1, n,

j=k j=k

with Zk also N(O, 1) and independent of i~n x (Y1y *,Yk-.),
In particular ifa2 is almost surely a constant, then E =1ajYj is N(O, a2).
PROOF. We proceed by induction on k from k = n to k = 1. For k = n

there is nothing to prove. Let k < n and assume the validity of (3.7) for k + 1.
Then

n n k 1/2

(3.8) Ei Z1i= akYk + E aiYi = akYk + xa - E_ a )1 Zk+1
i=k i=k+l1 i=1/

and, by the .F measurability of a2, both U2 and a2 _ (C2 + ... + U2 ) are

Fk-I measurable. Also, given in, the random variable Yk is N(O, 1) and Zk+l
is N(O, 1) and independent of it. This yields (3.7) with Zk independent of jF.
as required. Formally,

n 1/2~ ~~~t
(3-9) p[ 7kYk + ( EfPaY Zk+l_ ua,nf

=k+l ~ j ~jk+
w P itk yk +(sadr Zkn+r1< U[C|)XE]

j=k+ 1 j=k+ 1

=p [(j 72) z _ U]

with Z standard normal.
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REMARK 3.4. The condition that CJ2 given by (3.7) be EF measurable is
essential. Otherwise the lemma fails entirely; indeed, the data do not determine
the distribution of akYk + * - - + ca.Y,, for k < n.
A very simple example is constructed as follows: Let n = 2, .FZ be the trivial

field, a1 = 1, let F. be the a-field generated by the standard normal variable
Y1, and let us consider two choices of a2: (a) a2 = 1 if Y1 _ 0 and 0 otherwise,
and (b) a2 = 0 if Y1 _ 0 and 1 otherwise. In both cases, (a) and (b), we have
p(a2 = 1) = p(a2 = 2) = 1/2. But it is easily checked that in case (a) we have
P(a1Y1 + a2Y2 > 0) < 1/2, while in case (b) we have P(a1Y1 + a2Y2 > 0)
> 1/2.

3.3. The next lemma is somewhat curious.
LEMMA 3.3. Let X be an integrable random variable and Y a a-field in the

probability space and let u = E(X J.F). Then we have for every E > 0

(3.10) 4E[X2I(lXl > E)] - E[(X _ M)21(IX -| > 2E)].
In particular

(3.11) 4E[X2(I(XI > E)] > E[(X - EX)2(IX -EXI > 2£)],
and the constant 2 is best possible.

PROOF. We first prove (3.11). This is equivalent to proving that ifEY = 0
and c is any constant, then

(3.12) 4E[(Y + C)21(IY + Cl > E)] _ E[Y21(IYj > 2£)].
Equation (3.12) is easily checked for random variables Y satisfying P(Y = q) = p
and P(Y = -p) = q, where 0 . p < I andp + q = 1. Also the remark about
the constant 2 is verified for, say, the case p = q.

Since the distribution function of any random variable Y with EY = 0 can
be approximated by w1F1 + * * * + w.F. where wj > 0 and w, + * * * wn = 1
and Fj is the distribution function of the random variable assuming the values
ajqj and - ajpj with probabilities pj and qj respectively (0 < pj < 1, pj + qj = 1),
the validity of (3.12), in general, follows from the special case.
To complete the proof of (3.10) it is enough to establish it for the case when

F is generated by a finite number of atoms Ai. Let 1lj = E(XIAj); applying
(3.12) to XI(Aj) we have

(3.13) 4E[X2I(lXI > E)I(Aj)] > E[(X _ ltj)2I(IX -_ Ijl > 2E)I(Aj)].
Adding up for all j, we obtain the required result.

3.4. Our next lemma is on characteristic functions. It can be traced at least
as far back as Lindeberg and may be essentially found in [11] or [13] for example.
LEMMA 3.4. Let F0 c= .Fj c - - * JF be a-fields in a probability space. Let

the random variables Xk, for k = 1, - * *, n, be .k measurable. Let the random
variables Zk, for k = 1, * * *, n, be such that Zk+l + * - - + Z,, is measurable
relative to a a-field Fk-l x .k-1, with .ek-l and JFk-1 X V(Zk) independent
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fork = 1,, n. Then

(3.14) E exp {it YE Xk} - E exp { Zk}

<_ EE|([exp {itXk} - exp {itZk}] k-1)
k= I

for all real t.
PROOF. Putting

k n

(3.15) Sk= E X, Rk = Zi,
j=1 j=k+1

we have

(3.16) exp {itSn} -exp {itRo}
n

= Z [exp {it(Sk + Rk)} - exp {it(Sk-l + Rk-1 )}]
k =I
n

= Z exp {it(Sk-I + Rk)} (exp {itXk} - exp {itZk})
k= 1

and, therefore,

(3.17) IE exp {itSn}- E exp {itRo}I
n

= ZE(exp {it(Sk l + Rk)}(exp {itXk} - exp {itZk}Ik-1 X k-
k=
n

< Z EIE(exp {itXk} - exp {itZk}II k-I X -k-1
k=I

and since Xk and Zk are independent of Ok- 1, we obtain (3.14) on noticing that
the inner expectations in (3.14) and (3.17) are equal.

3.5. We need the next result only in the proof of Theorem 2.3.
LEMMA 3.5. Let A0 (-. Fc * * * C An be a-fields in a probability space, and

let Ak E Ak. Then we have for every s > 0

(3.18) (k Ak) [+P[ P(AkIrk-l) >

PROOF. We shall prove the somewhat stronger result

(3.19) P(U AkI .8 + [ p3P(kIYk-)> L'fo]
(3.19) (k

k197- 1 [- ()
where E is any nonnegative A0 measurable function.
For n = 1 the assertion becomes

(3.20) P(A1IIO) < s + P[P(A1 I.o) > s| o]

which is obvious, since if P(A1 AO) > E the second summand on the right is 1.
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Next we assume n > 1 and the lemma established for n - 1 sets. Clearly,

(3.21) P( U Ak IA0 ) P(A 1I O) + E[ U(UAk- I ).I]-
By the induction assumption

(3.22) (UAk + P(Akl-k-l) > [1- ]
k=2 k=2

where 6 is any nonnegative .F measurable function.
Note that, as in the case of (3.20), relation (3.19) is obvious when P(A1IAO) > 8.

Now let 6 = E - P(A1IIo) if P(A1IFo) < E, and 6 = 0 otherwise. In view of
the remark just made it is enough to consider the first possibility. Then the right
side of (3.22) becomes

(3.23) [(lI~o " ]l

and using this estimate in (3.21) we obtain (3.19).

4. Proofs of the main results

Because of Lemma 3.1 we may assume that the a-fields defined by (1.2) satisfy
(4.1 )IjFn,1 C C j0n, k - 1 in,kCn, k

We denote by Fn, 0 the trivial field. (X. k is assumed to be -Fn k measurable, but
X (Xn, 1, * * *, Xnl,k) may be a proper subfield of jFn k)-

4.1. PROOF OF THEOREM 2.1. Let Yn k be N(0, 1) independent and inde-
pendent of in, kn . (No loss of generality is involved in the assumption that there
exist such Yn k, since it is always possible to imbed the probability spaces in
larger ones having the required properties. This applies whenever similar
assumptions are made in the sequel.) Then, by Lemma 3.2,

kn

(4.2) E an, j Yn, j
j=k+ 1

are measurable jFn k - 1 X 4(Yn, k + 1,'* *, Yn, kn) and hence we can apply Lemma
3.4 to Xn k with Zk replaced by an,kYn,k. Since, again by Lemma 3.2, (4.2) is
N(0, 1) for k = 0, we have from (3.14):

(4.3) IE exp {itSn,kn} - exp {- 2}|
k,

_ EE|(exp {itXn,k} - exp {itcn ,kYn,k}I".,k-1)I

It remains only to show that for every real t the sum in (3.14) tends to 0 as

n -o cc; but this is quite easy. Using standard inequalities we have, by (2.1),
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(4.4) |E[exp {itXfl k} | k - 1 - nt2t'k|
< 11t+3E(1Xn,kVI(IXn,k| < )I -1) + t2E(X2,kI(jXf kj > S)JtF
-6£ ¢n k EE[n,kI(|Xn,k| > 8)1|Fn,k-l]

and thus, by (2.2),
k

(4.5) E JE(exp {itXn,k} - 1 - 21 an,kjIFn,k-1)j _ 6£
k=1

+ t2 E[X,kI(IXn,kI > £)].

Since e > 0 is arbitrary, it follows from (1.6) that the left side of (4.5) approaches
0 as n -4 oo. A similar estimate holds when Xn, k is replaced by an,k Yn,k, or we
can use the better estimate, following from the normality of Ynk and its
independenceof 1Fn,k-l

k

(4.6) E E|E(exp {itan,kJY,k} - 1 - ntaf,kj.Y,,k-1)I
k=1

< 3t E E4k < 3t4E( max a2,k)
k=1 1:5k <k,,

and the fact that the last expectation tends to zero by (1.6). Since the sum on
the right in (4.3) is less than the sum of the left sides of (4.5) and (4.6), this
completes the proof.

4.2. PROOF OF THEOREM 2.2. First we remark that in the proof of Theorem
2.1 we could have used the weaker condition (2.5) instead of (1.6). Indeed, (1.6)
was used only to show that the left sides of (4.5) and (4.6) approach 0 as n -oox.
But (4.5) and (4.6) remain valid when the expectation on the right is replaced by
E( II|Fnk 1 ) and the approach to zero is already entailed by (2.5).

Next we retain (2.1) and show that Theorem 2.1 still holds when (2.2) is
replaced by (2.4).

Let tn be the stopping time defined by

(4.7) tn = min [kn, max (k: E _)]

thus tn = kn when (2.2) holds. Put

Xn k = Xn, k if k< tn
(4.8)n,- nk

X.,k = 0 otherwise,
and

(4.9) Xn,k+1 = (1 - E

where Y is N(0, 1) and independent of i, kn. The important thing about Y is
not its normality but that

(4.10) E(Xn,kfl+lII.F,k.) = 0, E(Xn, k+IIkn) = 1k , a_n, j
j=1
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The Xn,k, for n = 1, 2, * * * and k = 1, * * *, kn + 1, obviously satisfy the
conditions of Theorem 1.1 about the conditional means and variances. We
proceed to show that they also satisfy the remaining condition, that is the
Lindeberg condition. Since by (4.8) IXf,kl < IXn,kI for k < k., it suffices to
show that

(4.11) lim EX2,k, + = 0-n =0

But, by (4.10),

(4.12) EXn2,kn+l = 1 - E Z n,j
j= 1

and (4.11) would follow from

(4.13) a' j p 1
j=1 l4f

since the left side of (4.13) is _ 1 by (4.7). This, again by (4.7), is implied by

(4.14) a0 _ ) °

(where the left side is taken as 0 when t4 = k.). But (4.14) follows at once from
(1.6). Now

(4.15) =kn+ X,j + Z X-kn
j=1 J=tn+1

and, by Theorem 2.1, the first sum on the right is asymptotically N(0, 1).
Let t' be defined similarly to t, except for replacing the _ 1 at the end of

(4.8) by _ 2. Then

(4.16) E X- j = E X",i+ E X j.
j=tn+ 1 j=tn+ 1 j=tn+ 1

We have
tn2 tn'

(4.17) E Xn,) =E E e2j
j=t.+ I j=tn+1

and the right side tends to 0 as n -Xo by (2.4), (4.13), and the boundedness of
the sum. Therefore, the first summand on the right in (4.16) converges in proba-
bility to 0 as n -X oo. The same is true ofthe last summand, since P(t' * kn) 00
as n - oo by (2.4). Therefore the left side of (4.16) also converges in probability
to zero as n -. o. Since, by (4.11), the same is true ofXn,kn+ 1, it follows from
(4.15) that Sn kn is asymptotically N(0, 1). This completes the proof of Theorem
2.2 with (2.3) replaced by (2.1).
To complete the proof of the theorem it remains to show that, under the

assumptions of Theorem 2.2, the random variables X,,k = Xn,k - Mn,k satisfy
the conditions of the case which we have already proved. The only point that
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requires proof is that (2.5) still holds when Xn k is replaced by Xnf k; but this is an
immediate consequence of Lemma 3.3.

4.3. PROOF OF THEOREM 2.3. Let
k

(4.18) X.,k = Xf,kI(IXl,kI _ 1), St,k = E X.,,.

By (2.15) and Lemma 3.5, P(Sn kn#., k.) approaches 0 as n -o co. Thus it
suffices to prove that the Xn k satisfy the conditions imposed on X,, k in
Theorem 2.2.

Let ftn,k = E(Xn,k|.E,k-1 then

(4.19) -n,k E(I + x)2|in,k- I

n,kI(Ifl,-kI :!! + E(n,kI(IXnkl> 1) 'Mk)

=|E(l X1 |-iF,k-l) + E( I x F|n,k-l)1 n+Xk nk

- 8E(1 + X21(1n,k-) + P(IXn,kI > 81'-n,k-1)

for every s > 0. From (2.15) and (2.18) it follows then that the Xn, k satisfy the
first condition of Theorem 2.3.

In the same way we obtain a similar estimate for

(4.20) E Xn,k|n,k-1) - E(|n, k-1)I

from which we deduce

(4.21) z E(Xn,klI,kl)-)--* 1-
k=1 no

Also

(4.22) |n,k [E(1 + X2 k)l

is at most twice the left side of (4.19) (since IAn, k _ 1 and similarly for the other
term). From this, (2.17) and (4.21) we conclude that the second condition of
Theorem 2.2 is satisfied (see Remark 2.1).

Finally, the last condition is obtained from the boundedness of Xn k'
Equation (2.14) and Lemma 2.3.

4.4. PROOF OF THEOREM 2.4. This follows immediately from Lemma 3.4
on taking, as Zk, random variables having the same distributions as Xn,k but
independent of in kn and of one another.
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5. Some applications

5.1. Our next results will deal with sums of random variables whose de-
pendence diminishes as their distance increases. Such results can be formulated
for any suitable measure of dependence. We shall formulate our results in
Sections 5.2 and 5.3 in terms of the quantity a given by the following definition.

DEFINITION 5.1. The o dependence of twofields s and W in a probability space
is defined by

(5.1) a(Y, W) = sup IP(F n G) - P(F)P(G)I,
the supremum being taken over all sets F E Y and G E S.
We refer to [8] and [13] for other notions of dependence and the relations

among them. In general it is less restrictive for the a dependence to be small
than for most other measures of dependence which were studied.
We need some lemmas on a(,, W), but first we show
LEMMA 5.1. Let X, Y be random variables satisfying IX| 1, IYI 1 and let

(5.2) A = sup IP(X E B) - P(Y E B)I,
B

the supremum being taken over all Borel sets B. Then

(5.3) |EX - EYI . 2A

and the constant 2 is exact.
PROOF. Let v(B) = P(X E B) - P(Y E B) for all Borel sets B. Then v is a

signed measure and

(5.4) EX - EYI = f tv(dt) . f |tl lvi (dt) . f lvl (dt)

where VI (B) is the total variation of v on B. Let B' andB - be a Jordan decom-
position of [-1, 1] corresponding to v; then lvl ([-1,1]) = 2v(B+) with
v(B+) = A as defined by (5.2). Substituting in (5.4) we obtain (5.3).
Using this lemma we obtain
LEMMA 5.2. LetXbearandomvariablesatisfyinglXl _ 1,let = (X)and

§ be any a-field in the probability space, then

(5.5) EIE(XI) - EX _ 4a(, W)
and the constant 4 is exact.

PROOF. Let G denote the set where E(X W) _ EX. and G' its complement;
then G c and we have

(5.6) 0 = E[E(XIW) - EX]
= E[E(XIW) - EXIG]P(G) + E[E(XIW) - EXIG']P(G').

(5.7) EIE(XIW) -EXI
= E[E(XIW) - EXIG]P(G) - E[E(XIW) - EXIG']P(G').
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Combining these two equations we obtain

(5.8) EIE(XI|) - EXI = 2E[E(Xj|) - 9XIG]P(G).
Now let X be a random variable with the same distribtuion as X and independent
of 9 (if need be the probability space can be enlarged in order to carry such a
random variable). Then

(5.9) E[E(Xl|#) -EXIG]
- E(XIG) - E(XIG) _ 2 sup IP(X eBIG) - P(X eBIG)j

by Lemma 5.1, the sup being taken over all Borel sets. Writing the conditional
probabilities in (5.8) in full, recalling that P[(XZ E B) r) 0] = P(X E B)P(G) =
P(X E B)P(G), and substituting in (5.9), we obtain (5.5).

That 4 is exact is seen, for example, by letting X assume the values + 1 only
and y = {0, G, 0', Q}.
We need a similar lemma for complex valued random variables.
LEMMA 5.3. Let 4 be a complex valued random variable satisfying < 1,

let .F = .4(c,) and 9 be a a-field in the probability space. Then

(5.10) EJE(419) -EC _ 2rLx(97, 9).

PROOF. Put tj = E(, |) - E,; then we have for every real u,

(5.11) EI?iE = E Re(?lei")Idu] = EJEIRe(nei")Idu

-sup IRe (ile'u)I
by Fubini's theorem and a trivial estimation of the integral. Applying (5.5) with
X = Re(4ei") and substituting in (5.11) we obtain (5.10).
We also need the following consequence of Lemma 5.2.
LEMMA 5.4. Let X and Y be random variables with IXI _ c and E(X) = 0.

Let .F = p4(X) and 5 = M(Y); then

(5.12) |E(XY)l _ 4CEjYja(,F C).
Indeed, by (5.5),

(5.13) IE(XY)I = IE[YE(Xj9)]I < E[4ca(., 9)IYI].
5.2. The next theorem has many antecedents starting with Bernstein [1]. It

is a little clumsy, but it can be easily specialized to give various results on m

dependence or stationarity (see [2], [7], [8], [12], [13], [141, [15]).
THEOREM 5.1. Let the random variables 1.1 satisfy EX, k = 0 and put

(5.14) a"(m) = sup CX kn,k+m+ 1)
1 Sk<kn-m

where sn,k = (X, , X., k) and 'n, k = -4 (X., k X X., k). Assume there
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exist integers

(5.15) 0 =ji(0) <ij(1) < * <j(r,n) =kn
such that, putting

jn(i)
(5.16) Y.,i= Y X., k,k=jn(i-1)+1
we have

(5.17) lim E EY = 0,
n= ieven

(5.18) lim E = 1,
n= X iodd

and
(5.19) rim E[E > 0 for all e > 0.

Then

(5.20) lim rnrn(mn) = 0,
n =o

where mn = minl<i<kkn [in(i)- jn(i - 1)] implies that (1.3) holds.
PROOF. Because of equation (5.20) and Lemma 5.3 we have

(5.21) E EjE(exp {itYn,k}j|F,,j.(k- 1)) - E exp {ityn,k}l < 2nrrnan(mn).
k even

Therefore, by (5.20) and (5.17), Corollary 2.4 applies to I Yn 2i and this sum
converges in probability to zero. But (5.21) holds also when the summation is
done on the odd k. Therefore, by (5.18) and (5.19), Corollary 2.3 applies to
- Yn, 2i-1 Combining these two results we obtain the assertion of the theorem.
5.3. Here we shall be more specific and obtain a more easily applicable

result. Instead of dealing with many dependence functions a"(m) we shall, for
simplicity, operate with a single one a(m), satisfying

(5.22) a(m) _ c(m + 1), m = 1,2,***,

and

(5.23) a(m) _sup Ot(m), m = 1, 2,
n

where a"(m) is given by (5.14) and the sup is taken over all n for which kn > m.
THEOREM 5.2. Let the random variables (1.1) satisfy

(5.24) IXn,kl<| Cn liM C = 0,
n = 0

(5.25) EXn,k = 0, lim ES k = 1.

Assume there exist positive integers mn, n = 1, 2, * *, satisfying
(5.26) lim mn = ), lim mnCn = 0

n=oo n= oo
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to which there correspond sequences (5.15) with

(5.27) in(2i) -j.(2i - 1) = mn, EYn,2i-1 = m,
for which (5.19) holds. Then the condition

(5.28) E a'(m) < 00
m=1

implies (1.3).
W. Philipp [13] has a similar result, however, with (5.28) replaced by the

stronger condition F [a(m)]1"2 < oc. For a discussion of various specializa-
tions, see [13].

PROOF. All we have to do is to check that conditions (5.17), (5.18) and (5.20)
of Theorem 5.1 are satisfied.

First we estimate
ji(2i) jn(2i) / j.(2i)

(5.29) EY2i2 = E EXY2 k + 2 E n, k _ n p
k=jn(2i- 1)+ 1 k=jn(2i- 1)+ 1 p=k+ 1

mn

. m"no + 8m"nc, E a(m) < K1mnCn
m = 1

by Lemma 5.4 and (5.28). (The K1, K2, denote finite positive constants.)
The same computation also gives

(5.30) |E(Yn,2i E Yn,2k)l < KlmnCn
k> 1

Thus, writing

(5.31) Yn = E Yn, 2i-1, = E1Yn,2i
we have

(5.32) E(Yn")2 < K2rnm,,cn
with rn defined in (5.15).
We also have

(5.33) IE(Yn, 2i-1 EYn, 2k-i)I - E IE(Yn, 2i-lXn,k)j
k > i kk>j.(2i)

< 8c,,EjYn,2i-1j E oa(m) < K3c,(Ey,,22i-J1) I
m=1

again by Lemma 5.4. The last member is o(EY 2i- 1) as nx , uniformly in i,
by (5.26) and (5.27). Therefore

(5.34) E(Yn')2 = [1 + o(1)] EYEyn 21.

On the other hand we have from (5.29) and (5.30), again on account of (5.26)
and (5.27), that

(5.35) E(Yn")2 = o(EYn22i-1)-
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From (5.34), (5.35), and (5.25) we obtain (5.18). From (5.18) and (5.27) we
have rn < K4m,. which by (5.29) yields (5.17). Finally, (5.20) follows from
r,, < K4m,. (5.22). (5.28). and (5.26).

5.4. As a direct application of Theorem 2.2 we bring the following result
which improves a result of Serfling [16] under somewhat weaker conditions.
THEOREM 5.3. Let X,, for n = 1, 2, * , be a sequence of random variables.

Put S,n = X, + + X, and. for nonnegative integers a, let

(5.36) Ta(m) =-(Xa+1 + + Xa+m)

and 3a = X (Sa) If the following four conditions

(5.37) lim ETa(m)2 = 1I

(5.38) lim m-'EjTa(m)j2+1 = 0.

(5.39) lim m0E|E(Ta(m)Ya)j = 0,
and m=

(5.40) lim EJE[Ta( a)2Ic] - ETa(m)2 = 0
m = 'oo

hold uniformly in a. then S,/ n is asymptotically N(O. 1), provided

(5.41) y . /3o.

PROOF. We put Xn k = n " 2Xk for k = 1, * n = kn and apply Theorem
2.2. However, we apply it not to the Xn, k but to Yn j where Y,, 1is the.sum of the
first mn, = [na] random variables Xn k; the Yn, 2 is the sum of the next mn terms
Xn,k, and so forth (the last Yn,j is perhaps a sum of fewer summands). The
number of Yn j is roughly n -6. Also each Y, j is equal to some (mn/n)1'2 Ta(mn).
We now check the conditions of the theorem.

First, the sum in (2.10) is estimated by (n/mn)o[(m/n)1"2m-0] in view of (5.38).
Thus, putting mn = [na] we see that equation (2.3) holds provided

(5.42) 2 -

Since IEYnj = (n/m.)(m./n)[I +o(1)] 1 by (5.37). it follows from (5.40)
that

(5.43) ZE(Yni2 |in,i)1) 1.

In view of (2.10) the above implies (2.4). Thus it remains to check the Lindeberg
condition. This would certainly be implied by the Liapounoff condition
-Ejyn,i-2+0, but by (5.38) this sum is (n/Mn)o(Mn(Mn/n)'+l2) and thus
tends to zero provided
(5.44) 1 2 /3 .y> .
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Equation (5.41) ensures the possibility of finding 5 in (0, 1) satisfying (5.42)
and (5.44) simultaneously.

5.5. B. Rosen gives interesting central limit theorems and many useful appli-
cations [14]. It is not difficult to deduce generalizations of his results from
Theorem 2.2 and the following Theorem 5.4. This theorem, motivated by
Rosen's results, considers the case when the mean of the summands depends,
roughly speaking, linearly on the sum of the previous terms. (In several places in
[14] conditional second moments should be replaced by conditional variances).
THEOREM 5.4. Let the random variables (1.1) and the constants an,k, for

n = 1, 2, - * - and k = 1, * * *, kn, satisfy the following conditions:

(5.45) Z lyU,k - af,kSf,k- 1 ° 0,

kn n n

(5.46) -an,kH (+1 an,) P
k+1

(5.47) lim sup max fl I + anj <(5.47)~ ~ n=o 1 =k .knj=k+1 1 <~

Then the condition
kn

(5.48) lim , E[(Xn,k - lUfn,k) I(IX.,k - P.n,kI > E)] 0

for every c > 0, implies (1.3).
REMARK 5.1. By Lemma 3.3 condition (5.48) is less restrictive than the

Lindeberg condition (1.6) or the condition

(5.49) lim E[(Xn,k - an,kSn,k-) I(IXn,k - an,kSn,k-lI > )] = 0.
n=o

(We can, of course, replace (5.48) by weaker 'conditional type' conditions.)
Note also that (5.47) is satisfied, for example, if the sums of Ian k in each row

(n = 1, 2, * *) are bounded.
PROOF. We may, and do, retain assumption (4.1). Putting

(5.50) Yn,k = Xn,k - an,k Sn,k-1,

we have

(5.51) Sn k = (1 + anf,k)S.,k1- + Yn,k

Applying (5.50) with k = kn, then with k = - 1, and so on, we obtain
kn kn

(5.52) =n,kn HE(f1 + an, j) Yn, k -
k=1 j=k+l

Or, putting,

(5.53) Zn,k = fl (1 + an,j) Yn,k,
j=k+ 1
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we have

(5.54) Sn,kn k= Zn,k.

Let M be a bound on all products appearing in (5.47). Then, by (5.50) and
(5.53),

(5.55) IE(Zn,kjIn,k-1)j _ M114.,k - af,kSl,k-11
and hence, by (5.54) and (5.45), to prove (1.3) we have to show that

k,
(5.56) E [Zn,k - E(Znfkj|in,kk-1 )]

k= 1

is asymptotically N(0, 1). But it is immediately verified that the random
variables under the summation sign in (5.56) satisfy the conditions of Theorem
2.2. Indeed, condition (2.3) holds because they are centered at the conditional
expectations; condition (2.4) holds since the summands in (5.46) are precisely
the conditional variances; while condition (2.5) follows from (5.48) and
IZn,k - E(Zn,kF.n,k-.l)j < MlX n,kIn

6. Remarks

6.1. Occasionally there are attempts to establish results on asymptotic
weighted normality. For instance, one may try to show that if (2.1) and (1.6)
hold, and the sum on the left in (2.2) is a random variable a' with
P(C2 < u) -. W(u), then 8n,kn approaches in distribution the weighted normal
N(0, W), (this is simply the average of ordinary normal distributions N(0,)
relative to the weight W( )).

However, no such result can hold, not even if p(a2 < u) is independent of n.
The distribution of Sn k. need not tend to a limit, and if it does, the limit need not
be of the form described above. Imposing a martingale structure or strong
boundedness conditions does not change the situation.
The following furnishes a simple example (see Remark 3.4). Consider (1.1)

with k. = 2n + 1. Let pn be irrational numbers tending to zero and let the X., k
with k < n be independent and P(X,, k = 1/[n 12]) = P(Xn,k = - 1/[n"2]) =

1/2. Let B. be any set for which P(S," e B.) has a limit, say p, and let
Xn n+I= 0 if S,,n B and assume the values pn or - pn, each with probability
1/2, otherwise. Similarly, for k > n + 1 let X.,,k = 0 if 8n,k- 1 is rational and
assume the values ± 1/[n]12, each with probability 1/2, otherwise. Then the
left side of (2.2) assumes two values tending to 1 and 2 with probabilities 1 - p
and p respectively. To finish the construction of the example we have merely to
specify B.. If Bn = (0, oo), then Sn,,k has a limit distribution which is non-
symmetric. If Bn = (-oo, 0), it tends to another such distribution. If u. is such
that P(|S8| < u,,) 1/2, then choosing B. = (-u,u, u.), Sn k. tends in distribu-
tion to a symmetric limit; taking B,, = (-0,- un) u (un, 00) it tends to another
such limit.
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6.2. There are many applications of quite a different nature from those
considered in Section 5. The most interesting ones are obtained by combining
the results of the present paper with stopping rules. We mention the following
result, related to the three series theorem for dependent random variables.

Let IX,j < c, En = (X1* , Xn), let p,n = E(Xn,|1 ). and let an =

E(Xn |j-1) - U. If Iu,j < Ka2 for some K < oo then the convergence sets
of the series I X,, and E a 2 coincide (except for null sets).

Recently N. Langberg (Ph.D. thesis, Jerusalem) applied results of the present
paper to the study of asymptotic normality for stochastic approximation
procedures.
Levy has applied his results to such problems as the law of the iterated

logarithm for dependent random variables [9]. Advances since his book was
written permit various improvements, but it is still an invaluable source of ideas.

6.3. It is not difficult to obtain results by our methods on the rate of con-
vergence to normality. Extensions to several dimensions also present no
problems.

It is also possible, following a line going back to [1] and [9], to study correla-
tion functions and limiting processes. An invariance principle related to the
questions studied here has recently been established by R. Drogin (Ph.D. Thesis,
Berkeley).
Our results can be reformulated so as to exhibit not only sufficiency but also

necessity, but this requires additional assumptions in order to avoid cases such
as Xn,k = XJI(Af,k) with Xn asymptotically N(O, 1) and An k a partition of the
probability space.
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