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1. Introduction

This study originated in an attempt to understand the meaning of two pa-
rameters, the mean and the variance, which appear in the limit theorems con-
cerning sums of identically distributed independent random variables. The law
of large numbers, when written in the usual form (lim Sn/n = p) does not im-
mediately suggest a natural generalization to Markov chains; the reason is that
a Markov chain takes its values in an abstract state space so that not only the
limit A, but also the ratios which tend to ,u have to be reinterpreted in a meaning-

. ful fashion. Therefore, we proceed to the renewal theorem in the form proved by
Erd6s, Feller, and Pollard (cf. [3], p. 286) and Chung and Wolfowitz [2], and
formulate it in a manner which readily suggests a natural generalization.

Consider a random walk (spatially homogeneous Markov chain) x. on the
integers with transition function P(x, y) defined for arbitrary pairs of integers
x, y. Suppose that it satisfies

(1.1) P(x, y) 2 0, 2 P(x, y) = 1,

(1.2) P(x, y) = P(x + z, y + z) for all z,

(1.3) E_ IxI P(O x) < x, E xP(O,x) = ,u > O,

(1.4) E P(x, y)f (y) = f(x) and If (x) I < 1 = f (x) = constant.
v= -x

The last condition (1.4) is well known to be equivalent to the usual aperiodicity
requirement that the support of P(O, x) is not contained in a proper subgroup
of the integers (cf. [4], p. 276). This Markov chain is transient in view of con-
dition (1.3), ([4], p. 33), and the renewal theorem is a simple statement concern-
ing the asymptotic behavior of the Green function G(x, y) defined by

G(x, y) = P(x, y),

(1.5) Po(x, y) = 6(x, y),

Pn+l(x, y) = Pn(x, z)P(z, y), n> 0.
Z=_x
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The renewal theorem states that conditions (1.1) through (1.4) imply

(1.6) lim G(x, y) = 1

The mean u measures, in some sense, the rate of drift of the Markov chain to its
boundary. To see this phenomenon in its simplest setting, suppose in addition
to (1.1)-(1.4) that the random walk can only go to the right, namely that

(1.7) P(x, y) = 0 when y < x,
and let
(1.8) T. = min [kl Xk> n].
Then a weak (Cesaro) version of (1.6) may be written in the form

(1.9) E G(O, x) = Eo[Tn]'- as n-oo.
z=O P

Consider now a Markov chain xn whose state space consists of the integers,
and whose transition function P(x, y) satisfies (1.1) and (1.7), but neither (1.2),
(1.3), nor (1.4). Its Green function G(x, y), defined by (1.5), will obviously be
finite, and the identity in (1.9) is still correct. The problem of understanding the
role of u may therefore be phrased as follows: to find a function f, defined in a
natural manner, so that

(1.10) E G(O, x) = Eo[Tn] - ff(n) as n- oo.
z=o

We shall proceed to show that this problem may be solved, for a large class of
Markov chains xn, with countable state space S, by choosing for f a solution of
the equation
(1.11) E P(x, y)f(y) - f(x) = 1, E P(x, Y)If(y)l <0, x es.

(We shall simply write Pf - f = 1, in the sequel, to indicate that f satisfies the
equation in (1.11) and is summable with respect to P.) In the case of random
walk satisfying (1.1), (1.2), and (1.3), the equation Pf - f = 1 is indeed satisfied
by the function

(1.12) f(n) = nI n = 0, i1, 42, .

as an elementary calculation shows. It is perhaps more remarkable that even the
variance of random walk is closely related to equation (1.11). For suppose that
(1.1) and (1.2) hold, but that (1.3) is replaced by

(1.13) E xP(,x) = =0, 0 < a2= x2P(O, x) <o.
x=-£ z=_x

Then (1.12) is meaningless, while

(1.14) f(n) = ) n = 0, 1, 2,
now becomes a solution of Pf - f = 1.
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In section 2 we show how certain solutions of (1.11) lead to a law of large
numbers for Markov chains which generalizes the usual law of large numbers.
In section 3 we give sufficient conditions for the weak renewal theorem (1.10) to
hold. Finally, section 4 is devoted to a renewal theorem for a class of Markov
chains which generalizes the renewal theorem (1.6) for random walk with finite
second moment. It is the only satisfactory result of this paper, in the sense that
it takes the form of a uniqueness theorem for solutions of equation (1.11) satis-
fying certain growth conditions. And this is, of course, the heart of the matter:
we have to learn how to single out that solution of (1.11) which is the natural
analogue of the linear function in (1.12), and this causes grave difficulties.

It is easy to construct Markov chains for which (1.11) has no solution at all.
On the other hand, there may obviously be many solutions, since f + h satisfies
(1.11) whenever f does and h is harmonic, that is, satisfies Ph = h. But while
boundary theory characterizes the nonnegative harmonic functions, nothing is
known about the set of all harmonic functions.

Finally, it may even happen that (1.11) has one, or even more than one, solu-
tion, but that none of them are sufficiently well behaved to yield even a weak
limit theorem of the type of (1.9).

2. A law of large numbers

Let us assume that x. is a Markov chain, whose state space is a countable set
8, and whose transition function P satisfies (1.1) (with the summation over S,
of course). A martingale convergence theorem due to Chow, Mallows, and
Robbins [1] states that if {,, is a centered sequence of random variables (the
conditional expectation of {n+l given {l, *. , t. is 0) and if E El.ita < 0o for
some 1 < a < 2, then the series E, { converges with probability one. As an
immediate consequence, we can obtain a strong law of large numbers for x,.
THEOREM 2.1. Suppose that the transition function P of xn is such that the

equation Pf - f = 1 has a solution f with the property that

(2.1) E P(x, y)Jf(y) -f (x) -Il < M, for all x ES,

for some a > 1 and some M < m. Then

(2.2) P. [limf(x)m 1] for each x eS.
Ln--* nl

PROOF. We write

(2.3) f(x,) - f (xo) - n

n-1

= Yk, Yk = f(Xk+l) -f(Xk) - 1, k > 0, n > 1,
k=O

and observe that in view of Pf - I = 1, the sequence f(X)- n, for n > 0, is a
inartingale with respect to the fields in = {xo0 X1I ...* Xn}, n > 0.
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For the same reason, the sequence

(2.4) Zn = E Y' n 1
k=1k

is also a martingale with respect to the same fields. By use of Kronecker's lemma,
one can obtain (2.2) if one knows that the limit of Zn exists and is finite with
probability one with respect to the measure P [ *] for each x (in other words, for
each starting point xo = x of the Markov chain). But in view of the theorem of
Chow, Mallows, and Robbins, the series in (2.4) will converge with probability
one for each x if

(2.5) : E. IYk oo for each x E S.
k=O k

Now (2.1) implies that
(2.6) E.4ykla EIff(xk+i) -f(xk) - la

= E2 P.[Xk =y] E P(y, Z)f (Z) -f (Y) - 1I < M,

so that (2.5) holds, and the theorem is proved.
There are examples which show that the conclusion of the theorem is false

when (2.1) only holds with a = 1. An interesting open question concerns the
Green function of a Markov chain satisfying the hypotheses of the theorem. It
follows from (2.2) that the process must be transient so that G(x, y) < Xo for all
x and y in S, but it is not clear whether the existence of a function f satisfying
(2.1) implies that G(x, x) must be bounded.

It is, of course, possible to rephrase the theorem, by making sufficiently strong
assumptions concerning the Green function of the process xn, so that the hy-
potheses of the theorem become conclusions.
THEOREM 2.2. Suppose that the Markov chain is transient, and that its Green

function has the property that

(2.7) h(x, y) = Es IG(x, z) - G(y, z)j <oo x, y ES,
ZES

and that

(2.8) ) P(x, y)lh(x, y)la < M, x EF S, a > 1.
vGS

Then, for any fixed point 0 E S,

(2.9) f(x) = E2 [G(0, z) - G(x, z)]
2ES

is a solution of Pf - f = 1, and the strong law (2.2) holds.
PROOF. It follows from (2.8) that the function f defined by (2.9) is summable

with respect to P. Also (2.7), together with (2.8), yields the dominated conver-
gence necessary to interchange limits in

(2.10) Pf (x) -f (x) = E P(x, y) [G(0, z) - G(y, z)] -f (x)
zES YES

= E [G(O, z)-G(x, z) + 6(x, z)]--f(x)=l.
zES
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Now (2.8) and (2.9) imply (2.1), so that the strong law follows from the previous
theorem.

3. A weak renewal theorem

Let us investigate conditions on a Markov chain x,", under which the stopping
times Tn defined in (1.8) have the property that

(3.1) lim E.[T.] I1
. f(n)

for some solution f of the equation Pf - f = 1. For (3.1) to make sense it is
necessary that the state space S be ordered. Therefore, we may take for S the
positive integers, but this assumption is of course quite vacuous unless we assume
that the transition function P is somehow well behaved with respect to this
particular ordering. This motivates the following hypotheses (A) (which can be
weakened in some respects, but at the cost of complicating the analysis without
leading to really satisfactory results).

(A) The Markov chain x,, v > 0, has as its state space the positive integers.
Its transition function P(k, t)has the boundedness property that the chain can
take only a finite number of steps to left or right: there is an M > 0 such that
P(k, t) = 0 when [t - kl > M. Finally, it is assumed that the chain has no fi-
nite closed set of states: there is no finite subset C of the integers such that

tEec P(k, t) = 1 for all k E C.
Note that hypothesis (A) does not imply that the chain x, is transient. Thus

the Green function may be infinite, but the stopping times Tn in (3.1) are finite
with probability one and have finite expectation. (This follows from our assump-
tion that there are no closed sets; therefore, the first time T. at which the chain
x, is outside the set [1, 2, *.. , n] has the property that the tails Pz[Tn > m]
decrease at least exponentially as m -x, for each fixed x and n.)
THEOREM 3.1. Suppose that the Markov chain x^, v > 0, satisfies (A), and let

T, = min [Pjv > 0, x, > n]. Suppose further that Pf - f = 1 has a solution f
such that f(n + 1)/f(n) -* 1 as n -* +oo. Then

(3.2) lim Ek[T1] = 1, for each k > 1.
n f(n)-foec k>1

PROOF. We begin by showing that any solution of Pf - f = 1 such that
f(n + 1)/f(n) -, 1 has the property
(3.3) lim f (n) = +oo.

n-x

Suppose that f is such a solution, and let
(3.4) mn = max f(k).

1 <k<n

It is impossible that f (k) = mn when k <n - M, since k < n - M implies
k+M

(3.5) f (k) = E P(k, t)f (t) - 1 < mn - 1.
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Therefore, f assumes its maximum in [1, 2, -.. , n] at one of the points
of the interval [n - M + 1, n]. But then the identity in (3.5) implies that
f(k) > mn + 1 at one of the points k in the interval [n + 1, n + M]. Now we
may repeat the above argument, with n replaced by n + M and obtain the
following conclusion: there exists an increasing sequence of integers n1 < n2 <
n3 < ... such that

(3.6) nk+l- nk < M and f (nk+l) -f (nk) > 1.
Thus f(nk) -- +00 as k -X00, and (3.6), in conjunction with the hypothesis that
f(n + 1)/f(n) --* 1, implies (3.3).

The rest of the proof depends on the identity

(3.7) Ek[f(XTN)] - Ek[Tn] = f(k), k > 1, n > 1.

(It should be clear how (3.7) implies the theorem; simply divide (3.7) byf (n) and
let n - oo observing thatf(xT,)/f(n) -* 1 boundedly with probability one, since
IXTN - nj < M.)
Equation (3.7) is suggested by the fact, observed in the proof of theorem 3.1,

that f (xn) -n is a martingale. Thus for every bounded stopping time T,
Ek [f(XT) - T] = f(k). But since the stopping times Tn are not bounded, we
have to use the slightly stronger Markov property instead.

Let C be an arbitrary finite set of positive integers and T = min [PIP >
0, x, E Z], where Z7 is the complement of C. For each integer x,

(3.8) Ez[f (xT)] = lim £ E. PZ[xV = z; T > P] E, P(z, y)f(y)
m-+>-=O zEC ive

m
= lim E E Pj[x, = z; T > v]{f(z) +1- E P(z, y)f(y)}

M- v=O ZEC VEC

= lim E _[ P[xv = z; T > v][f}(z) + 1]
m-- .o Zv=OzC

- £ P.,[x, = z; T > v]f(z)

= lim E P.[T > v] +f(x) - , Pj[x, = z; T > m + 1]f(z4.
m-00 =O zEC

Hence,
(3.9) Ez[f(XT)]-E[T] -f (x) = lim E P.[x, = z; T > m + l]f (z).

m-*co zEC

The right-hand limit is 0 since, if ICI denotes the cardinality of C,
(3.10) I PZ[x = z, T > m +1]f(z)l < |CI max If(x)IP.[T > m + 1] .
Thus (3.7) is proved by setting T = Tn, and that completes the proof of the
theorem.

Just as was done in section 2, one can modify theorem 3.1 so that the hy-
potheses concerning f become conclusions instead. Suppose that a process x,
satisfies (A) and that in addition G(x, y) < -, and
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(3.11) f(x) = E [G(1, y) - G(x, y)] < for each x,
Y=1

and

(3.12) lin f(x + 1) 1.
X +. f (x)

Then it follows that the function f defined by (3.11) satisfies Pf - f = 1. There-
fore, the conclusion of theorem 3.1 is valid and takes on the curious form

(3.13) lim E[T_L [G(1, y) -G(n, y)]
n-- ok[Tn] y=1

= lim lim {Ei[Tm] - En[Tm]} = 1, k > 1.
nx Ek[Tn] m-

As an illustration of theorem 3.1 in the recurrent case, consider a random walk
on the integers (positive and negative) satisfying (1.1), (1.2), and (1.3) with
mean u = 0. Assume also that the possible displacements are bounded. Then
a2 < oo, and we shall be concerned with the solution f of Pf - f = 1, given in
equation (1.13). It is natural to order the state space in such a way thatf becomes
monotone. Therefore, we map the integers on the positive integers according to
the formula k -*2k for k > 0 and k -* 2ikI - 1 when k < 0. Thus the random
walk induces a Markov chain on [1, 2, 3, *.) for which Pf - f = 1 has the
solution

(3.14) f(j) = fj+ 1)2/4o2 for even
j
> 1,

The conditions of theorem 3.1 are satisfied, Tn becomes the time elapsed until
the random walk on the group of all integers leaves an interval which is approxi-
mately [-n/2, n/2], and theorem 3.1 yields the well-known conclusion Ek[Tn]
n2la' as n -* oo, for each fixed k.

4. A renewal theorem

Here we make drastically stronger assumptions than in section 3, in order to
arrive at a generalization of the classical renewal theorem for positive random
variables. We consider processes x, v > 0, satisfying conditions

(B) (i) x*, v > 0 is a Markov chain on the positive integers, which can move
only to the right; that is, P(k, 4) = 0 when t S k;

(ii) the chain has uniformly integrable second moments, namely, the tails
are assumed uniformly bounded so that

(4.1) T(n) = sup E P(k, j) <cm;
1 <k<-- j=n+k+l

and in addition F, nT(n) < oo;
(iii) the only bounded harmonic functions are the constants, that is, Pf = f,

and If . M = f = constant.
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The renewal theorem takes the form
THEOREM 4.1. If a Markov chain satisfies (B) and if the equation Pf - f = 1

has a solution f whose increments are bounded (If(n + 1) -f(n) < M for all
n > 1), then

(4.2) f (n) -f (k) = , [G(k, e) - G(n, t)] for all k > 1, n > 1.

Before proceeding to the proof, let us observe how this uniqueness theorem for
a class of solutions of Pf - f = 1 reluces to the ordinary renewal theorem for
random walk.
COROLLARY 4.1. Let P(k, t) be the transition function of a positive aperiodic

random walk on the positive integers with finite second moment, that is, assume that

(4.3) P(k, t) > 0, , P(k, t) = 1, tt2P(k, 4) < o,

P(k, t) = P(1, 4- k + 1),
and that the greatest common divisor of [kIP(l, 1 + k) > Q] is 1. Let G((k, t) be the
Green function defined in (1.5). Then

(4.4) lim G(1, n) = - where , = E kP(1, 1 + k).

PROOF OF THE COROLLARY. All the hypotheses for theorem 4.1 are clearly
satisfied if we choose f (n) = n/,u, n > 1. Now set n = 2 and k = 1 in equation
(4.2). It reduces to

1 m
(4.5) - = lim E [G(1, t) -G(2, t)]

= lim E [G(1, t) -G(1, t - 1)] = lim G(1, m).

PROOF OF THE THEOREM. First we need the fact that
(4.6) lim [G(k, n) - G(t, n)] = 0

nfl--

for every pair of positive integers k and t. This is a standard ingredient of every
potential theoretical proof of the renewal theorem. If (4.6) were false for some
pair k, t, with k 4, then there would exist a subsequence n' of the positive
integers such that the limit in (4.6) along this subsequence is a $ 0. (Here and
in the sequel we use the fact that 0 < G(k, t) < 1, in view of condition B(i).)
Taking a further subsequence n" of n' with the property that lim.w'0 G(k, n") =
+(k) exists for all k > 1, we find that PRb = 0, namely that 4 is a bounded har-
monic function. However, +(k) -+(t) = a 5- 0, which shows that 4 is not
constant. That contradicts assumption B(iii) and therefore proves (4.6).
Now define, as usual Tm min [vlv > 0, x, > m], observe that in view of

B(i),
(4.7) ,- G(k, t) = Ek[T.],C=1
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and that

(4.8) Ek[f(xT.)] = Ek[Tm]-+ f (k), k > 1, m > 1.
(The proof of (4.8) as given in section 3 depends on B(i); neither B(ii) nor B(iii)
are used.) Combining (4.7) and (4.8), we obtain

m

(4.9) _ [G(1, C) - G(n, t)]- [f(n) - f(1)]
{=1

= El[f (xT.)] - En[f(XTm)]
= E[f (xTm) -f (m)] - En[f (XTm) - f(m)]-

Decomposing these expectations according to the place of the last visit of the
process to the interval [1, m], one obtains

m

(4.10) F- [G(1, ) - G(n,t)][f (n) - f(1)]

= , [G(1, j)- G(n, j)] , P(j, m + k)[f(m + k) - f (m)].
j=1 k=1

Now set IG(1, j) - G(n, j)= ej and observe that

(4.11) If(m + k)-f (m)l <kM, k > 1.

Then (4.10) gives

(4.12) | [G(1, t) - G(n, t)]- [f(n) - f(1)]
e=i

m
< M E Gj , kP(j, m + k).

j=1 k=1
By condition B(ii),

(4.13) E kP(j, m + k)
k=1

= , , P(j,j + m-j + r) < ET(m-j + k-1),
k=1r=k k=1

so that
m 00 m0i

(4.14) M Y,ej kP(j, m + k) < M IEj E r(m-j + k)
j=1 k=1 j=1 k=O

m 00

- M Em_j6j, where 5, = rT(k).
j=1 k=j

By B(ii) Fi 3j < oo, and by (4.6), Ej -* 0. Therefore,
m

(4.15) jim YI Em-j5j = 0,
m- j=1

which implies, according to (4.12) and (4.13), that
m

(4.16) lim _ [G(1,f) - G(n, t)] = f(n) -f(1).
m-4 t=1
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Thus we have proved (4.2) in the case when k = 1, but this special case of (4.2)
is easily seen to imply the general case. That completes the proof.
Many open problems remain, however. If one tries to dispense with, or weaken,

condition B(i), then it is hard to derive (4.6) as the Green function G(k, t) need
apparently no longer be bounded. Keeping B(i) and B(iii), however, it seems
certain that theorem 4.1 should hold under a weaker version of B(ii). It is not
known whether it suffices to assume that the tails are uniformly summable,
namely that E Tf(n) < 0.
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