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1. Introduction

A fundamental problem of animal ecology is the distribution and abundance
of animals, the title that Andrewartha and Birch [1] chose for their important
textbook on the subject.
At the outset Andrewartha and Birch specify that an animal ecologist needs

to be a careful naturalist, an able experimenter and have "a sound working
knowledge of statistical methods." This order is in fact suggestive of the evolu-
tionary development of ecology-beginning with description, moving on to
experiments mostly though not entirely in the laboratory and now turning
more and more to statistical methods to analyze experimental results and to
evaluate field data.

Statistics might be thought to include the development of mathematical
models. Andrewartha and Birch presumably do not-they seem more hesitant
about such models and stress the possibilities of their being misused. On the
other hand, one should not interpret their warnings as an injunction against
the use of mathematical models for they open their second chapter with a
quotation from Plato to wit "He who would be truly initiated should pass from
the concrete to the abstract, from the individual to the universal."
An even more pessimistic view of the use of mathematical models particularly

in the social sciences but also in the biological sciences is expressed by Hajnal
[18]. For some contrary views reference is made to some of the discussants of
this paper (particularly Skellam and Scott). Scott particularly points out the
distinction between interpolation and structural models.

Nevertheless, structural models are the abstraction which may lead us to a
more complete understanding of our universe. Even the pessimists who point
to the large gap between the simplicity of most mathematical models and the
complexity of the real world must admit that this is the long run solution to the
problem of understanding. But the simpler models of the present time are a
necessary stage in the building up of more complicated models. Furthermore,
the models that we are constructing are of great value in clarifying basic con-
cepts and assumptions for a structural model can be constructed only when
there is a clear understanding of the fundamental elements and a clear formu-
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lation of elementary definitions. Finally, such models are of value even when
they are incomplete or wrong in providing insight into new areas to explore new
experiments to conduct (see, for example, Neyman Park, and Scott [30], p. 71).
While structural models do not have to be mathematical, since mathematics

is the language of science it is reasonable to suppose that most models ultimately
will be mathematical. In passing, however, we note many important studies in
population dynamics are being made which, while not constructing a funda-
mental mathematical model structure, do essentially involve models. Studies
of Tinbergen [36], [37] published posthumously and the large study on the
spruce budworm under the leadership of Morris [29] are examples.
Such mathematical models can be deterministic or stochastic. Since random

fluctuations are inherent in animal populations and in their environment, it is
desirable to incorporate chance variation as an integral component of the model.
Yet the earliest mathematical models were deterministic rather than stochastic
for the equally obvious reason that one must learn to walk before one can run.
Such deterministic models, while obviously oversimplified, have nevertheless

played some role in ecological research and particularly have been a stimulus
for both abstract and experimental work. In some situations these deterministic
models give first order answers that are useful; in others the models do not agree
with reality. In either case we wish to move on to improved models. Such im-
provements may lead to more complex deterministic models or to stochastic
models. We must at some stage examine stochastic models to provide error
bounds on the deterministic models, to provide answers where the deterministic
models fail, and above all to shed light on the true underlying nature of the
natural phenomenon being studied. This is true even though in some areas the
possible deterministic models are far from completed and there remain formi-
dable statistical problems in the measurement of the population parameters.
This is the case for most large exploited populations in fisheries and wildlife
work.

Limitations of space make it necessary to impose some severe limitations
upon the range of topics covered. Thus, the stochastic models of genetics and
of evolutionary theory certainly are relevant to the theory of the distribution
and abundance of animal populations. Also, the enumeration of an animal
population and the determination of estimates of the population parameters,
both of which are basic to understanding of the population, often require sta-
tistical models. Both of these topics are excluded here as is the use of information
theory in the study of diversity.

2. Population growth and interaction

The mathematical models that were developed in this area originally by
Lotka and Volterra are the most well known. (See D'Ancona [13] for references
and an exposition.) The basic idea is to regard the population size N(t) as a
continuous differentiable function of time and express dN/dt as some function
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of N and of t. When two or more interacting populations are involved, the dif-
ferential equations will be functions of the several populations and even the
deterministic models can rapidly become too difficult to solve in closed form.
However, it is usually possible to study the equilibrium situation and additional
information could be obtained from numerical solutions, if desired, and if enough
information is available to yield estimates of the parameters involved in the
equations.
Three such equations have been studied particularly as models for population

interaction in the large:
(i) single population (logistic)

(2.1) 1 dN -AN
N dt

(ii) two populations (competition)
1 dN . = - ~ -&N=12

(2.2) Ni dt i = E -bilN -baN2, i 1, 2;

(iii) two populations: prey predator

(2.3) Nl~~~dNt =E(6-bliNi- 622N2),
1 dN2 N
Nd-= (E2- N)

Here N1 denotes, the prey, N2 the predators. The E and a are parameters which
of course play different roles in the several models. Equation (2.1) leads to
simple logistic growth. Equation (2.2) has in general, when the matrix (6ij) is
nonsingular, four limiting possibilities. For some parameter values species 1
always persists; for another set species 2, or there may be a stable equilibrium
with both species persisting or there may be an unstable equilibrium in which
only one species survives but the survivor depends on the initial state of the
system.
A number of differential equations have been proposed as a basis for prey-

predator models. Leslie [24] argues that the model represented by (2.3) is pref-
erable since it allows for intraspecific competition. In general it has a stationary
state, with both species persisting, which is approached by a series of damped
oscillations.
The first major attempt to provide stochastic versions of these deterministic

models was by Feller [14]. It was immediately evident that the stochastic
models are far more intractable than the deterministic models. It is thus appro-
priate to distinguish between three different types of attack: analytic, approxi-
mate, and Monte Carlo.

2.1. Analytic solutions. The obvious analytic approach is to replace the
differential growth equations by transition probabilities which may depend on
population size and time. For example, D. G. Kendall [20], [21] solved the
single population process where the transition probabilities are linear functioils
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of population size but completely general functions of time. Thus, the model
has the following transitions and associated transition probabilities in the
interval (t, t + dt)

n t nj + I AX(t)n, dt
(2.4) nt nt 1 - [X(t) + A(t)]n, dt,

nt nt - 1 M(t)nt dt.

Here nt deinotes the (random) population size at time t and X(t), ,u(t) are the
birth and death rates. Defining

(2.5) Pn(t) = Pnt = 71], '(Z, t) = E
nt=O

it can be shown that Pn(t) satisfies the difference differential equation

aP.(t) = (n + l)MP.+1(t) + (n -1)P,_1(t) - n(X + j.)Pn(t), n > 1,at
(2.6) aPo(t) - jPi(t)

at
P )

while 4(z, t) must satisfy the partial differential equation

(2.7) dt = (z-l)(Az- /)A
together with the boundary condition t(z, 0) = z. It is remarked that the
dependence of X and u on t is suppressed. The distribution derived from this is
a geometric series with a modified first term. Furthermore, if the initial number
is No, then

(2.8) E(nt) = Noe-P(t), Var (nt) = Noe 2pt fo eP(T)[X(r) + A(T)] dT,
where

(2.9) p(t) = f[(t) - X(T)] dr.

It is seen that if A, t are constant the population explodes or becomes extinct.
Perhaps the most interesting biological result to be drawn from this model is for
the case X = ,u (constant). Such equality could be expected in a population in
equilibrium with its environment. For such a population E(nt) = No but
Var (nt) = 2XNot, that is, while the population average remains constant, the
fluctuations about the ceiling level increase. More precisely the standard devia-
tion of n, is proportional to t1'2.
Of course, in any actual population it is also to be presumed that if these

increasing statistical fluctuationis tend to move nt sufficiently far from No, then
whatever density dependent factors are presenlt will begin to play a role.

While this might appear to be of little biological interest, in fact it could
represent a reasonable approximation over a limited range of population values.
In particular, where density independent factors are more important than
density dependent factors, this could serve as a starting model. The birth and
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death processes could be sinusoidal functions of time reflectinig seasonial varia-
tions. To provide additional realism it would be desirable to add to the model
large external random "shocks." Despite limited biological application to date,
this solution has been an important tool in the Monte Carlo approach to
stochastic population models.

This method has been used in a number of other similar or somewhat more
complex situations. For example, it was pointed out in the discussion to Kendall's
paper by Prendiville [33] that a solution could be found for single population
growth of a "logistic like" model. Thus, it is reasonable to ask that in any single
population model involving density dependence that the general relative birth
and death probabilities X(n,)/n, and Au(nt)/nt be monotone decreasing and in-
creasing functions, respectively. The strict equivalent to the logistic would
arise if they are also linear functions. However, they may also be assumed to be
hyperbolic, namely,

Xi(ne) a M(2-) nt-< M2

n
n

(2.10) nt 0, otherwise,

(n,) = { ( Ml) nt _ Ml
n

o, otherwise,
where M1, M2, a, 3 are parameters. A published solution can be found in
Takashima [35]. In particular,

1 {
(2.11) E(n,) = a+ aM2 + M1 - [(aM2 + 3M1) - No(a + 0)]e-(a+±)t}

with limiting value (aM2 + f3Mm)/(a + fi). The interesting thing about this
model is that the corresponding deterministic differential equation

(2.12) dt = (aM2 + OM1) - (a + )N

has exactly the same solution. Furthermore, this function which is variously
known as the Mitscherlich law or the Bertanlanffy growth equation has been
widely used in recent years as a model in fisheries (see, for example, Beverton
and Holt [9]). The estimation of the parameters of the law (in the form
y = a + 3pZ) has been much studied (see Tomlinson and Abramson [38] for a
recent useful set of tables with references to earlier publications) and several
high speed computer programs are also available for this purpose. The estima-
tion of a, f, M1, M2 for the stochastic model has not been studied.

In most other exact formulations either the model is greatly simplified, for
example, Weiss [40], or only partial results are obtained. Weiss deals with a
competition process where each encounter between members of the competing
species results in death of one or the other with probabilities a/(1 + a),
1/(1 + a), respectively. No births are assumed so that the process is immedi-
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ately seen to be a slight modification of the ruin of the gambler or of random
walk with absorbing boundaries. The exact probabilities of extinction and of
the expected numbers of the surviving species are explictly determined which
permits a comparison between deterministic and stochastic models. Denote by
pi the probability that species i survives. The pi are functions of N1 and N2,
the initial population sizes, as well as of a. Define the region in the (N,, N2)
plane where pi differ from zero and unity as the zone of "stochastic indeter-
minacy." As expected this zone decreases as N1, N2 increase.
The work of Mode [28] provides an interesting study of a prey-predator

system in which the stochastic model is investigated analytically and some
results obtained through general theory of recurrent processes.

2.2. Approximate methods. As pointed out, the stochastic equivalent of the
logistic model would imply transition probabilities as follows

nt nt + 1 X(n,) dt,
(2.13) ni-nt 1 - {X(n,) + Af(nf)} dt,

nt nt- 1 ,u(nt) dt,
where

X(nt a(M- nt)nt, nlg < M12,
(2.14) X(n) = {a(M2 otherwise,

u(n,) -f13(nt-MI)nt, nt > Ml,
0, otherwise,

where 0 _ M1 < M2 are parameters of the model. For this model Feller [13]
showed that E(n,) is smaller than Nt obtained as a solution of the differential
equation (2.1), that is, stochastic variations would lead to a smaller average
population size than suggested by the deterministic model. Kendall obtained
a heuristic solution for t -+ oo and showed that

(2.15) P{n. = M1 + m} = MC+ -mMl() am,(M2-MI)-m
where C is adjusted so that

M2
(2.16) - P[nc= n] = 1.

n=Mi
It is seen that

(2.17) E(n.)=
E*[Ml k]

where E* is expectation with respect to the B(k; M2- M1, a/(a + i3)) distribu-
tion. For M1 = 1 this is approximately M2a/(a + ,B). Bartlett [5] has developed
different approximation methods to throw light on the model; one of these is
now discussed.
Assume that X(O) 0 0 so that the process cannot become permanently extinct

at n = 0 and further that the probability distribution of n, tends to a limiting
distribution. The first assumption is, of course, a biological impossibility unless
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births include immigration, but if the time to extinction is large, this may be
regarded as a reasonable approximation.
For general X(n), ,A(n) the differential equation generalizing (2.6) is

(2.18) aP() = /pn+lPn+l(t) + Xsn-lP.-(t) - (Xn + An)Pn(t),at
so that the limiting distribution must satisfy

(2.19) A'n+lPn+l + Xn-lPn-1 = (Xn + i.n)Pn,
which is easily seen to have the solution

(2.20) Pn = _fll
An

where Pn = limt- - Pn(t). Further, let m be the solution of the equation Xn_1 = n
and expand Xn_l/An about m, namely,

(2.21) n 1+ (n - m) [a( n 1)]nI-L n~ank IA /In.
where n is now treated as a continuous variable. Denote the partial derivative
as -o-2. Then, to a further approximation

(2.22) n_[1 _.
(n m

P",
or

(2.23) alogPn _n-m

whence, we have

(2.24) Pn 'Ce-(n-m)2/2..'

that is, to this approximation, n is normal with mean and variance as indicated.
This and other approximations due to Bartlett [5], [6] throw light on the

behavior of the process in the vicinity of the stationary state. Additional methods
to yield approximate solutions to the evolutionary stages of the process and/or
bounds on this stage are desirable. One possibility is that used by Gani [15] in
a study of the interaction of phages and bacteria. He solves the usual partial
differential equation for the probability generating function not for the fully
stochastic situation but with some random variables replaced by their expecta-
tions. This equation is solvable in closed form to yield the required probability
distribution.

2.3. Monte Carlo or simulation methods. Approximate methods are most
valuable and more such need to be developed. There is a tendency to disparage
them unless some bounds can be placed upon the errors of such approximations.
Insight into such approximations may be obtained from Monte Carlo studies or
simulation on high speed computers. When no exact or approximate solution is
available the computer may represent the only way to gain additional theoretical
information. Bartlett [4] and Leslie [25] were the first to demonstrate that
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much could be accomplished with such an approach particularly when these
studies are guided by approximate or partial solutions or the solutions of the
corresponding deterministic models.
There are several different ways of performing the Monte Carlo studies. If

the transition probabilities can be written down in explicit form, then the com-
puter can be programmed to generate a sample of the actual ecological process-
at each step a random number determines which transition is made. Such transi-
tion probabilities can be functions, both of the past and present states of the
process and also of time. Such a simulation is exemplified by Barnett [3]. This
paper is valuable as a source of helpful procedures to facilitate these simulations.
A second method of Monte Carlo similation is to replace the continuous time

process by a discrete time process assuming that the birth and death rates are
constant over each time interval. The solution obtained by Kendall (equations
(2.8) above) then yields

E(nt+llnt) = nte-Xt-,

(2.25) Var (nt+llnt) = nt (X' + At)(cex-tm - I)eX-1, X\t i At,

= 2Xtnt, xi = t.

If nt+1 given nt is assumed to be normal with mean and variance as specified,
it is easy to generate an artificial series representing the development of the
process. The Xt and pA change from step to step according to their dependence
on time and on the sizes of the population or populations involved. This method
has been explored extensively by Leslie [25], [26] anid Leslie and Gower [27].
Leslie noted that the stochastic equivalent of any of these deterministic models
is not well determined and he introduced the idea of studying two extreme cases,
namely, birth rate constant, so that only the death rate is a function of the
various variables and conversely death rate constant but birth rate variable.
From the simulation work done to date the following conclusions may be

drawn, subject to the qualification that the Monte Carlo experiments have been
quite limited in number.

(a) The stochastic population model with birth and death rates which are
linear functions of population size can be fitted satisfactorily by a logistic curve.

(b) The parameters of the stationary distribution of the population resultinig
from such a model can be well estimated by the approximate formulae due to
Bartlett, that is, assuming the birth and death rate functions are known.

(c) The problem of estimating the four parameters a, 0, M11, M2 of (2.21)
from an observed process is largely open. If one of X(n) or Iu(n) is coiistalnt, theii
there are only three parameters, which may be expressed as functions of the
three parameters of the logistic; but even here whether satisfactory estimates
can be obtained from a single observed process is not yet known. In the more
difficult case where neither X(n) nor ,(n) may be assumed to be constant it is
presumably also necessary to utilize additional information such as the variance
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of n about its mean (in the limiting stationary distribution). Of course an alterna-
tive approach to this problem is to obtain independent estimates of X(n), ,tA(n)
from other biological observations-if these are available.

(d) Empirical probability functions (for the probability of survival of either
species) have been determined for a competition model for a region of the n1(O),
n2(0) plane for some parameter values that could be associated with the unstable
stationary state in the deterministic model.

(e) The behavior of the competition model has been studied in the region of
the stationary state (for the stable equilibrium case). Leslie and Gower ([27],
p. 327) conclude from realizations that "It appears then, that, in a system of
two competing species with a stable stationary state, the number of individuals
over a relatively long period of time settles down to a type of distribution which
is approximately normal in form, but with a degree of variation which may be
greater than that expected for small deviations about the stable state. This
greater degree of variation about the equilibrium level can only lead to an
increased chance of random extinction of one or other of the two species."
Some of Leslie and Gower's artificial realizations also show as one would

expect that near the borderline of the region in the N1(0), N2(0) plane where
according to the deterministic model only species 1 should survive, there is a
positive probability that in the stochastic case not species 1 will survive but
rather species 2.
As yet insufficient studies have been attempted on prey-predator models,

though Bartlett [4] did obtain some simulations of a model slightly simpler
than that corresponding to (2.3). In all cases the predator or prey became
extinct which means that the model is inadequate. Bartlett considered the
effect of a time lag due to the time between birth and maturity though obviously
there may be other factors which in nature serve to prevent extinction (see for
example Bailey, Nicholson, and Williams [2].)
One other comparison of deterministic and stochastic models by Monte Carlo

methods needs to be mentioned briefly-that due to Larkin [23] who studied
the effect of a fishery on competing populations. The fishery alters the equilib-
rium as is to be expected-and may in fact change the situation so that one
species becomes extinct. If the fishery is such that both species can continue to
exist, Larkin's results suggest that there is little difference between the deter-
ministic and stochastic models for populations in the hunidreds or greater.

2.4. Tribolium models. The extensive and detailed series of experiments
carried out at the University of Chicago by Park and his students on flour
beetles (Tribolium confusum and Tribolium castaneum) deserve special note for
they have stimulated much of this general research as well as special studies.
In these Tribolium experiments a small number of adults of one species alone
or of both species together are introduced into a vial of flour. At periodic intervals
a census is taken of the population and the flour renewed. In some sense this
represents an artificial aspect since in more "natural" circumstances the beetles
would, as they exhaust their local supply of flour have to move to niew sources.
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Diffusion is a problem even within the controlled experiments but would become
more so for "wild" populations.

In these single species experiments the population grows rapidly at first but
eventually oscillates about some ceiling; in the two species experiments one or
other species dies out. The winner depends on temperature, humidity and initial
numbers but even with these conditions held fixed the winner may vary. Since
the Tribolium has four stages in its life history, two active and two passive, and
since the active stages are cannibalistic, that is, adults or larvae feed on eggs or
pupae of either species, it is seen that the model is of a prey-predator system as
well as involving a competition for food.
Numerous deterministic models have been tried to fit this behavior-some

references are to be found in Leslie [26]. The two most ambitious attempts to
set up a stochastic model for these experimental results are due to Neyman,
Park, and Scott [30] and to Leslie [26] (also see Barnett [3]).
The Neyman, Park, Scott study as well as that of several of their students

involve setting up probability models for several aspects of the dynamic process
involved. These involve the egg laying rate which appears to vary with age (of
the beetle) and with population size. Even more complex is the cannibalism
factor since even in a simplified model with two stages ("active" and "passive")
rather than the true four, there are four coefficients of "voracity" (the rate of
consumption of passives of species i by actives of species j with i, j = 1, 2).
Further insight into the cannibalism seems to involve the nature of the diffusion
of the beetles both in regard to egg laying and searching for eggs. In view of all
these complexities Neyman, Park, and Scott do not attempt to do more than
obtain some qualitative agreements between their mathematical theory and
the experimental results.

Leslie, on the other hand, attacks the problem in more classical terms using
the birth and death model extended however to two stages, immature and
mature which have different probabilities of death. He also introduces the
obvious time lag between generations-he chooses the unit of time for his dis-
crete time model as the time from birth to egg laying. This simplifies the model
equations but creates difficulties in the estimation of the basic parameters,
because the observations were not made in such time units. Then using neces-
sarily rather crude estimates, he generates artificial realizations of the model to
compare with the experimental results. The method of generating these is similar
to that discussed for the simpler models. While there are some satisfactory
agreements, Leslie concludes "it seems quite evident from the results presented
in this paper, that this simple two age-class model does not provide an adequate
description of these Tribolium populations." However, in a broad sense the
simple model does yield qualitative agreement since models are generated with
unstable stationary states. As such the analysis points the way to possibilities
of better agreement when better parameter estimates are available and with
somewhat more complex models. The availability of such better estimates may
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depend on the settinig up of experiments with the requirements of the model in
mind.

3. Dispersion and migration

As stated, even in such apparently simple experiment as with the Tribolium,
the movement of the animals plays a role in the population growth and inter-
action (for a study on this see Cox and Smith [12]). Thus, no growth and inter-
action model of natural populations will be complete without bringing in move-
merit also.

Naturalists have accumulated a large amount of qualitative information on
the large scale and very impressive movement of animals-for example, the
semiannual migration of most birds and of many mammals, the spawning
migration of many fish, and so forth. The phenomenon of dispersion or random
movement does not lend itself to such easy observation-experiments must be
designed to measure these movements and such experiments often involve wide
scale marking programs. Because of inadequacies of the placement or recovery
of the marks it has been customary to avoid any quantitative analysis of move-
ment in marking experiments.

While marking is the obvious tool that is used to identify subgroups of a
population-though morphometric measurements, bloodtyping and population
composition are also useful-it is possible to measure the initial spread of an
animal without such refinements. This has been particularly true for a number
of entomological studies which have given rise to a number of quantitative
models of dispersion. Most of those are of the empirical curve fitting type. For
a review of these as well as more sophisticated models see Gooch [16].
These more sophisticated models are for the most part based on the theory of

diffusion and the theory of random walks. The first of such studies in ecology
is due to Karl Pearson [32]. That such models can answer specific ecological
questions has been demonstrated by Skellam [34].
Skellam shows that if the distribution in space of the progeny of an individual

at (t, -q) in the (x, y) plane is of the form F(x -{, y - q) and if the initial start-
ing point of the first generation was (0, 0), then spnX the characteristic function
of the distribution of the nth generation is <n where

(3.1) s (t, u) = ff eitx+uydF(x, y).

l'rom this it immediately follows that if F is the circular normal distribution
with common variance a2, then the radial distribution of the nth generation
has the density

(3.2) f.(r, a2) = 2r e-r/na < r .

Skellam uses this and an exponential (deterministic) growth law to try to



158 FIFTH f3ERKELEY SYMPOSIUM: CHAPMAN

answer a question on the mechanism of the spread of oaks in Great Britain in
the post glacial period.

It is of interest to attack this problem somewhat differently-the spread of
the population can be regarded not as a function of the distribution of all of the
surviving progeny in the nth generation, but of the distance of the most distant
of the progeny from its parent. We are thus led to extreme value theory. To
simplify slightly and perhaps not too inexactly for the distribution of oaks in
Great Britain consider a linear model. Denote by S the most northward location
of the kth generation. Clearly, it can be argued that if the progeny of any gen-
eration with parent located at (Q, -q) have distribution function F(x -{, y -)
where f x dF(x) = 0, f x2 dF(x) = a2, then

k
(3.3) S E max Xii,

i=1 1j.ni

where ni is the number of progeny in generation i.
It is clear that for large k, S is approximately normally distributed but its

mean will depend very strongly on the underlying distribution of the Xi, and
in fact on the tails of this distribution. For example, if

(3.4) E(max Xij) = gn, a2( max X Tn, 4(Za) = - a,

then the equation to be solved to assure that S = 3 with probability 1 - a in k
generations with n progeny per generation is
(3.5) 3 = a[Z,(kTn)l"2 + kn].
Suppose that Xij have a logistic distribution; then gn = ln n + wy + o(l/n)

where y = 0.57722 and T. -' 7r2/6. For k = 300, the figure used by Skellam,
n = 1000, 1 - a = 0.997 3 = 600 miles, a = 0.27, somewhat less than the
value calculated by Skellam. However, it should be noted that Skellam used
a factor of 9,000,000 for the number of progeny per parent and also assumed a
normal spatial distribution. With a normal distribution and with n = 1000
a = 0.62 which is closer to the value that Skellam calculated. However, while
it may not be reasonable that the root mean square of daughter oaks about
their parent exceeds 1/2 mile, on the other hand, it is probable that the distribu-
tion of the location of progeny is a mixture of at least two distributions-those
due to wind dispersal and those carried by animals. The latter may represent
only a small fraction of the total, but for these a2 might well be of the order of
magnitude indicated and it is seen that the spread of oaks can be explained
without resort to the assumption that pockets of oaks survived in Britain
throughout the glacial period.

3.1. Diffusion process. The diffusion process in the plane can be obtained
as the limit of a two dimensional random walk, though of course, a more rigorous
approach involves the Kolmogorov forwards and backwards equations. If
N(x, y, t) denote the density of animals at (x, y) at time t, and if the animals
move subject to two processes, diffusion with parameter D and drift with
parameters c,, cy, then N(x, y, t) satisfies the differential equation
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(3.6) at = -c! f -c f + DV2N
where V2 = d/Ox2 + a/ay2 as usual.

This is the equation derived by Skellam [34] (with cz = c, = 0) and by
Jones [19] (with c. = 0) from first principles.

Consider now a population No (for example, tagged fish placed at the origin
at time t = 0 so that the boundary conditions are N(O, 0, 0) = No, N(x, y, 0) = 0,
for all x, y -5 0).
The solution to (3.2) is well known, namely,

(3.7) N = No exp 1 [(x -c.t)2t(y -Ct)2]
If these marked or tagged fish are subject to a uniform catching process then

the distribution of recaptures in time is given by (3.7).
The maximum likelihood estimates of c, c,, D based on recaptures at (xiyi)

at times ti are given by

Exi _y= yi

(3.8) 1tt 1

f=4n1E t. [(Xi - iCxt,)2 + (yi -Cyt)2].
The asymptotic variances of these estimates are found in the usual manner.

In fact, much of standard normal inference theory is applicable. Unfortunately,
the true situation may be much more complicated than this because the sampling
is not uniform over time and space. Models that permit such additional com-
plications are not available yet.
In his study cited earlier Skellam [34] combines the diffusion model of dis-

persion with deterministic growth models (exponential and logistic) to obtain
a variety of differential equations for both one and two dimensional situations.
As is to be expected the boundary conditions play a significant role. It is appar-
ent that if full stochastic models are to be considered that incorporate both
processes, Monte Carlo methods must presently be used.

4. Conclusion

That the models considered so far are much too simple is fully agreed-yet
it is also true that even these simple models are often insolvable by present
analytic techniques. Still the simple models have experimental value. For
example, the models of Cole [11] that attempted to explain population cycles
as purely random fluctuations, while not generally accepted today as the sole
explanation of cycles, did pave the way for much more critical thinking on this
important topic anid, furthermore, demonstrated the need for much better
observational data than had been often available before.

Similarly it may well be true that most animal dispersion fails to conform to
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the diffusioni models which have been so useful in physical theories. Neverthe-
less, their study will provide better data than is now available.
That much more can be done with Monte Carlo or simulation techniques is

obvious. In particular it is being used to answer specific management questions,
for example, in fisheries exploitation or in insect, pest control (Watt [39]).
One difficulty with the simulation processes used to date is the introduction

of the stochastic element. Thus, many of those studied may be unrealistic
because only internal variation is permitted; yet in fact this may be the smaller
component of variation. The larger component may be the random shocks of
the environment. However, the superimposition of this external variance
should cause no difficulty in the simulation process.
On the other hand, it should not be believed that simulation can provide

theoretical solutions to models in the large without being accompalnied at least
in part by some analytic solutions-perhaps through approximate methods,
formal solutions of the corresponding deterministic models and so forth. How-
ever, simulation and Monte Carlo methods should provide a valuable tool to
gain insight into models in the small, particularly when these are tied to specific
experimental or observational models. Moreover, they can provide guidance
to the proper information needed in such experiments or field studies.
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