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1. Introduction

The problem that a relatively simple analysis is changed into a complex one
just because some ofthe information is missing, is one which faces most practicing
statisticians at some point in their career. Obviously the best way to treat missing
information problems is not to have them. Unfortunately circumstances arise
in which information is missing and nothing can be done to replace it for one
reason or another. In analogy to other accidents-we don't plan on accidents,
nevertheless they do occur and safety measures must be aimed at palliating
consequences as well as at prevention. Consequently, a great volume of literature
has been produced, dealing with a number of specific situations. An indication
of the content of many of these papers is given in the Appendix. In this paper we
propose to try to present a general philosophy for dealing with the problem of
missing information, and to give a method which will lead quite easily to maxi-
mum likelihood estimates of the parameters obtained from the incomplete data
using as nearly as possible the same techniques as if the data were all present.
Our first simple use of the missing information principle resulted from a con-

versation in 1946 between Max A. Woodbury and C. W. Cotterman resulting
from the latter's interest (Cotterman [20]) in estimating gene frequencies from
phenotypic frequency data. The observation was made that if one has the geno-
typic frequencies NAA, NAB, NBA, NBB, NAO, NBO, NOB, and NOO of red
blood cell genotypes, indicated by the second and third letters of each symbol,
then the gene frequencies are easily computed. If N is the total of the above
frequencies then the estimates would be

1
PA = (2NAA + NAB + NBA + NAO + NOA),

(I.1) PB - (2NBB + NBA + NAB + NBO + NOB),PB2N

Po = (2NOO + NOA + NAO + NOB + NBO).
2N
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However, only the phenotypic frequencies

MA = NAA + NAO + NOA,
(1.2) MB = NBB + N'BO + NOB,

MO = NOO,
MAB = NAB + NBA,

are available.
If, however, one makes use of Bayes' theorem and the gene frequencies one

can obtain estimates ofthe genotypic frequencies from the phenotypic frequencies
2

NAA = MA PA =MA PA
(PA + 2PAPO) (PA + 2po)'

NAO + NOA = 2MA PA
(PA + 2PO)

(1.3) NfBB=MB PB
-

(PB + 2PO)

NBO + NOB = 2MB Po
(PB + 2Po)

NAB + NBA = MAB,
NOO = MO.

If one solves (1.1) and (1.3) simultaneously by equating the genotypic fre-
quencies in (1.1) to their estimates in (1.3), one can obtain estimates fiA, PB.
and P-O, which of course are not as good as those obtainable from the true geno-
type frequencies but which are as efficient as the maximum likelihood estimates
based only on the phenotypic frequencies.
The problem with estimating PA, PB' and po by this method is the difficulty of

finding rapid and accurate solutions of these equations and estimates of their
error variances. These difficulties are shared with the method of Maximum
Likelihood (ML). This is not too surprising since in fact the two methods are
equivalent. One way in which the two problems of slow convergence and loss of
information may be handled is by the method of scoring which can be modified
to work in the presence of missing information. The solution of the problem of
estimating gene frequencies in more general circumstances is provided by
Ceppellini, Siniscialco, and Smith [15], who demonstrated that the procedure
implied by the principle indicated above is in fact ML in all cases. These authors
also considered the increased variance of the estimates due to the loss of geno-
typic information under the heading "hidden variance."

This missing information principle has been applied to missing observations
in a linear model, and in a multivariate normal, and to mixture problems. A
few examples will be presented later in order to demonstrate the relative facility
with which the principle may be applied.
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2. Theory

The method proposed is to regard the values of the missing data as random
variables within the framework of a model of the data. Thus, estimates which
are well defined when all the data are present become random variables (being
functions of the missing data). This variation of the estimates is in addition to
the usual sampling variation so that the error variances of the estimates are in-
creased. The consequences of the data's being missing and some insight to the
approach used here are obtained if one considers replacing the missing data by
sample values from the appropriate distribution function. The question is, from
which distribution function should we sample?

In the independent, identically distributed case where the vector xi has the
distribution function f(xi 0) and xi = (Yi, zi) where the vector zi contains the
missing components, then f(xiI0) = f1(YiI0) f2(ZiI0, Yi) is the factorization of
the distribution function into the marginal distribution for yi and the conditional
distribution of zi given yi. The proper distribution to sample for the missing data
then is the conditional distribution f(zi 0, yi), but 0 is unknown so that some
estimated value 0, must be used. One could draw many samples from the distri-
bution f and from these completed data samples obtain the distribution of the
parameter estimates due to the missing data. Call this distribution MID(0, Z).
If this distribution is asymptotically normal, then the mean will be the obvious
statistic to use to provide an estimate in the presence of missing data. If this
mean value should be 0, then the estimate has not been affected by the assumed
missing data distribution. That is the missing data tells you nothing. This inter-
pretation of the principle is due to Jacquez. The remaining part of the missing
information principle is to equate the mean of the MID(0, Z) to 0, or take some
action equivalent to this. The effect of the variance of MID(0, Z) ("the hidden
variances") on the error variance is best understood in another context.

Before continuing with the problem of missing information, it will be of value
to review the method ofmaximum likelihood estimation. The likelihood function
of a multivariate data matrix X is denoted by L(X 0), and is defined to be
L(X 0) = IInN=1f(XnI0), wheref(X|I0) is the density function of Xn and 0 is an
(s x 1) vector of parameters. The Score (Sco) for the parameter 0 is then defined
to be

(2.1) Sco(OiX) = log L(X-I) L(XIO).

The maximum likelihood estimates for the parameters are obtained by solving
the set of equations. It may be readily deduced that the mean value of the score
is zero at the true parameter point; that is,

(2.2) Sco (OjIX) = 0 for j = l ,s

(2.3) E[Sco(0jIX)X = 0.
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The information matrix for 0 is defined to be the matrix with (j, k)th element

(2.4) J(oiJ OkIX) = -E [9-Sco (jIX)]

= -E
Fj0L log L(X I0)]

= E[Sco (0jIX) Sco (Ok IX)]
= Cov [Sco (oIX), ScO (Ok IX)]

Under certain general regularity conditions (see Rao [36], p. 295), for example,
the existence of second and third derivatives of the log likelihood function, it may
be shown that the joint distribution of the maximum likelihood estimators is
asymptotically multivariate normal with a covariance matrix given by the inverse
of the information matrix. For a detailed discussion of this subject, the paper
by Wald [41] can be consulted. A condition for the existence of maximum likeli-
hood estimates is that the information matrix is positive definite. However, in
some instances, such as in the case of the multinomial distribution, the informa-
tion matrix has rank less than s and is therefore singular. If the information
matrix is of rank s - t, then we are required to impose t restrictions, hl(6) =
0, * * *, h,(0) = 0, on the parameters in order to achieve identifiability.
The problem of maximum likelihood estimation of parameters subject to con-

straints has been studied by Aitchison and Silvey [5], [6], and Silvey [38].
These authors also obtained a test statistic for the hypothesis h(6) = 0. However,
the situation of interest here is when h(6) is a t x 1 vector of constraints necessary
to produce an identifiable parameter set. In this case the constrained likelihood
function may be written as

(2.5) L* = log L(X 10) -Th(),
where A is a t x 1 vector of Lagrangian multipliers. If we define the constrained
score

(2.6) Sco*(0IX) = OL*

and

(2.7) (sXt) =(hh()
then we may deduce that the expected value of the constrained score is zero if
the true parameter satisfies the constraints.

Considering the various definitions of the information matrix listed in (2.4),
we may determine that a nonsingular matrix, denoted by J*, will be obtained
by taking the negative of the expected value of the derivative of the constrained
scores. However, if we take the covariance of the constrained scores we will call
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the singular information matrix J. This is related to the required nonsingular
matrix by the equation

(2.8) J = J + NHHT,

where N is the number of observations. This form will lead to the asymptotic
covariance matrix of the parameter estimates given by

(2.9) V = (J*)-l = (J-1 - J-lH(HTJ-lH)-IHJTJ-l)

It may also be remarked that a nonsingular information matrix will not result
simply from reparametrizing so that the new parameters satisfy the constraints,
unless some are eliminated.

Let us now return to the situation where we have missing information. Suppose
that we cannot observe the random variable X, but can instead observe some
image Y, of it. The likelihood function for Y may be obtained by integrating
L(X 0) over the appropriate range, and thus we may write

(2.10) L(X I 0) = L, (X I Y. 0) L2(YIO)
giving

(2.11) Sco L aL1 + Sco(01IY).
The item (ilL,) (L11/a0j) is called the conditional score of Oj from X, given Y,
and this is denoted by Sco (0j, X I Y). It may be noted that

(2.12) E[Sco (0j, XI Y) I Y] = 0,

the truth of this following from the same reasoning as was used to establish (2.3).
Finally we have

(2.13) Sco (0jIY) = E[Sco (0jIX) I Y]
and

(2.14) E[Sco (0j IX) Sco (Ok IX)] = Cov {E[Sco (0j IX) I Y], E[Sco (0k I X) I Y]}
+ E{Cov [Sco(0j1X), Sco(0kIX)IY]}

which leads to

(2.15) E[Sco (0j X) Sco (0k IX)] = E[Sco (0j Y) Sco (Ok I Y)]
+ E{Cov [Sco (0j X), Sco (Ok IX) I Y]}.

For the information matrix this gives

(2.16) J(0, OIX) = J(0, oI Y) + J(0, 0; YIX).
The last quantity on the right J(0, 0; YIX) is what is termed the lost information.
For brevity, equation (2.16) may be written Jx = Jy + Jxly, where JX/Y = Jx-
Jy = the lost information.
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We may now easily obtain a relationship between the lost information and
the increase in variance of the parameter estimates (the "hidden variance" of
Ceppellini. Siniscialco. and Smith [15]). This relationship derives from

(2.17) Jx - -Jx) = ( J- ,)Y-
which we may write as

(2.18) j-, -Jx-I = Jx -(Jx- )J2).

(2.19) Jx -y = Jx(J 1 -J-I)>r
If, for simplicity, we write A > B when the matrix difference. C = A - B, is
positive semidefinite, then we have

(2.20) y1 x

(2.21) Jx _ JY.
We may now obtain bounds on the hidden variance in terms of the lost inform-

ation. and vice versa. These are

(2.22) J 1JIjx:-1 < (JY-1 - J-1) . j-'Jx1yj>'.
(2.23) JY(J1-l - Jx1)J <JX. Y- JX(J-1 -J-I)jx
These may be of value in practical situations where some of the quantities are
easier to obtain than others. The widths of these limits depend on the amount of
missing information and are "tight" when this is small.

The usefulness ofthe above theory, and in particular result (2.13), in estimating
parameters in the presence of missing information is that it is often quite easy to
obtain the right side even in those cases when it is extremely difficult to obtain
the left side.

3. Examples

3.1. Example 1. Consider first the case of missing observations in a linear
model. Suppose that Y is a set of independent, normally distributed, random
variables having a common variance of a.2, and a mean of XO, where X is an
n x k design matrix and 0 is a k x 1 vector of unknown parameters. Then we
have

(3.1.1) ,Sco (OIY) = X (Y - XO)
n_ (Y - XO)T(Y - X0)

(3.1.2) Sco (a21Y) - 2
y_XT2y_4

Equating these to zero gives

(3.1.3) 0 = (XTX)1XTY,

(3.1.4) 12 (y XO)T(y X0)n
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This estimator for a2 is, of course, well known to be biased, the unbiased esti-
mator being

(3.1.5) 62 (Y-X)T(Y-XO)
n-k

where k is the rank of the design matrix X.
Suppose that there are n potential observations but that there are m missing,

leading to an image of Y being the vector Y0 of observed values. Due to the

assumed independence of the observations the conditional expectation of the
scores may be easily computed. Also the observed values are unaltered whilst
functions of the missing values are replaced by their expected values. Hence

(3.1.6) Sco (OIYo) = 12 XT(Yo - Xmo - X0)

and

n (YO - XO0)T(Yo - XO0) m

(3.1.7) Sco (a2I Yo) =-- 2a2- 2a2;

here Xm and X0 are (n x k) matrices such that X = Xm + X0, and Ym and Y0
are (n x 1) vectors such that Y = Ym + Y0. The following estimators are thus

obtained:

(3.1.8) 6 = (XTX) X Y,

(3.1.9) YO + X.6,

(3.1.10) 62 = (y0 - XOO)T (YO - XO0)

= (Y _ XO)T (Y - X)
n-rn-k

It may be noted that 6 can be eliminated between (3.1.8) and (3.1.9) to obtain

(3.1.11) Ym = [I - Xm(XTX)V1XT]Xm(XTX)lXxYo-

This equation provides a form of estimating missing data which is easy to com-

pute for a single value. It is proposed to use this simple form to obtain an initial

set of estimates for the missing values, and then to cycle iteratively through
equations (3.1.8) and (3.1.9) until the parameter estimates stabilize. This is the

modification ofYates' [50] approach to the problem, as proposed by Tocher [39].

The lost information for estimating 0 may be shown to be (XTXm)a-2, thus
the covariance matrix for 0 may be written

(3.1.12) Coy (, ) = (XTX - XmXmV 1a
{(XTX)-1 + (XTX)-lXT[I _ Xm(XTX)IXT]lxm

(XTX)-11}a2.
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Therefore the quantity to be added to Cov (0, 0) so as to correct for "bias" is

B {(XTX)-lXT[I - Xm(XTX)lXT]lXm(XTX)l}a2.
Since we recover none of the lost information, in general the main reason for
using the procedure proposed here is that the design matrix X for the complete
data, where we have a balanced design, may be chosen such that XTX is diagonal,
and hence much easier to invert than the general matrix XTXO which would
result from using the available data only. However, it should be noted that in
order to correct for the bias in Var (6), it is necessary to invert the matrix
[I - XT(XTX) 1Xm]. This is of order m and generally has a regular pattern, but
it may not be diagonal. It is therefore felt that if the number of missing values m
equals the rank of the design matrix then there is less to be gained from using the
procedure outlined here.

3.2. Example 2. A second example, which has received considerable atten-
tion, is that of missing components in a multivariate normal distribution. This
has been considered by Woodbury and Hasselblad [47] but it is being included
here due to its great interest. The log of the likelihood function, for a sample of
size N, may be written

(3.2.1) logL(Xly, ) = C + 1NJI1 - NtrI1S,

where S = YEn I (X. ) (X. it) /
The parameter scores are easily obtained and are

(3.2.2) Sco (NIX) = NY--1(X - Iu)
and

(3.2.3) Sco(E1X) = -2N(Y7- _ 15 -1)

By equating these to zero we can obtain the parameter estimates

(3.2.4) = s
and

N X
(3.2.5) y N

Equation (3.2.3) is obtained by observing that the derivative of the logarithm of
a determinant of a matrix with respect to an element of that matrix is simply the
corresponding element of the inverse, and that 8Z1 = - - (a)-1 We
also used such properties as tr (AB) = tr (BA), and tr (a) = a if a is a scalar.
Additionally we note that a' i = a(' i, although this fact is not used in obtaining
Sco (aij). The solution of the normal equations will not be affected since we
obviously have Sco (ai j) = Sco (aj i). The reason for forming the score of the
covariance matrix instead of the score of the inverse, as is more normal, is that
this will greatly simplify the computation of the information for X, as will be
developed later.
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The image Y of X consists of the observed components of the data matrix X.
If we assume that there are p components then an individual observation is a
p x 1 vector which may be written in the form

(3.2.6) Yk = Yk, 0 + fk,m,

where Yk, 0 is the observed portion, with zero in each position corresponding to a
missing component, and Yk m is the estimated missing portion, with again zero
in the positions corresponding to an observed component. It should of course
be remarked that if there are no missing components then Yk, 0 constitutes the
entire vector. To obtain the conditional expectation of the scores for the mean
we have to solve the regression of the missing data Yk, m on the observed data
Yk,o. Similarly the conditional expectation of the scores for the covariance
matrix requires the conditional covariance matrix of the missing data given the
observed data. The following estimators are obtained:

I1 N
(3.2.7) A Y.n-

N,

(3.2.8) Yl [(,n )(Yn p)T + Vn],

(3.2.9) fk,m = am + Ym,0 0,0(Yk,0 PO)
am + (M

mM) 1.m (yk,O - PO),

where V, is a p x p matrix, for the nth observation, with Em m-Em 0 0- .

(= (Em, m)- 1), in the positions corresponding to the missing components and
zero elsewhere. It should be noted that partitions such as (Yk,m, Yk, o) vary from
observation to observation depending on which components, if any, are
missing.
The lost information for the mean due to a single observation may be shown

to be
[m,m Fm,0

(3.2.10) LI('U) = 70.m 10,0 - z-1

This may be deduced intuitively since we would lose `1 by discarding a com-

plete observation, whereas the procedure described here recovers the amount
I` contained in the observed portion. Once again the components of 10,0
vary from observation to observation and will be the entire matrix if no com-

ponent is missing.
Since there are only q = 2p(p + 1) distinct elements in the covariance matrix,

J(Z, 1) will be a q x q matrix. However, it is proposed to regard it as being
composed of p2 distinct elements and then to gather the terms in the p2 X p2
information matrix J*(£, 1) to give the required J(E, 1). Thus we have
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AT 2

1

(3.2.11) J*(1, E) = NE[Y-1 ® 'E-1 --1 ® Y8-

- I'SE-' 0 Y_' ±+ E-'s-'I0 -'S-IE]

= E[(E-'I0-<)(S0S)(E-I (0 1)_ -EX 0 -1]

A typical element in E(S (D S) may be shown to be

(3.2.12) E(8i,j%,) =-I + UiU±j,v + ai'vaj,u]

Hence (3.2.1 1) reduces to

(3.2.13) J*(E, X) =
N (E 0IE EX)(oi-,ua,j + ai,vau)(, 0 X)

= N (uyi,"su,j + ani,vanu.j)
4

To obtain these equations it is necessary to use one of the properties of the
Kronecker product. namely, (A 0 B) (C 0 D) = AC 0 BD. To obtain J(E. X)
we simply collapse this matrix noting that J(aj, i au u) consists of one element
like that shown on the right side of (3.2.13). J(aj i au v) consists of the sum of
two such elements, and J(ajjj. va .) consists of the sum of four such elements.
The point of obtaining J* (E, E) is that it provides a means of computing the
information matrix in the presence of missing data since J* is the sum of the
corresponding matrices for each observation vector, which may differ from
observation to observation in the case of missing data. If we write each observa-
tion in the form 4k = Yk, 0 + Yk, m then X0,0 is the submatrix of E correspond-
ing to Yk, 0. The retained information is then obtained by accumulating those
elements of (3.2.13) that correspond to 70-`. Once this has been done then J
can be obtained by combining terms and from this the lost information may be
computed, as can the covariance matrix of the estimated covariance matrix.
covariance matrix of the estimated covariance matrix.

Computationally, the procedure followed is to group the observations into
classes of identical patterns of missing and observed components. Initial esti-
mates of the mean and covariance matrix are obtained using (3.2.4) and (3.2.5)
on the complete vectors, if there are any. Then (3.2.9) is used to get initial
estimates of the missing values and the completed data used in (3.2.4) and (3.2.5)
to get new estimates of the parameters. Finally the covariance matrix is corrected
for bias by adding quantities like (Y" m) 1 as indicated by (3.2.8). If there are
no complete vectors, it is proposed to use some good initial guess of the missing
data and then to start the cycle with (3.2.4) and (3.2.5) as before. It should be
noted that the theory of partitioned matrices is quite useful in reducing the
amount of computation since the inverse of the quite large matrix 0,0 can be
easily expressed in terms of the submatrices of F', as can Em0Xo-l. (See
Woodbury, M.A., "Inverting modified matrices," Stat. Res. Group. Princeton,
N.J. Memo., Vol. 42, 1950.)
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The convergence is, in certain cases, quite slow and hence methods of speeding
it must be used. It must also be remembered that the correct procedure to follow
for any analysis, such as multiple regression, is to use the corrected covariance
matrix and the mean as data, since using only the values predicted by (3.2.9) will
give rise to a biased covariance matrix. The necessary theory is quite easy to work
out and computer programs have been written. The available information for
estimating the mean is most easily obtained by accumulating the portion I `

contained in the observed components.
3.3. Example 3. Mixture problems may be regarded as missing information

problems by noting that the indicator variable Z,, k (which is 1 if the nth observa-
tion is in the kth class and zero otherwise) is missing. If this was available then the
constrained log likelihood would be

N K K

(3.3.1) L = Y_ Y Z.l,k[10gPk + fk(X.ll60)] -N Pk -

n=1 k=1 =1

from this we may obtain the score for Pk as

(3.3.2) Sco (pkIxn, Zn) = SCO (PkI Zn) = n - N,
n=1 Pk

whilst the score for Ok iS
N

(3.3.3) Sco (OkIXn, Z.) E Zn,kT Ffk(XnI1k).
n=l fk 6k

If there is no missing data these equations may be separated into K classes, one
set for each class.

If we do not observe the Zn, k, then the image of (Xn, Zn, 1, * Zn, k) iS just x.
and hence we must find E(Zn, k xn) which is the posterior probability

(3.3.4) P[kIxn] = Pfk(X.10)

where
K

(3.3.5) f(Xn I0) = PPkfk(XnI Ok)-

The image scores are

(3.3.6) Sco (pkIX) = E _ N
n=1 Pk

and
N

(3.3.7) Sco (Ok IX) y P[klXn]y-, fk(Xnl0k)
n=l fk 0k

N

= E P[kIxn] SCok (0kIXn).
n =1
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The following estimating equations are obtained
N

(3.3.8) Nk= E P[kIxn]
n= 1

and

N(3.3.9) ~~~Pk=N

The information computations require expressions for the expected values of the
second derivative of the likelihood functions. Although these expressions do
not have a form which can be easily evaluated for the mixture of normals, or
any other standard distribution, they are being recorded here for the sake of
completeness:

(3.3.10) - 2L PiPi N P[iIxX]P[jIxIn,

(3.3.11) J*(Pip;) = NI[i()'J)] dx = NJ7,(6),

where J1*?(0) is the above integral,

(3.3.12) _ 9L=-P1 P[ilx.]PLilxn] Sco (6jlx,),'3pi861 Pi

(3.3.13) J*(pi, Oj) = Npi aT,j(0)

aL N

(3.3.14) = E P[ilxnIP[jlxn] SCoi (6j|Xn) Scoi (6jlxn),

(3.3.15) J*(0i, oj) = Npipj.ail(6)

The overall nonsingular (unconstrained) information matrix is

(3.3.16) J* =J*(P'P) J*(p, 0)
LJ(0,P) J*(0, 0)J

and its inverse is V*. We note that

(3.3.17) = [°]

so that

(3.3.18) V* = [p]
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and

(3.3.19) [e 0] V. I

where e is a vector of ones. Thus the final covariance matrix of the estimator is

1 V -Op) V*(p, 0)1(3.3.20) V [J [P 0] N [V*(0;p.P: )

The properties of J* and V* discussed in the papers of Aitchison and Silvey
[5]., [6] on constrained maximum likelihood estimation are also shared by the
approximating sums of partial derivatives.

3.4. Example 4. Consider now the problem of estimating the parameters of
a mixture of multivariate normal populations assumed to have equal covariance
matrices but different means. Suppose that there are K populations and that
we sample N observations. Thus, the data matrix X would have consisted ofK
submatrices. of Nk observations from population k for k = 1, , K. Instead,
we have the image Y which consists of N observations from the mixture. If we
had considered Y to consist of a single population then we would have obtained

N

(3.4.1) ScoY(jIY) = ' E (Yn - Y)
n= 1

leading to
lN

(3.4.2) Y n-l
and

N
(3.4.3) Sco (E.|'Y) =-NX + YE (Yn Y)(Yn T

n= 1

leading to
N

(3.4.4) Y=1
N n=1

However, regarding Y as a mixture, we may write the likelihood function as
N k

(3.4.5) L(Y|Iu, 1) = E LE Pkfk(Xn)
n= 1 k= 1

N [K
(3.4.6) log L = E g E Pk(27r)-p2lyl-1/2

n=1 k=1

exp {- 2(X. - kT) E (Xn - Pk)}

Np log 2X +Nlog z- 112 ~ 2 ''
N k

+ log 2 )Ty I (X. - ~~~~ILn)}JE log Epk exp{-(X. - Ilk) (Xn }
n=1 k=1
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Due to the imposed restriction, that k= I = 1. we are required to maximize
the function

(3.4.7) L* = log L - I( Pk - 1).

where 2 is a Lagrangian multiplier.

Defining Sco (0IX) = (aL*/aX) log L* we obtain

N= fk(Xn)(3.4.8) n-1 f(Y)Xn )

where
K

(3.4.9) f(Xn) = Z Pkfk(Xfl).
k= 1

Multiplying by Pk and summing over k gives A = N, hence

(3.4.10) fk(X)n N for k = 1. , K.
n=1 f(Xn,)

If we introduce the posterior probability

(3.4.11) P[kX] (X)
f(Xn).

and define
N

(3.4.12) Nk = Y P[klXn],
n= 1

we obtain
Ak

(3.4.13) Pk= N

and
N X

(3.4.14) Pk = Y P[kjX.] n.
n=1 Nk

Finally
N K1

(3.4.15) ui,j = ZE N P[kI Xn] (Xn, i - Pk, i)(Xn, j k, j)
n=1 k=l

If we call this estimate of F the within class covariance matrix and denote it by
(w), then we may write

N K

(3.4.16) NX())= Z Y P[klXnj(Xn- f + P - ltk)(Xn - +f ± k)
n=1 k=1
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N K

= E E P[kIXj [(X. - j)(Xn - f) + (Xn t) (f -k
n=1 k=1

+ (P - Pk) (Xn.- ) + (f k)(- Ik)]
N

= E (X. -f)(Xn -f)
n= 1

N K

_ Z E P[k IX.](f -ilk)( P-IIk)T.
n=1 k=1

Thus we may write

(3.4.17) E(w) = X(T) _ X(B)

where X(T) is the total variance and X(B) is the between population variance.
The computational procedure proposed is to take some good guess as an

initial set of estimates for the parameters Pk. 11k,'. Then to cycle iteratively
through (3.4.14), (3.4.15), and (3.4.13) until the parameter estimates stabilize.
At each stage we use the best parameter estimates available. As is usual with
such iterative procedures the convergence may be slow and will require speeding
in practice.

APPENDIX

BRIEF REVIEW OF THE LITERATURE AND HISTORICAL DEVELOPMENT

Although considered earlier by Allan and Wishart [7], the first general
approach to the problem of missing data, in field experiments, was that of Yates
[50], who provided formulae enabling the least squares estimate of a single
missing datum to be computed from the row and column sums. He also provided
a similar formula to correct for the bias introduced into the sums of squares,
and suggested that the estimation formula could be used iteratively if there was
more than one missing datum. However, no general correction for the bias in
the sums of squares was given. The basic ideas behind the approach of Yates
have been used by many authors since that time to cover most common linear
models (see code U1). It has also been used for a factor analytic model (see
Woodbury, Clelland, and Hickey [46], Woodbury and Siler [48]), but it is
restricted to the univariate case with independent observations. A second
approach to the problem was the "covariance method" (code U2) of Bartlett
[1 1], (see also Coons [17]) which results in the same estimates as Yates but which
also gives unbiased sums of squares. Tocher [39] described a method (code U3)
which appears to be a combination of the approaches of Yates and Bartlett.
This method gives biased sums of squares but a general correction is given. A
final method (code U4) for univariate random variables is the iterative maximum
likelihood method described by Hartley [28]. This involves replacing the missing
values by their expected values, given the model and the parameters. Examples
were given, by Hartley, for a number of discrete distributions having sufficient
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statistics and for which the maximum likelihood parameter scores were linear in
the observations.
The multivariate normal has been extensively studied; the first approach being

the direct application of maximum likelihood (code MI). The first step was
made by Wilks [45] who considered the general bivariate case. Special trivariate
cases were considered by Lord [34] and Edgett [23]. Their approaches were
greatly simplified by Anderson [9] who considered the general "nested" case for
which the likelihood function could be factored. Trawinski and Bargmann [40]
used the notation of Roy's general linear model to write the likelihood equations,
and gave an example ofa trivariate case for which each type of incomplete vector
was observed an equal number of times. Another approach to the problem of
testing hypotheses in such situations, where the components are missing by
design rather than accident, is given by Kleinbaum [31]. Hocking and Smith
[29] approached the problem by sequentially combining covariance estimators
by adding one group at a time, starting with the complete observations. This
method is statistically efficient and is the same as Anderson's maximum likelihood
solution in the nested case. The above methods all appear to be valid approaches
to the multivariate case. A method very similar to that of Hartley [28] was
described by Federspiel, Monroe and Greenberg [24] (although used earlier by
Greenberg). This is an iterative method which involves replacing the missing
components by their conditional expectation, given the observed components.
Although computationally simple, it gives rise to biased estimates of the covari-
ance matrix (and, hence, of the mean), since the score contains quadratic
functions of the observations. Buck [14] used a similar approach and also cor-
rected for the bias in the covariance matrix, in the case of a single missing
component. However, he failed to give the correct extension to more than a
single missing component. Another approach (code M3), which could give rise
to a nonpositive definite covariance matrix, is the use of all the available data to
estimate each component of the mean and covariance matrix separately. This
has been described by Glasser [25] and Haitovsky [27]. An extensive literative
review was given by Afifi and Elashoff [2], who also considered some of the
methods discussed here, as well as many of the methods in common use. One can
determine from their extensive analysis that most approximations are best "quick
and dirty" and at worst misleading.

Missing information problems, as distinct from missing data problems, are
many and varied, some being recognized as such, some not. Examples of the lack
of identifiability in mixture problems have been presented by Behboodian [12]
for a mixture of univariate normal populations, by Wolfe [49] for a mixture of
multivariate normal populations, and by Cohen [16] for the negative binomial,
while the iterative methods used by Hartley [28] can deal, in addition, with the
problem of lost information due to grouping, censoring and truncating. The
problem, (code 12), of obtaining genotype frequencies from phenotype fre-
quencies has been dealt with by Ceppellini, Siniscialco, and Smith [15].
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