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1. Introduction

It is shown in [2] (see also [3], [4], [14]) under certain conditions that in the
case of independent and identically distributed observations likelihood ratios
are asymptotically optimal test statistics in the sense of exact slopes. The present
paper points out that many of the arguments and conclusions of the papers just
cited extend to general sampling frameworks, and also develops certain refine-
ments of these conclusions. The present generalizations and refinements seem
worthwhile for the following reasons. They enable us to construct asymptotically
optimal tests in problems such as testing independence in Markov chains and
in exchangeable sequences. Secondly, they provide a useful method of finding
the exact slope of a statistic which is equivalent, on some sample space, to the
likelihood ratio on that sample space. It suffices in this case to evaluate the
limit, in the nonnull case, of the normalized log likelihood ratio; it is not neces-
sary to obtain estimates of the relevant large deviation probabilities in the null
case; indeed, the latter estimates are implicit in the initial evaluation. Finally,
the present elaborations throw some light on what sort of conditioning is
advantageous in making conditional tests. It seems that a conditioning statistic is
helpful if it produces an exact conditional null distribution for the contemplated
test statistic and if in the testing problem on hand the conditioning statistic is
useless by itself.
The following Sections 2 to 4 describe the general theory. Some examples

illustrative of the theory are given in Sections 5 to 7.

'Research supported in part by National Science Foundation Research Grant NSF FP 16071
and the Office of Naval Research Grant N00014-67-A-028-009.

2Research supported by National Science Foundation Research Grant NSF GP 22595.

129



130 SIXTH BERKELEY SYMPOSIUM: BAHADUR AND RAGHAVACHARI

2. Notation and preliminary lemmas

Let S be a space of points s, and let a? be a a-field of sets of S. Let P and Q be
probability measures on a?, and consider testing the null hypothesis that P
obtains against the alternative that Q obtains.

In typical cases (see Sections 5 to 7 below) all sl measurable procedures are
not available to the statistician. Suppose then that we are given a a-field X c a?.
and that we are restricted to X measurable procedures. Suppose for simplicity
that P and Q are mutually absolutely continuous on X, and let r(s) be a X
measurable function on S such that 0 < r(s) < oo and

(2.1) dQ = r(s) dP on X.

This r is, of course, the likelihood ratio statistic for testing P against Q when the
sample space is (S, X).
Throughout the paper, if r(s) is a statement which is either true or false for

any given s in S and M is a measure on sl, "7r(s) a.e. [M]" will mean that there
exists an &1 measurable set N ofM measure zero such that {s: 7r(s) is false} c N.

Let there be given a a-field W c X, and let p(s) be a W measurable function,
0 < p < x, such that

(2.2) dQ = p(s) dP on X,
so that p is the likelihood ratio statistic when the sample space is (S, W). If
Ep(r(s) I ') is a version of the conditional expectation function of r given W when
P obtains, then p(s) = Ep(r(s) | W) a.e. P.

In applications, the field W just introduced is the a-field induced by a (not
necessarily real valued) statistic, say y = U(s), and W plays two distinct roles.
We may be studying the loss of information, if any, when the available sample
space is that of the statistic, that is, (S, 16), rather than that of s. that is, (S, X4).
Or we may wish to make conditional tests given y based on s, that is, W may be
the conditioning field. In the remainder of this section W plays this second role
of a conditioning field.

Let T(s) be a real valued X4 measurable function, to be thought of as a test
statistic, large values of T being significant. The conditional level attained by T
given X, say L, is defined as follows. Let F(t, s) be a function defined for
-o < t < oo and s in S such that F(', s) is a left continuous probability dis-
tribution function for each s, and F(t, ) is W measurable for each t, and F(t, s)
is a version of the conditional probability function P(T(s) < t1W) for each t.
Then

(2.3) L(s) = 1 -F(T(s), s).

For a given s, L as just defined is the conditional probability given W of T being
as large or larger than the observed value T (s) if the hypothesis P is true. We shall
usually refer to L as the level attained by T W. It is readily seen that if L and Lo
are two versions of the level attained by T W then L(s) = L°(s) a.e. P.
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LEMMA 1. The level L is a -4 measurable function of s, 0 < L . 1.
LEMMA 2. For a > 0, P(L(s) < a1W) . a a.e. P.
The proofs of Lemmas 1 and 2 are virtually the same as the proofs of Pro-

positions 3 and 4, respectively, of [4], and so are omitted.
We are interested mainly in the behavior of L in the nonnull case, that is,

under Q. The following lemma gives a crude bound for the distribution of
L(r/p); this bound is of interest only because it is valid for all X measurable
statistics T.

Let

(2.4) i(s) = min {1, p(s)/r(s)}

and

(2.5) D2 = Ep{[r(s) -p()]21p(S)j'
and assume for the moment that D2 < oc. Neither this condition nor Lemma 3
are used in subsequent sections.
LEMMA 3. The inequality Q(L(s) < a2(s)) . 3(a[1 + D2])1/3 holdsfora > 0.
PROOF. Let £ and 3 be positive constants. Then by (2.4)

(2.6) Q(L < aA) . Q(L < aplr)

< Q(r < Ep) + Q(r > bp) + Q(L < aplr, p . r . bp).

Now, according to (2.1) and (2.2),

(2.7) Q(r < £p) = f {r < £p} r dP

< £ f {r < Ep} p dP . E.

Next,

(2.8) Q(r > bp) < b-1EQ(r/p) = -'Ep(r2/p)

= -1[ + D2]

by Markov's inequality and (2.5). Finally, using the definitions (2.1), (2.2) and
Lemma 2.

(2.9) Q(L < ap/r,Ep . r . bp) . Q(L < a/£. r _ bp)

= {L < a/c, r _ bp} r dP _ 3 { {L < a/l p dP

= fX pP(L < a/E 6) dP . (ba/g) f p dP = ba/c.
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It follows from (2.6) to (2.9) that Q(L < aA) . £ + (ba)V-1 + [1 + D2]'-1
for all 8 and 3 > 0. Choosing E = (3a)112 and then minimizing the bound with
respect to 3 completes the proof.
Now regard r(s) as a test statistic and let L(s) be the level attained by rIW.
LEMMA 4. The inequality L(s) . A(s) holds a.e. Q.
PROOF. Let F(t, s) be a version of the left continuous distribution function

of r given W when P obtains. Consider a fixed t > 0, and let C be a W measurable
set. Then from (2.1) and (2.2),

(2.10) f [1 - F(t, s)] dP = f P(r > t1I6) dP =f {C r{r _ t}} dP

_ I (r/t)dP = t 1Q(C) = {(p/t)dP.
Since 1-F and p/t are W measurable functions and since C is arbitrary it follows
from (2.10) that 1 - F(t, s) . p(s)/t a.e. P. Since t is arbitrary, it now follows
by a familiar argument that

(2.11) 1 - F(t, s) _ p(s)/t for all I > 0 a.e. P.

It follows from (2.11) that L(s) _ 1 - (r()., s) . p(s)/r(s) a.e. P. Hence the
lemma, since L < 1 in any case, and Q << P on X.
Lemmas 3 and 4 suggest that if Q obtains, the conditional level attained by an

optimal statistic is likely to be of the order p(s)/r(s). If the sample space (S, t) is
itself highly informative for discriminating between P and Q. p is likely to be
much larger than 1 when Q obtains; then p(s)/r(s) is much larger than l/r(s).
By temporarily putting W = the trivial field in Lemmas 3 and 4. it is seen that
the unconditional level attained by an optimal statistic on (S, X) is likely to be of
the order l/r(s). These heuristic considerations suggest that conditioning is harm-
ful, unless the sample space (S, ') is useless for discriminating between P and Q.
This suggestion is discussed more precisely in asymptotic terms in the following
sections.

It may be worthwhile to look at some of the details of the special case when 'W
is induced by a statistic and there exist regular conditional probabilities on X
given (6. Suppose then that y = U(s) is a measurable transformation of (S, X6)
into a space (Y. 9). Assume that P admits a regular conditional probability
measure on X6 given U(s) = y, that is, there exists a function PY(B) on X x Y
such that Py(') is a probability measure on X for each y and such that, for each
B in X. Py(B) is a version of P(BI U(s) = y). Let W = U'(9). Then, for any
statistic T. the level attained by T W may be defined as {PY(T(s) _ t)} = T(s), y = U(s)-
In particular, the level attained by rIc is

(2.12) L(s) = {PY(r(s) t)},r(s),y=u(s).
Now let
(2.13) ry (s) = r(s) f/r(s)dPy. 0 ry(s) . xo,
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and for each y in Y, let the measure Q,(*) be defined by QY(B) = IB ry(s) dP,
for B in X. It is readily seen that Qy is a regular conditional probability on X
given U(s) = y when Q obtains. Consequently. ry(s) is the conditional likelihood
ratio given U(s) = y. It is also readily seen that, as an alternative to formula
(2.12), we have

(2.14) L(s) = {{PY(ry(s) _ t)}t=ry(s)}y=U(s).
In subsequent sections, phrases such as "6 is induced by U"' or "' is induced

by the mapping: s -- U(s)" mean that W = U- 1() where 9 is determined by
the context as follows. If Y is a finite set, 2 is the field of all sets of Y; if Y is (or
may be taken to be) k dimensional Euclidean space, 2 is the class of Borel sets
of Y.

3. Limit theorems in the simplest case

In this section and the following ones we consider a space S of points s, a
a-field .4 of sets ofS. and two sequences {A: n = 1,2, } and {In: n = 1, 2.}
of a-fields such that

(3 .1) Wn C Q/&, n = 1, 2,

Let P and Q be probability measures on V1. We assume that P and Q are mutually
absolutely continuous on Vn. and let

(3.2) dQ = rn(s) dP on 4n. dQ = pn(s) dP on t6

where rn isA measurable, pn is (n measurable, and 0 < rn. pn < 00; n = 1. 2., .

Let

(3.3) K")'(8) = n1 log r,(s), K 2)(s) = n-1 log pn(s).
and let

(3.4) An(s) = Kn')(s) -K 2)(
Let

(3.5) A(s) = lim inf An(s), A(s) = lim sup An(8).
n-,c n X

THEOREM 1. The function A satisfies 0 . A(s) . zo a.e. Q.
PROOF. Choose £ > 0. Since the event A. < - e is. by (3.3) and (3.4). identi-

cal with the event rn < Pn exp {-ne}. we have by (3.2)

(3.6) Q(An < -n) = { rndP

. exp {-ne}f Pn dP

. exp {-n£} X Pn dP = exp {-ne}.
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Hence En Q(An < -E) < Xo. Hence A(s) _ -el a.e. Q. Since £ is arbitrary,
A(s) _ 0 a.e. Q. Q.E.D.

Let

(3.7) K(i)(s) = lim infKn')(s), K(i)(s) = lrnsup Kn" (s), i = 1, 2.
n-cInjo

COROLLARY 1. TheinequalitiesO < K(2)(s) . K(1)(s) < xo and0 < K(2)(s) <
K(1)(s) _ oo hold a.e. Q.

PROOF. In view of Theorem 1, we need only show that 0 . K(2)(s) a.e. Q.
To this end, for each n let t = the trivial field in Theorem 1. Then pn(S) 1,
KA2)() _ 0; hence K(1)(s) _ 0 a.e. Q, by (3.3) to (3.7) and Theorem 1. Since
{Jnj} is an arbitrary sequence, this last conclusion continues to hold when {n}
is replaced by the initially given {%n}, so K(2)(s) > 0 a.e. Q. Q.E.D.

It is pointed out at the outset of Section 7 below that K(i), K(i), i = 1, 2, are,
roughly speaking, generalizations of the Kullback-Leibler information numbers.
and that Corollary 1 is a generalization of a well-known inequality concerning
these numbers.
For each n let Tn be a real valued Rn measurable function, and let Ln be the

level attained by Tn|Wn. The following theorem is essentially an extension and
refinement of Theorem 1 of [2] and of the main theorems of [4], [14].
THEOREM 2. The inequalities lim inf {n- log Ln(8)} _ - A(s) and lim sup

n -, n -.

{n log Ln(s)} > -A(s) hold a.e. Q.
PROOF. Choose and fix 8 > 0. Then, for any constant b _ 0 and any n,

(3.8) Q(Ln < exp (-n[An + 3£]), b - £ < An < b + 8)
< Q(Ln < exp (-n[b + 28]), An < b + 8)

(3.9) = f{Ln < exp (-n[b + 28]), An < b + s} rn dP

(3.10) = f {Ln < exp (-n[b + 28]), An < b + e} exp (nA,)Pn dP

_ exp(n[b + 8]) j'{Ln < exp(-n[b + 2e]),A < b + E}pndP

. exp(n[b + e]) f {Ln < exp(-n[b + 28])}

(3.11) . exp (-nB).

Here (3.9) follows from (3.2), (3.10) from (3.3) and (3.4), and (3.11) from Lemma
2, as in (2.9).

Now let b1, b2, be an enumeration of the rational points of [0, oc), and
let

(3.12) An(i) = {S: Ln < exp {-n[An + 3£]}, b1 - 8 < An < bi + 8},
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(3.13) B(i) = lim sup An(i)
n oo

and
co

(3.14) C = U B(i).
i= 1

It follows from (3.8) to (3.11) with b = bi that I Q(An(i)) < oo; hence Q(B(i))=
0; hence Q(C) = 0. Let D. = S - C -{s: A(s) < 0}. Then Q(D.) = 1. We
shall show that, for every s in D£,

(3.15) lim inf {n1 log Ln(s)} > -A(s) -3
n-a

and

(3.16) lim sup {n- log Ln(s)} _ - A(s) - 3U.n-oo

This will establish the theorem, since s is arbitrary. Choose and fix an s in D£.
To establish (3.15) for the given s, we may suppose A < oo for otherwise

(3.15) holds trivially. Let v denote the left side of (3.15) and let j1 < j2 < ... be
a sequence of positive integers such that j;1 log Ljm -. v as m -. oo. Since
O . A < A < oo, there exists a subsequence k1 < k2 < ... of {jm} such that
Ak, -+ a limit A, say, where 0 _ A < oo. There exists a rational bi _ 0 such that
bi- s < A < bi + s; hence bi- s < Ak_ < bi + s for all sufficiently large m.
It now follows from (3.12) to (3.14) and the choice of s that Lkm_ exp
{-km(Akm + 3£)} for all sufficiently large m. Since {km} is a subsequence of {jm}
it now follows from the choice of {Wm} and {km} that

(3.17) v > lim (-Ak- 3) =-A - 3e _ -A - 3s.
m-0

SO (3.15) holds.
To establish (3.16) we may suppose that 0 . A < oco. There exists a sequence

i1 < j2 < *suchthatAj - A asm -+ oo. Hencethere existsa rational bi _0
such that bi - e < Ajm < bi + s for all sufficiently large m. Hence, by (3.12) to
(3.14) and the choice of s, Lji > exp {-jm[Aj_ + 3s] } for all sufficiently large
m. Since the left side of (3.16) is not less than lim supmO- j - 1 log Lm}, it now
follows from the present choice of {jm} that (3.16) holds. Q.E.D.
Now let Ln(s) be the level attained by rnl .. The following theorem is a partial

generalization and refinement of Theorem 2 of [2].

THEOREM 3. The equalities lim infn-x {n-' log L"(s)} = -A(s) and
lim SUPn_- {n-l log Ln(s)} = -4(s) hold a.e. Q.

PROOF. It follows from (3.3) and (3.4) by Lemma 4 that

(3.18) n-1 log L"(s) _ -An(S) for all n a.e. Q.
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It follows from (3.5) and (3.18) that lim inf, :,_ {n-' log L,} . -A and
lim sup,,-,,, {n-' log L,n} . -A a.e. Q. Theorem 3 now follows from Theorem 2
applied to {rI| 6}. Q.E.D.
We shall say that the sequence {Tn %} has exact slope c(.s) when Q obtains

(see [3]) if n1 log La(s) - -21-c(s) as n -- oc a.e. Q. Let A(s) be an dmeasur-
able function, 0 . A . X As an immediate consequence ofrheorems 2 ancl 3
we have.

COROLLARY 2. The sequence {rnlj7n} has exact slope 2A(s) when Q obtains
if and only if lim, x A, (s) = A(s) a.e. Q. In the latter case. if c(s) is the exact
slope of any sequence {T,|jW} then c(s) < 2A(s ) a.e. Q.

Corollary 2 is perhaps the main conclusion of this p)aper. 'l'he elaborations
given in Theorems 2 and 3 are, however, useful onl occasion.
Suppose that limp -. An(s) = A(s) and A(,s) < oo a.e. Q. Then, by Corollary 2,

(3.19) La(s) = exp {-nA (s) + o(n)} as n - cc a.e. Q.

The estimate exp {-nA,} is 4n measurable, that is, based on the same data as
L but is often much easier to compute. The formulation (3.19) makes sense in
the general case, but (3.19) is not valid unless the conditions stated are satisfied.
To consider an example, suppose that s = (x1, x2, '-) where the x, are inde-
pendent real valued random variables; under P each x,, is N(0, 1); under Q. x, is
N(y,. 1) where p,n = exp {n2}. For each n let Y4, be the field induced by the
mapping: s -- x,t and let %, be the trivial field. Then n-' log La(s) + An(s) -
- oc a.e. Q. The verification is omitted.
Suppose for the moment that Ki')(s) - K(i)(s) as n -+ oo a.e. Q where

O . K(i)(s) < oo, i = 1, 2. It then follows from Corollary 2 that the uncon-
ditionalexact slope of {r, } is 2K(1)(s), that the exact slope of {rn |t,} is2[K(1)(s) -
K(2)(s)], and that these are the maximum available unconditional and conditional
slopes, respectively. Since K(2)(s) _ 0, it is plain that there is certainly no advan-
tage in conditioning and that there is no disadvantage if and only if K(2)(s) = 0
a.e. Q. Now, 2K(2)(s) is the maximum available unconditional exact slope when
{4B is replaced by {%,}, that is, 2K(2) is the exact slope of {pn}. It is thus seen
that conditioning is asymptotically harmless if and only if the conditioning
u-field or statistic is asymptotically useless for testing P against Q. However, as is
pointed out in the following section, if we are testing a composite null hypothesis
there may exist an asymptotically harmless conditioning which has the following
feature: the conditional distribution of a contemplated test statistic does not
depend on which null P obtains. This last feature is very convenient, for practical
as well as theoretical purposes.

Suppose that, for given {.n} and {116}, the assumptions of the preceding para-
graph are satisfied and that 0 < K"1)(s) a.e. Q. Since the exact slope of the
optimal -4n measurable sequence {r,} is 2K(1), and that of the optimal %n measur-
able sequence {p, } is 2K(2), and since the ratio of slopes is a measure ofasymptotic
efficiency (see [3]), it is seen that the asymptotic efficiency of (S, %6n) relative to
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(S, M) in testing P against Q is K(2) (s)/K(') (s). As may be seen from examples in
Sections 5 to 7 the K(i)(s) are usually, but not always, independent of s.

In concluding this section we state a partial analogue of Corollary 2 in terms
of the size of the optimal test of P which has a given power against Q. (See [3],
Section 5, for a description of the main relation between exact slopes and power.)
Let /B be given, 0 < ,B < 1, and for each n let xcn = xn(/3) be the size of the (pos-
sibly randomized) test of P based on rn which has power 1 -,B against Q.
THEOREM 4. Suppose that Kl')(8) -K") as n - oo a.e. Q, where K(1) is a

constant, 0 < K() < oo. Then,for each /3, n-1 log cn (/3) -. K") as n x oc.
This theorem is a generalization of a lemma of Stein. The proof is essentially

the same as the proof of Stein's lemma on pp. 316-317 of [3] and so is omitted.
It should be noted that, under the hypothesis of the theorem. the exact slope of
{r,} against Q is 2K('), by Corollary 2. It should also be noted that (the dual of)
Theorem 4 can be used to obtain the Hodges-Lehmann index [11] of likelihood
ratio tests on an arbitrary sequence of sample spaces. The theorem is valid
provided that K1')(s) - K(1) in Q probability.

4. The general case

In this section we consider the framework S = {s}, a?, n{}, and {%n} of the
preceding section, and suppose that we are given two disjoint sets go and 9, of
probability measures on a. The null hypothesis is that some P in .i0 obtains;
the alternative is that some Q in 9, obtains.
We assume that, for given P E _,V and Q E P1, P and Q are mutually absolutely

continuous on -n and we write rn(s), pn(s), and Ki')(s) of the preceding section
as rn(s: Q, P), p.(s: Q, P), and Ki')(s: Q, P) to indicate their dependence on P
and Q, i = 1, 2; n = 1, 2,
As a matter of economy, and without much loss of generality, we assume

throughout this section that the following condition is satisfied: Given P E 90
and Q Ec Y, there, exists a constant K")(Q, P), 0 _ K(1) < c. such that

(4.1) lim Kn1)(s: Q, P) = K")(Q. P) a.e. Q.
n-*o

Let

(4.2) J(P)(Q) = inf {K(1)(Q, P): P e °}. 0 . J() < c.

Now let Tn be a real valued A,1 measurable statistic. and let Ln(s:P) be the
level attained by Tn|W, in testing a given P. Let

(4.3) Ln*(8) = sup {Ln(8;P): P AgO}

Then L* is, by definition, the level attained by Tnl n in testing that some P in
go obtains. As noted on p. 29 of [4], it is not necessary to assume that L* is 4d
measurable or even that there exists an 4 measurable version thereof.
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COROLLARY 3. For each Q in 1,V

(4.4) lim inf {n-' log L*(s)} _ _J(1 )(Q) a.e. Q.
n -.

This corollary is a straightforward consequence of Theorem 2, Corollary 1,
(4.1), (4.2), and (4.3). In view of Corollary 3, we shall say that, {TnIn} is an
asymptotically optimal sequence (for testing go against Y1) if, for each Q in bA1,
it has exact slope 2J(')(Q) against Q; more precisely, if there exists a version of
{L*} such that n-1 log Ln*(s) -* -J(l)(Q) as n -+ oo a.e. Q, for each Q.

Let us say that TnI n has an exact null distribution if there exists Fn(t. s) such
that Fn is a left continuous distribution function for each s and such that, for
each P in go and for each t, Fn(t, s) is a version of P(T (s) < tI n). In this case
1 -Fn(Tn(s), s) is a version of Ln*(s), and the maximization in (4.3) is avoided;
this maximization is often inconvenient or impractical. The following Corollary
4 shows in part that a conditioning which produces an exact null distribution for
T. might also have the theoretical advantage of reducing the testing problem to
the case considered in Section 3 and thereby producing an optimal testing
sequence I Tn 6n }

COROLLARY 4. Suppose that T. 7n has an exact null distribution, n = 1, 2,
Suppose also that for each Q E Y, there exists a PQ in g% such that (a) J(l)(Q) =
K")(Q, PQ), (b) liMn xK2) (8: Q, PQ) = O, a.e. Q, and (c)for each n, r (s: Q, PQ)
is a strictly increasingfunction of Tn(s). Then {T, W6,,} is an asymptotically optimal
sequence.

PROOF. For each n, let F, be a function such that the conditions stated in the
paragraph preceding Corollary 4 are satisfied, and let L'*(s) = 1 - Fn(Tn(s). s).
Choose and fix Q E 91. By assumption there exists PQ E go such that the stated
conditions (a) to (c) are satisfied. It follows from the present definition of L*n
that, for each n, Ln*(s) is a version of L. (s;PQ). It follows from condition (c) that,
with rn = rn(s: Q, PQ), and with L,(s; PQ) and L,(s: PQ) the levels attained by

rj16n and Tn16n, respectively, in testing PQ. we have Ln(s;PQ) = Ln(s; PQ), a.e.
PQ. Hence Ln*(s) = Ln(8: PQ) a.e. Q for all n. It now follows from Corollary 2
with P = PQ, (4.1), and condition (b) that n1 log Ln*(s) -K")'(Q, PQ)
a.e. Q. It follows hence by condition (a) that {TnI'n} has exact slope 2JP1)(Q)
against Q. Q.E.D.

Although Corollary 4 is phrased in terms of asymptotic optimality. it can
sometimes be used to find the exact slope of a given sequence {Tn n} against a
given Q by defining {n} suitably. To consider a special case, suppose we are
given a measurable space (S, a?), a null set go of probability measures on SI, and
a single nonnull probability measure Q on sa. For each n let Tn be an a? measur-
able function on S into the real line such that P(Tn < t) = Fn(t) for all P in 3%
and all real t. For each n let -4, be the a-field induced by Tn. Suppose that, with
the present definition of Mn, (4.1) holds for each P in go, with some K"). Let J()
be defined by (4.2). Suppose there exists PQ in go such that conditions (a) and
(c) of Corollary 4 are satisfied. Since condition (b) is automatically satisfied
when Wn is the trivial field for each n. we conclude that n 1 log [1 - Fn(Tn (s))]
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-J(l)(Q) as n - oo a.e. Q, that is, with the present definition of J(), {T,} has
exact slope 2JP1) against Q.
The mechanism described in Corollary 4 is rather special and is likely to be

available only in rather special cases. Corollary 5 below describes a related but
different method of constructing optimal sequences. For simplicity, we consider
only unconditional test procedures.
CONDITION 1. For each Q in 9Y,

(4.5) lim inf Tn(s) _ P()(Q) a.e. Q.
CONDITIoN 2. Gi? en E and r. 0 < e < 1 and 0 < r < 1. for each n there

exists a positive constant k,(e, r) .such that

(4.6) P(Tn(s) _ t) _ exp {-nzt} (1 E)n kn(E z)
for all t > 0 and all P in go, and such that

(4.7) n- log kn(8, )-0 as n x.

COROLLARY 5. Suppose that {Tn} satisfies Conditions 1 and 2. Then (i) {Tn}
is an asymptotically optimal sequence, (ii) for each Q in Y1.

(4.8) lim Tn(s) = J(l)(Q) a.e. Q.
n-.

and (iii) with Gn(t) = inf {P(TM(s) < t): P e '0},

(4.9) lim n1 log [1 - Gn(t)] = -t
n-.

for each t E int {J°M(Q): Q E J'}
PROOF. Choose £ and T, 0 < E < 1 and 0 < T < 1. By replacing kn with

max {kn, 1} we may suppose that (4.6) holds for all real t. all P in .a%. and all n,
and that (4.7) is still satisfied. Hence, by the definition of Gn.

(4.10) L*(8) = 1 - Gn(Tn(s)) . (1 + E)nkn(e. r) exp) {- nZTn(s)}
for all n and s. It follows from (4.5), (4.7), and (4.10) that, for any Q in 2)1.

(4.11) lim sup n-1 log L1*(8) . TJ(')(Q) + log (1 + E) a.e. Q,
n-00

and that

(4.12) lim inf n-1 log L*(s) . log (1 + £) - r timn sup Tn( s).
n - n -x

Since E. r and Q are arbitrary., it follows from (4.11). (4.12) and( Corollary '3 that
parts (i) and (ii) of Corollary 5 are valid.

Part (iii) follows from parts (i) and (ii) as a special case of the following pro-
position. Suppose that, for each Q in Y1, {Tn} has exact slope c(Q) against Q.
and that Ta(s) -+ b(Q) as n - oo a.e. Q, where b and c are (possibly infinite)
constants. Let Gn be defined as in part (iii) of Corollary 5. Then. for any finite t
such that
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f (t) = sup {Ic(Q): Q E YV, b(Q) < t}
(4.13) g(t) = inf{c(Q): Q Ec 9, b(Q) > t}

are well defined, we have

(4.14) -g(t) . lim inf {n`' log [1 - Gn(t)]}
n-o

< lim sup {n1 log [1 - Gn(t)]} < -f (t).
n-x

This proposition is a straightforward consequence of the monotonicity of Gn
for each n; we omit the details.

It seems that Conditions 1 and 2 are satisfied in a great variety of examples by
the likelihood ratio statistic

(4.15) Tn(s) = inf sup {Kn1)(8: Q, P)}
PEC0O QE.g

of Neyman and Pearson. The underlying reason is the following. Conditions 1
and 2 are always satisfied by {Tn} if o u 91 is afinite set. In many cases, although
4o u Y1 is infinite, compactification devices which reduce the problem to the

finite case are applicable, so that Conditions 1 and 2 do hold. The proof in [2]
of Theorem 2 consists in verifying that, in the context of [2], Conditions 1 and 2
are satisfied by {Tn} provided a suitable compactification of go u 31 exists and
certain other conditions are satisfied. In fact, Corollary 5 is a statement in general
terms of the essential elements of the proof just cited. We think this generalized
statement, however trivial or even tautological it may seem, is useful; see
Sections 5 and 6.
We conclude this section with a sort of converse to Corollary 4.
COROLLARY 6. Suppose that there exists an asymptotically optimal sequence

{TnI6@n}. Then Q E 1, PE o, K(1)(Q, P) = J>)(Q) < cx imply that Kn72(s: Q, P)
0 as n -+ oo, a.e. Q.
PROOF. Let {TnI6n} be optimal, and for each n let Ln*(s) be a version of the

level attained by Tn |,tsuch that n 1 log Ln*(s) -J(1)(Q) a.e. Q, foreach Q E 1.
Choose and fix Q and P such that the conditions stated are satisfied. For each n
let Ln(s) be the level attained by Tn %7 in testing the simple hypothesis P. Then
Lt*(s) _ Ln(8) a.e. P; hence L*(8) _ Ln(s) a.e. Q, for all n. Consequently,
(4.16) -K(l)(Q, P) -J(')(Q)

lirm sup {n 1 log Ln(8)}
n-.

> -lim inf{Knl)(8: Q, P) - K.2)(s: Q, P)}
n x

= -K('1)(s: Q, P) + K(2)(s: Q, P) a.e. Q

by Theorem 2 and (4.1). Hence K(2)(s: Q, P) . 0 a.e. Q, so K(2)(s: Q, P) = 0
a.e. Q. Q.E.D.
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5. Examples concerning exchangeable sequences

Let X be a finite set, say X = {a1,, , ak}, k > 2, and let / be the field of all
subsets of X. Let S = X(') be the set of all sequences s = (x1, x2, ) with each
x,, E X, and let sl = For each n, let -, be the field induced by the mapping:
s -+ (X,, . Xn).

Let V be the set of all points v = (v1, , Vk) with vi > 0 and 14 vi = 1. For
any v in V, let M(- v) be the probability measure on s? such that M(s: xl =
ail, * , xn = ai, v) = vil vin for all n and ai,, , ai, in X. Let 0 be a prob-
ability measure on V and let Po be defined by Pot(A) = Jv M(A Iv) dO forA e jd.
EXAMPLE 5.1. Let ir = (it1, ..., Ir,k) be a given point in V with 7i > 0 for

i= 1, -, k, let 00 be the probability measure degenerate at it, and let ® be the
set of all measures 0 such that Po {s: xl = ai} = 7i for i = 1, , k. Let P

consist of the one measure Poo, and let I= {PO: 0 E (} - {P00}. In other
words, we wish to test independence against exchangeability, the common
marginal distribution of the x,, being known.

In the following, for v = (v1, -, Vk) and u = (U 1, k.U) in V let
k

(5.1) (v, u) = v log (vi/ui),
i= 1

with 0/0 = 1 (say) and 0 logO = 0. Then 0 _ ¢ . oo. and 4 = 0 if and only
if v = U.

For each s = (x 1, x2, .. ) let fi(n) (s) denote the number ofxj = ai for I _ j n,
i = 1, , k; n = 1, 2, ,and let 4(-)( (()(s)/n kf,)(8)/n). Let z(s) =
lim"_ ,(n)() if the limit exists and let z(s) = (l/k . 1/k) otherwise. Then z
is an a measurable function on S into V. It is known that, for each 0,

(5.2) lim q(')(s) = z(s) a.e. P,
n--o

and that Po(z(s) E B) = 0 (B) for all Borel sets B c( V. Now let

(5.3) Tn(s) = 4(()(s), it).

We shall show that {Tn} is an optimal sequence and that its exact slope is

20(z(s), 7t). It is interesting to note that here the optimal slope is a random vari-
able, and that this slope depends on which alternative P0 obtains only to the
extent that the probability distribution of z is then 0.

It follows from the easy part of Sanov's theorem (see [12]) that, for t > 0,

(5.4) Ppo((Tn _ t) = P,00(¢(n)(s),i7), _ t) . nk exp {n-n(t)},
where oc(t) = inf {1(v, it): v E V, 4(v, 7t) _ t} > t; thus (see Condition 2 of
Corollary 5), 1 - Gn(t) < nk exp {-nt}. Now choose and fix a nonnull 0. A
straightforward calculation shows that

(5.5) rn(s: PO, P0O) = exp {nTn(s)} J' exp {-n>(p(n)(s), v)} dO.
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Since k _ 0. it follows from (3.3) and (5.5) that

(5.6) K'l)(s: P6,P6O) _ T.(s)
for all s and n. Since (v. 7t) is continuous in v, it follows from (5.2) and (5.3)
that

(5.7) rim Ta(s) = ((z(s), 7t) a. e. P,.
n-.o

It follows from the estimate of the null distribution of Tn obtained at the outset
of this paragraph that n- 1 log Ln(s) < -T (s) + kn' log n for all n and s. It
follows hence from (5.6) and (5.7) that

(5.8) lim inf {n log L (s)} _ - O(z(s), 7) < -K (3s: Po, Poo) a.e. Po

and

(5.9) lim sup {n- 1 log Ln(s)} _ -4(z(s), 7t) a.e. PO.
n-.

It follows from Theorem 2 with P = Poo. Q = Po, and W,7 the trivial field that

(5.10) lim inf {n 1 log Ln(s)} _ -KP(,):P ooP60) a.e. P6

and

(5.11) lim sup {n-1 log Ln(s)} _ -K(1)(s: Po, Po0) a.e. PO.
n -x

It follows from (5.8) to (5.11) first that

(5.12) lim Kn,1)(s: Po, P60) = 4(z(s), 7t) a.e. Po.
no

and next that

(5.13) lim {n1 log L (s)} = -4(z(s), 7t) a.e. PO.
n -_

Since 0 is arbitrary, it is plain from (5.13) that {Tn} has slope 24) and from (5.12)
and Corollary 2 with %n trivial that {T,} is optimal.
The preceding argument, which is an elaboration of the argument of Corollary

5. could be greatly simplified if we could deduce (5.12) directly from (5.5) and
(5.7), but this direct deduction seems difficult for arbitrary 0.

It may be noted that the Tn discussed above is not quite the statistic Tn de-
fined by (4.15). It can be shown that in the present case {Tn} is also an optimal
sequence. but we are unable to compute Tn explicitly.
EXAMPLE 5.2. In the same framework as that of the preceding example, let

00 be the set of all 00 which are degenerate at some point in the interior of V.
and let E be the set of all measures on V such that Po{s: x1 = ai} > 0 for
i = 1. , k. Let Y% = {PO0: 00 E 00} and JI, = {Po: 0 O} - J0. In other
words, we wish to test independence versus exchangeability, the common
marginal distribution of the x,, being unknown.
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For each n let Tn be any -4n measurable statistic, let (n be any field ' -n and
let L* be the level attained by Tn |n, n = 1, 2, . We shall show that, for each
nonnull Po0
(5.14) lim n1 log L* (s) = 0 a.e. Po.

n -o

Thus there exists no test sequence for which the level attained goes to zero
exponentially fast. It would be interesting to know whether there exists a sequence
for which limn_<O Ln*(s) = 0 a.e. Po, for all nonnull P0, and if so. to determine
the fastest possible rate of convergence.
To establish (5.14), let {v(1), v } be a countable everywhere dense subset

of V with each v(j) in the interior of V. Let O be the probability measure de-
generate at v(i). Then {01, 02, * * *} C()00. For each n andj, let L (s; Po,) be the
level attained by TnlWn in testing Poj. Then, by (4.3), L*(s) _ Ln(s;P0j) for all
s, n, andj. Now choose and fix a nonnull Po. Since the proof of (5.12) involves no
conditions on 0 (except perhaps the mutual absolute continuity of PO and Poo on
A for n = 1, 2, ), (5.12) holds with 00 = OQ and 7t = v(j). It now follows
from Theorem 2 with P = P0., Q = Po, and trivial 16n that

(5.15) lim inf {n' log Ln(8; Poj)} _ -4(z(s), v(j)) a.e. Po,
n-.o

for each j. Hence lim infn_- {n-1 log L*(s)} _ -43(z(s), v(j)) for all j a.e. P0.
Since 0 = (v, v) = inf {4(v, v(j)): j = 1, 2,* } for each v E V, we conclude
that lim inf,_-. n-1 log L*(s) > 0 a.e. Po. Since L* < 1. it follows that (5.14)
holds.

6. Examples concerning Markov chains

Let X = {a,, * , ak} be a finite set, and let S = X(t) and a?/ be defined as in
the preceding section. It is assumed now that s = (x1, x2, ) is a Markov
chain. Let -qn be the field induced by the mapping: s (xl,, Xn+ ,
n = 1, 2. * - In order to effect certain simplifications we shall assume that with
probability one the sequence s starts off with x1 = a given point of X, say a1. In
effect, then, we shall be considering conditional tests given x1. but this con-
ditioning will not require explicit attention.
EXAMPLE 6.1. Let 0 = {0 j,} denote a k x k matrix with O ,j > 0 and

Y'=,ljOj = 1 for i = 1, , k. Let Po be the measure on a? determined by
Po{s:x1 = a1} = land

(6.1) PO{S: X2 = ai2 Xn+1 =ai + I 001, ..oi - in +

for all n and all ai2, , ai+, in X. Let 0 be a given set of transition prob-
ability matrices 0; let 00 be a given subset of 0: let 3o = {PO: 0 E W°}, and
letYP1 = {P0: 0 EO'} where E' = 0- 00.
For each s = (x1, x2, ) and n, let g inj(s) denote the number of indices m

with 1 . m _ n such that xm = ai and xm+ 1 = aj, for i, j = 1, , k. The
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matrix gIn,(s) = {gin}(s,)} is called the transition count matrix. Let fg(n)(s) =
Xkj 1 gN (S) be the total frequency of a, in {x1, , xn}. Then 1

(f() (s) = n.
Define y(i)(s) - g iffIli (s) > 0 and y(i)(s) = 1/k (say) otherwise, for
ij = 1, , k. Let " j(s) - {y(i)(s)}. The matrix 7(n) is an estimate of 0; in fact,
it is a maximum likelihood estimate based on (x1 . . xn + 1) if 0 is entirely un-
known. Let 4(n)(s) =(fn(1(s), * fn)(s))/n. It is known that, for each 0.

(6.2) lim y(n)(s) = 0 a.e. P.
n Bx

and that

(6.3) lim 4(n)(8) = 7r(0) a.e. P,

where 7r(0) = (7t1(0), 7tk(0)) is the stationary distribution over X corres-
ponding toO, that is, r(0) is the unique solution ofXi= 1 7i0i,j = 7rj,j = 1, .k,
with 7ri > 0, 1iri = 1.

In the following let y7(n)(s) = (yin) (s), ,.. ,y(s)) and Oi = (0,,I 0i,k) de-
note the ith rows of y (n)(s) and 0, respectively, and let

k

(6.4) U n(s; 0) = E n)(s) 0(y(n)(s), oi),
i= 1

where 4) is given by (5.1), and 4n) = fi(n)/n is the ith component of /(n). Then Un
is a sort of squared distance between 7(n) and 0. It is readily seen that, for any 0
and 00,

(6.5) Kn )(s: P, Po.) = Un(8; 00) - Un(8;0).
It follows from (6.2). (6.3), (6.4), and (6.5) that (4.1) holds, with

k

(6.6) K(')(PO, Poo) = E j(0)0(0j, Oi)
i= 1

Hence

(6.7) J(")(PO) = inf{ E ir(0)0(0j, 09): 00 C 0}
Now let

(6.8) Tn(s) = inf {U,,(s: 00): 00 e00},
with Un defined by (6.4). We shall show, by means of Corollary 5, that {T.} is
asymptotically optimal.
To show that Condition 1 of Corollary 5 is satisfied, choose and fix Po. Let s

be a point such that y(')(8) -+ 0 and (n) (8) (7 I(0), **, xt(0))- In view of (6.2)
and (6.3) it will suffice to show that a(s) lim infnO,, Tn(s) > J( )(P0) for this
s. We may suppose that oa < oo. For each n, let 3(n) be a point in 00 such that
Tn _ Un(s; b(n)) n-1; such a b(n) exists, by (6.8). There exists a sequence
m1 < M2 < *, of positive integers mr and a probability matrix 3 such that
T., -. a and 3(mr) -+ 3 as r -+ oo. Let n be restricted to {*r}. Then
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k

(6.9) a = rim Tn_> lim inf{U"(s;8 (n))} _ E Oir(0)rninf (ty(), 5n))
fl~~~cf.~y 7i ()li n

n boo n-0bo =1 n-,o

by (6.4). Since 7i(0) > 0 and 0j'j > 0 for all i and j, since a < oo, and since
7(n) -0 and b(n) -, Xit follows first that 6j3j > 0 for all i and j and next that
a _ 7i1(0)0(0i, bi). This last lower bound cannot be less than J(P)(P0) de-
fined by (6.6), (6.7) since 3 is in the closure of W0. Thus o > J(l)(PO).

In order to show that Condition 2 of Corollary 5 also holds, let Mn be the set
of all k x k matrices m = {mi j} with mij = 0, 1, 2, * * * and V24=IVI= I mi,j = n. It
is readily seen that for anym E Mn and any 0, Pfl(g(n)(8) = m) = v(m)

I
= 1[0i,]mi,

where v(m) is the number of distinct sequences (x1, * * *, x,+1), possibly zero,
with x1 = a1 and transition count g(n) = m. Now, Un(S; 0) defined by (6.4)
depends on s only through g(n)(8), say Un(s; 0) = U(g(n)(8); 0), and y(n)(s) is also
a function of g(n)(8), say y(n)(8) = G(g(n)(s)). An easy calculation shows that

(6.10) p0(g(n)(s) = m) = exp {-nU(m; 0)} PG(m)(g(n(s) - m)
. exp {-nU(m; 0)}.

Now choose t _ Oand00,E)', and letA = A (n; t; 00) be the set {m: mE Mn,
U(m, 00) _ t}. Then

(6.11) P0O(Un(8;00) > = Poo(U(g(n)(8); 00) > t)
= Epo (g(n) = m) < E exp {-nU(m; 0o)}

A A
< exp {-nt} l . exp {-nt} Y1

A Mn
< nk2 exp {-nt}.

It now follows from (6.8) that P0o (Tn _ t) _ nk2 exp {-nt}. Since 00 is arbitrary,
i-G(t) _ n 2 exp {-nt} for all n and t, and Condition 2 is satisfied.
It is shown in [8] that if 00 consists of a single point 00 then Tn is asymptotic-

ally optimal even in the sense of [12].
The sequence {Tn} considered above does not depend on what the given set

0 is. We now show that, with Tn(s; 00) defined by the right side of (6.8), and
with
(6.12) Tn(s) = Tn(s; 00) - Tn(s; E)),

{iTn} is also asymptotically optimal. For any 0, 0 < Tn(s; 0) _ Un(s; 0), and
Un(s; 0) -O0 a.e. Po. Hence, by (6.8) and (6.12), Tn(s) - Tn(s) - 0 a.e. Po.
Secondly, Tn(s) _ Tn(s) for all n and s, by (6.4) and (6.12). Since {Tn} satisfies
Conditions 1 and 2 of Corollary 5, we see that {Tn } also satisfies these conditions.
In general, that is, for arbitrary 00 and 01 = 0 - 00, Tn and Tn are quite
different. Presumably fn is not only asymptotically optimal but actually better
than Tn (see [2], pp. 16-17) for testing 00 against 01 in cases where Tn # Tn.
EXAMPLE 6.2. Suppose now that 0 is the set of all 0 with positive elements,

and that 00 is the set of all 0 in 0 with identical rows. In other words, we wish
to test independence against stationary Markovian dependence, the actual distri-
bution in either case being unspecified.
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In the present case. Tn(8; 0) 0O, so the statistics Ta(s) and Ta(s) defined by
(6.8) and (6.12) are identical. In order to express {T,} and its slope in explicit
form we require the following easily verified proposition. Let v = (v1, , Vk)
be a fixed point in V (that is, vi > 0, Yik= I Vi = 1); let 01, 0k be fixed points
in V, say Oi = (0i,1--. - oi,,); and let u be a variable point in V. Then, with the
convention that 0 - = 0, I vi4(01, u) is minimized by u = (k=1 v1 1,
IVA1v,k). Nowforeach n leth0)(s) = the number ofxj = ai for 2 j < n +1,

and let l(n)() = n- 1(h(n)(s), , hn)(s)), that is, ?1(n) is the vector of relative fre-
quency counts in {X2, ...* X +I }. It follows from the stated proposition that

k

(6.13) Ta(s)
y ti(n)(8)j,(in)(8) q"')(s)).

It also follows that
k

(6.14) J(l)(Po)= E 7i(0)0(0i (0)).
i= 1

According to Example 6.1, {T,n} is asymptotically optimal and has exact slope
2J(1).
Now for n _ 2 let W(n)(s) = (W(¶n)(s), W*, )Wv(s)) be the vector of frequency

counts in {X2. -- -,Xn} and let 7n be the field induced by the mapping: s
(xI; W(n)(s); xn+ ). It is known (see [7]) that the conditional distribution of
(X1, , Xn+ 1) given %n is the same for every 0 in 00. In particular, Ti,,In has
an exact null distribution function, say Fn(t, s). We proceed to show, essentially
by an extension of Corollary 5 to conditional tests, that {TjI%,} is also an
optimal sequence. It is plain from (6.13) and (6.14) that Ta(s) - J(l)(PO) a.e. Po,
for every 0. We shall show that 1 - Fn(t, s) _ exp {-nt}jf(s) for all n, t, and s,
where n- 1 log fn(s) -+ 0 a.e. Po, for each 0. It will then follow from Corollary 3,
as desired, that with L* (s) = 1 - Pn(Tn(s), s), n1 log L* (s) - PJ()(PO) a.e.
P0 for every nonnull 0.

Nonnull sets in %n are unions of sets of the form

(6.15) {s:x1 = al, W(')(s) = b, Xn+1 = aj} =CCn(b;aj)
say, where aj is a point of X and b is (b1, * , bk) with each bi a nonnegative
integer and I bi = n - 1. For t > 0 let B (t) = {s: Ta(8) _ t}. Let 00 be a
point in 00. Then 1 -PFn(t. s) equals Poo(Bn (t) Cn(b, aj)) evaluated at b = W(')(8)
and aj =Xn + I. Now, Poo (Bn Cn ) _ Poo (Bn)/P 0 (Cn). We have seen in Example
6.1 that Poo(Bn) _ nk exp {-nt}. If 00 has (7X1, * * , 7k) as each row, then

(6.16) P0o(C (b; aj)) = i{1(7;)](n - 1)! = 7r1jifn(b; 00),

say. Let3(0O) = min{7r ,lCk}. Then3 > 0,and Poo(Cn(b; aj)) > b(00)iNIA(b;00)
for allj. Since 00 is arbitrary, we see that 1 - FP(t, s) _ exp { -nt}1f(s), where

(6.17) f (8) = nk2 inf{[6(00) jn(W(n)(8); 00)]-1: 00 e 90}
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Suppose now that Pn obtains. Since W (ns() = f (ns) (1.0, * - . 0), it fol-
lows from (6.3) that n- 1 W (n) s) -+ 7r(0) a.e. PO. Let 0* be the point in 00 which
has 7(0) for each row. It follows from Stirling's formula that n-' log

Qn(W(n)(S). 0*) O 0 a.e. PO. as n o . Sincefn(s) _ 1, and since 0* is a point in
O°, it follows from (6.17) that n1 log fn(s) - 0 a.e. PO.
EXAMPLE 6.3. Let 00 be the same set as in the preceding example, let 0 be

a given transition probability matrix, 0 0 00. and suppose that we wish to test
00 against 0. Then Examples 6.1 and 6.2 already provide three different
asymptotically optimal test sequences. Another optimal sequence for the present
case is {Tn* I nl}, where W'n is the field considered above, and

k

(6.18) T() = E 4(n)(s)[y(y,)(s), 7r(0)) - 4(y(n)(s) 0k)].

That {Tn*In} has slope 2J(1)(PO) against 0 may be seen from Corollary 4,
as follows. Since Tn* is Mn measurable, Tn* 1%7n has an exact null distribution. Let
0* be the matrix with 7c(0) as each row. Then K(')(PO, PO.) = J(l)(PO). and it
follows from (6.4), (6.5), and (6.18) that Tn*(8) _ n- 1 log rn s: PO, PO-). It remains
therefore to verify that condition (b) of Corollary 4 is satisfied with Q = PO and
PQ = PO*. This verification can be made by a direct calculation, but is immedi-
ately available from Corollary 6 since {TnI,n} is an optimal sequence.

7. Examples concerning independent and identically distributed observations

In this section X is a Borel set of a Euclidean space of points x, . is the field
of Borel sets of X, S = X(r) is the space of points s = (xl. x2 ), and
sl = X( ). For each n. -nis the a-field induced by the mapping: s- (x, X.).
The set 0) is an index set of points 0, and 00 is a subset of 0. For each 0 in 0,
PO is a probability measure on XI, and PO = PO%). The null set of measures is
o= {PO: 0 E 00}; the nonnull set is Y1 = {PO: 0 E 01} - Yo. It is assumed

that, for any 0 and 00 in 0, po and poo are mutually absolutely continuous on X.
Consequently, PO and Po. are mutually absolutely continuous on 4n for each n,
and (4.1) is satisfied with

(7.1) K("l(Po, Poo) = f log (dpo/dpo.) dpo.

In accordance with the notation of [2], [3] we shall write the integral in (7.1)
as K(0, 00), and write J(l)(PO) defined by (4.2) as J(O).

Let y(x) be a Borel measurable transformation of X into a Euclidean space Y
and for each n let W,nbe the a-field induced by: s -+ (y(x1), *.. y(x.)). It is then
readily seen that Kn2)(8: PO, POO) - K*(0, 00) a.e. PO, where

(7.2) K* = J'log (dpoy-l/dp0oy-l) dpoy-.
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With the present choice of W, Corollary 1 reduces to the statement that
0 . K*(0, 00) _ K(0, 00) _ cc. This choice of W7n is not used elsewhere in this
section.

In the following examples we give the exact slopes and related large deviation
probability estimates for various likelihood ratio statistics. Most of these results
have been obtained previously by other methods; our main object in recon-
sidering these examples here is to point out that the first part of Corollary 2
offers a simple method for all such examples. This method does not require ex-
plicit estimation of large deviation probabilities in the null case; indeed the
estimates referred to can be obtained. if needed. after the exact slope is found.
EXAMPLE 7.1. Suppose X is the real line and po is a nondegenerate prob-

ability measure on X. Suppose that the moment generating function 4(0) =
.x exp {Ox} dpo is finite for 0 0E = [0, 6) where 0 < c_ oo. For each 0 inO
let po be defined by dp, = [4 (0)] - 1 exp {0x} dpo and let 00 consist of the single
point 00 = 0. For 0 < 0 < 6 let b(0) = E6(x). Then -xe < b(0) < oo, and
K(0. 00) = Ob(0) - log O(0) = J(0). For each n, let Ta(s) = (x, + ±+ x)/n.
Consider a particular 0 > 0. Then Ta(s) is equivalent to rn(3: PO, Poo). Since
(4.1) holds with K(1) = J. it follows from Corollary 2 that {Tn} has exact slope
2J(O) when 0 obtains.
We observe next that Ta(s) - b(0) a.e. PO. Since b and J are continuous and

strictly increasing over (0. 6) it follows that for given t E {b(0): 0 < 0 < 6}
there exists a unique 0, such that b (0,) = t. andf and g of (4.13) are both equal to
J(0,) = ,t -log ¢P(0,). It follows hence from the conclusion of the preceding
paragraph that. for each t E {b(0): 0 < 0 < 6},

(7.3) n log P0(x, + + x,, . nt) -J(0,)
as n -- oo. It is thus seen that Chernoffs theorem [9] is deducible from Corollary
2 and the law of large numbers. A different proof. based on the central limit
theorem, is given in [5].
EXAMPLE 7.2. Let x = (y, z) where y and z are zero-one variables. Each

possible value of x has positive probability but the distribution ofx is otherwise
entirely unknown. The null hypothesis is that y and z are independent. For each
n let Tn be the likelihood ratio statistic (4.15). It follows from Theorem 2 of [2]
that {Tn} is optimal. Write x,n = (yn, zn). and let 6n be the field induced by
Un(s) = (7=r,yi=Y. zi). Then {TnI1%7n} is also optimal. The level attained by
TnI%n equals the level attained by Tn|@n, where Tn = ,yi zi -MY ,(s) I and
Mn is a complicated function of Un and E' yizi

n n

We omit the verification.
EXAMPLE 7.3. Suppose X is the k dimensional Euclidean space of points

x = (yi,n' ., Yk), and that 0 is the space of all points 0 = (u., . 1k; a) with
-°° < pi < xe for each i and 0 < a < oc. Suppose that when 0 obtains



LIKELIHOOD RATIOS 149

Yi' * *, Yk are independent normally distributed variables with E0 (yi) = Pui and
Varo(yi) = a2 for i = 1, * - *, k. The null hypothesis is that p, = P=k = 0-
It is readily seen that in this case

(7.5) J(6) = {k log [1 + k-152(6)] 62(6) = E i

Now for each n > 2, let Tn(s) be n1 times the appropriate F statistic based
on (x1, * - *, x"). It has been shown by Abrahamson [1] that {T } has exact slope
2J(6) against every 0 and so is asymptotically optimal. The method used in [1]
is to note that

(7.6) T (s) - k-162(0) a.e. P

and then to show that, with G"(t) the null distribution function of T,

(7.7) n-1 log [1 - G.(t)] -2 -jk log [1 + t],

for each t > 0. Since the limit in (7.7) is continuous in t, it follows (see [3],
pp. 309-310) from (7.6) that {T,} has slope 2Jdefined by (7.5). A second possible
method of establishing Abrahamson's result is by means of Theorem 2 of [2]
since T, is equivalent to T!, but the verifications required seem formidable. We
now show that Corollary 2 can be used to obtain first the slope of {T,} and then
(7.7).
Choose and fix a nonnull 0 = (61, * **, ik; a). Let 00 = (0, * , 0; a). Then

J(0) = K(6, 0°). Let f,(t) and gn(t) be the probability densities of Ta(s) under 0
and 00 respectively, and let h"(t) = f,(t)/g"(t) for t > 0. Let 'Rn be the a-field
induced by Ta(s). Then

(7.8) p.(8: P, Poo) = h.(Tn(s)).
It follows from known results (see [13], p. 312) that

(7.9) h.(t) = 2Yvj(n)nj(662)[n(l + -

where

_F(6nk + j)F(4k)
(7.10) yj(n) 22(!nk)1(2k +j)'

and 7rj(A) denotes the Poisson probability exp { -Al} j/j!. Since hn is a strictly
increasing function of t, we see from (7.8) that T, and p,n are equivalent statistics.
Consequently, {T,} has exact slope 2J(6) against 0 if {p,n has exact slope 2J(6).
We shall show that this last is the case by showing that, with K"2) = n- log p,

(7.11) K"2) (8) J(6) a.e. P,
for then Corollary 2 (with 4n and % of the corollary replaced by the present
%n and the trivial field, respectively) applies.
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For each n letjnbe the positive integer such that 4n2 <in _ 2n62 + 1. Since
each term in the series in (7.9) is positive,

(7.12) hn(t) > yj,(n)7tj,(ln62) [nt/(n(I +t1)-]j
It now follows from (7.10) by an application of Stirling's formula that, for each t,

(7.13) lim infn' log hn (t) >_ k log (1 + k-12)
n-0o

162 kt(I + k-
62(1±1+ 2 log [ 2I(1 + t)

Since the left side of (7.13) is nondecreasing in t and the right side is continuous
in t, it follows from (7.6), (7.8) and (7.13) that K(2)(s) > 'k log (1 + k-162)
a.e. Po. But 1k log (1 + k- 162) = J(0) = K(0. 00) = K(' )(Po Po.). It therefore
follows from Corollary 1, as desired, that (7.11) holds. Since {Tn} is shown to
have exact slope 2J(0) against each 0, it follows from (7.5) and (7.6) that (7.7)
holds for each t > 0. Incidentally, it follows from (7.5). (7.6). (7.8), and (7.11)
that n1 log hn(t) - 1k log (1 + t) for each t > 0 and 62 > 0.
EXAMPLE 7.4. Let (a, b) be an interval on the real line. - x _ a < b . x,

and let Y denote the set of all probability distribution functions F on the real
line such that F assigns probability 1 to (a, b) and F'(t) exists and is continuous
and positive over (a, b). Let 0 = (F, G) be a point of Y x E. Let X be the set
of all points x = (y. z) with real y and z and let po be the measure on X corres-
ponding to y and z being independent random variables with distribution
functions F and G, respectively. Let 00 = {(H, H): H E F} be the null set. The
nonnull set is a single point 0 = (F, G) with F # G.

It is readily seen that, with 00 = (H, H) and K(0. 00) defined by the right
side of (7.1),

(7.14) K(0. 0) = { log (dF/dH) dF + { log (dG/dH) dG.

It follows easily from (7.14) that

(7.15) J(0) = K(f) 00),

where 00 = (H, H) and

(7.16) H(t) = 4[F(t) + G(t)].

For each n let Xn = (Yn, Zn), let N denote 2n, and let U1 N(S) <_ <_ UN N ()
be the ordered values in the set {Y I z1 ; Yn, zn }. Let Vi,N(S) = 1 if
Ui,N(S) = Zj for some j = 1, .. , n and vi N(S) = 0 otherwise, and let Vn (s) =
(V 1 N(8), VN, N(8))-

It has been shown by Hajek [10] that the rank statistic vector Vn is asymptotic-
ally fully informative in the following sense: there exist weights {ai, N: i = 1,

N: N = 2, 4, } such that, with Ta(s) = Vv 1 aiNviN(S) {Tn} has exact
slope 2J(0) against the given 0; the weights depend of course on 0. As noted in
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[10], this remarkable result implies that the likelihood ratio statistic for testing
00 against 0 based on Vn also has slope 2J(O).

Let Wn be the field induced by V,. Then the likelihood ratio statistic based on
V,, is p.(s) = p.(s: Po, Po0). We have

(7.17) P.(8) = (N){Pp(Vn(s) = bn)}b,=v,(s).
where bn denotes an N long vector of zeros and ones. It follows from Corollary
2 (with -% and %n of the corollary replaced with the present tn and the trivial
field, respectively) that the second part of Hajek's result is equivalent to

(7.18) lim K.21(s) = J(0) a.e. P.
n-o

where K"2) = n1 log Pn . That (7.18) does hold can be seen from [6]. It is shown
in [6] that Kn2)(s) I-+ * a.e. Po where I* is a constant, and it follows from the
formulae for I* given in [6], [15] that in fact I*(0) = inf {K(0. 00): 00 E 00} =
J(0) we omit the details.
Now let rn(s) = rn(s: P0, Poo) be the density of Po with respect to P0o on Mn.

Let -, be the a-field induced by Un(s) = (U1, N(s), * * *, UN N(S)), where the ui N
are the order statistics as above. We shall show that {rn 9n} is also an optimal
sequence. For each null 00, the conditional distribution of (yl, z1; Yn, Zn)
given Un = (a1, . aN), with a1 < ... < aN, is uniform over the permutations
of (al, .., aN); hence r,, 9,, has an exact null distribution. It follows from (7.15)
that conditions (a) and (c) of Corollary 4 (with ',n of the corollary replaced by
-9n) are satisfied with Q = Po and PQ = POO. It therefore remains to show that
condition (b) is satisfied by {9n}. Let Xn(S) be a -9n measurable function such that
dPo = ,n (s) dPoo on 9,, 0 < A;n < o . and let K3() (s) = n log X, (s). We have
to show that

(7.19) K,,3(s) 0 a.e. Pf.
It seems difficult to establish (7.19) directly, but one can argue as follows. In the
null case, U. and Vn are independent random vectors. Since Pn is a function of
V, it follows that the level attained by pn is a version of the level attained by
Pnl|9n Consequently {pPn |9n } is an asymptotically optimal sequence. Since
J < log 4, it follows from Corollary 6 with P = Poo and Q = Po (with t7n of the
corollary replaced by -9n) that (7.19) holds.
Letf = F', g = G', and h = 2(f + g). Then

n n
(7.20) rn(s) = H f(yj)g(zj) H h(yj)h(zj).

i=1 i=1

It follows from this formula, as is well known, that iff is a normal density and
g(t) = f(t - c) with c > 0, then the level attained by r,I -9n equals the level
attained by the Fisher-Pitman test yn zi-_'n yi 9,,. Since the latter test does
not depend on 0 = (F, G), we conclude that the Fisher-Pitman test is asymptotic-
ally optimal against all one sided normal translation alternatives.
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