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In one of the most stimulating papers read at the Fourth Berkeiey Symposium,
S. Ulam [1] raised the question of how rapidly an assembly of colliding elastic
particles would settle down into its equilibrium state. If initially the assembly
consists of fast and slow particles, it is a familiar prineiple that the fast particles
will tend to slow down and the slow particles to speed up until, viewed macro-
scopically, energy is shared uniformly among the assembly. Ulam reported on
Monte Carlo studies with a high-speed computer, which tracked the histories of
individual particles in such an assembly in regions of one or more dimensions.
It was found that the energies of individual particles fluctuated very irregularly,
though it might be hoped that, if the computation could have been carried on
long enough, individual energies would eventually approach some neighborhood
of their expected equilibrium values. The purpose of the present note is to handle
theoretically one of the simpler one-dimensional cases, considered by Ulam,
and to show that individual energies do not approach their equilibrium values:
in short, the fluctuations observed on the computer will persist indefinitely,
however long the computation. I cannot see any good reason why a similar
failure to attain individual equilibrium should not also hold in a real system in
three dimensions.

The following discussion also shows that the fluctuations of energy occurring
in a fixed region of space are qualitatively different from the fluctuations occur-
ring in a fixed set of particles. The former are less irregular than the latter, but
even so do not settle down to equilibrium. The type of disequilibrium treated in
the present paper is a persistent instability, to be contrasted with the transient
instability discussed at length in the literature. Many papers in this literature
assume that instability will be transient and proceed, on this assumption, to
determine the relaxation times of this transience. For a review of the literature
and a bibliography of 157 papers, see [2]; references [3] through [8] provide a
selection of subsequent articles.

Ulam considered, among other matters in his talk, the following idealized one-
dimensional situation. A weightless elastic particle is constrained to move on a
straight line between a reflecting barrier and a heavy particle, which oscillates
along the same straight line. Each time the weightless particle strikes the heavy
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one its speed, due to the elastic collision, is increased or diminished by twice the
speed of the heavy particle according to whether the two particles were moving
in opposite or the same directions immediately prior to impact. The motion of
the heavy particle is unaffected by the collision. The problem is to determine
how the motion of the weightless particle at various subsequent instants of time
will depend upon its initial position and velocity. Heuristically one might sup-
pose that the heavy particle will try to share its energy with the other particle,
which being weightless will thereby be progressively accelerated to higher and
higher speeds without limit. An alternative plausible argument notices that
head-on collisions occur more frequently than overtaking ones, because of the
higher relative velocity, and concludes that the weightless particle will, apart
from minor relapses, exhibit a general tendency to gather speed indefinitely.
As far as I could discover from subsequent conversations, all those in Dr. Ulam’s
audience, who had any feelings on this matter, were agreed that the particle
would possess this general tendency to gather speed, though there was some
divergence of opinion on the possible rate of gain of speed. A majority believed
that the speed would increase linearly with time, while a minority (among whom
I have to number myself) were inclined to a variety of slower increases, say
logarithmically with time. It will appear from the following analysis that the
majority were right, in that the expected speed does increase linearly with time:
but there are also a number of amusing and at first sight paradoxical concomitant
effects. For instance, the weightless particle returns to its initial speed infinitely
often, and indeed spends a greater fraction of its time at any given small speed
than at any given greater speed. If the process continues for a long duration 7,
the expected time spent in any prescribed speed zone is asymptotically propor-
tional to log 7'; and the constant of proportionality depends only upon the width
of the zone and in no way on its mean value. These effects are less surprising
when one knows that, although the expected speed of the weightless particle
increases linearly with time, the variance of its speed increases quadratically
with time. In short, the fluctuations in speed get wilder and wilder as time
passes.

But it must here be stated that the conclusions quoted above apply to a
slightly modified version of Ulam’s problem. The primary purpose of the modi-
fications is to simplify the analysis; but, by a very fortunate chance, these same
modifications tend to make the formulation of the problem less idealized and
much more like the real physical situation, although the restriction to motion
in one dimension remains. For computational simplicity, Ulam supposed that
the heavy particle oscillated with a saw-tooth wave form. This supposition is
also convenient in the analytical treatment. However, for analytical convenience
1 shall suppose that, at successive collisions, the light particle strikes not a single
heavy particle, as in Ulam’s formulation, but a succession of different heavy
particles, each performing the same saw-tooth oscillation, but with phases
which are random and independent of each other. This modification removes
the Diophantine difficulties which beset the original Ulam problem, and it also
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comes nearer to the physical situation in which each individual particle collides
with a collection of more or less uncorrelated particles. The other modification,
adopted for analytical simplicity, is to suppose that at any instant the weightless
particle will collide with a heavy one according to a Poisson process whose
parameter is linearly dependent upon the velocity of the weightless particle.
Again, this simplification has the merit of reproducing the usual physical system
with exponentially distributed free distances between particles.

With these simplifications we may now write down equations for the process.
Suppose we choose units of distance such that the velocity of a heavy particle is
always £1/2. Thus if the period of oscillation is 2¢), the complete amplitude
(crest to trough) of the saw-tooth wave will be £,/2; see figure 1, in which posi-

PATH OF HEAVY PARTICLE

PATH OF WEIGHTLESS PARTICLE

Ficure 1
Position s plotted against time ¢.

tion s is plotted against time . Suppose that before impact the velocity of the
weightless particle is v, so that the slope of the line PQ in figure 1 is v. If the colli-
sion point @ occurs on a segment such as BC, where the velocity of the heavy
particle is —1/2, the weightless particle will rebound with speed v + 1; whereas,
if @ lies on AB, the weightless particle will rebound with speed v — 1. By draw-
ing a line BD parallel to QP, and noting that the phase of the saw-tooth oscilla-
tion is uniformly random with respect to the path of the weightless particle, we
see that the probabilities of v going to v + 1 and v — 1 respectively are in the
ratio DC:AD. The geometry of figure 1 yields AD = (1 — 1/2v) and
DC = (1 + 1/2v). Hence, given that a collision occurs, we have the condi-
tional probabilities

1 1 2 1
Prov+ 1} =5+ = v4-li)-
1
() 1 1 -1
Poov=1 =5 —g5="5

The above working requires some minor modifications if v < 1/2; but, for
simplicity, we shall presently adopt initial conditions which ensure that v = 1/2
and accordingly we may regard equation (1) as valid.
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Next we have to take account of the probability of a collision. We have postu-
lated above that this shall be according to a Poisson process with parameter
proportional to the velocity of the weightless particle; and, by a suitable choice
of the units of time (or what comes to the same thing, by a suitable unit for the
mean free path), we may take the constant of proportionality to be 2. Thus the
probability that a collision will oceur in an elementary interval of time d¢ is

2 2v dt.
By combining (1) and (2), we see that, if the weightless particle has present
velocity v, the probabilities relating to an instant df later are respectively
P+ 1) = 5@+ D,
3) PP} =1 — 2vdt,
Pl — 1) = %(2» — 1.

Thus (3) provides the infinitesimal transition probabilities of a Markov process.

For convenience we will suppose that the weightless particle starts initially
with velocity v = 1/2. Its velocities at all subsequent instants then belong to
the set v = 1/2 + k, where k runs through the states k = 0, 1,2, - -+ . In terms
of these states, the transition probabilities (3) become

P{k 4+ 1k} = (k+ 1) dt,
4) Plklk} =1 — 2k + 1) dt,
Pk — 1|k} = kdt.

Let pi(t) denote the probability that the weightless particle is in state k at
time ¢, where ¢ = 0 specifies the initial situation. Then

(6) et +dt) = [1 — 2k + 1) dt]pe(t) + [k dt]pea(t) + [(k + 1) dt]pesa(d)

as may be seen by considering which states at time ¢ could lead to state k at time
¢{ + dt and using (4). Equation (5) provides the system of differential equations

© 20 = ot Dput) + Fpea® + E + D),

In terms of the generating function
(7) P(x; t) = kgo pk(t)xk: 0=sz=s1],
we obtain from (16)

9P _ 9
(8) il 1 -2 v (1 — 2)P.
This is a first-order partial differential equation, which can be handled by

standard procedures to yield the general solution
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> 1 1l —x
©) P 0 = 1= xf{l (- x)t}"

where f is an arbitrary function. The boundary condition comes from the initial
situation

(10) »0) =1, p(0) =0, k>0,
which is equivalent to

1

(11) 1 =P, 0) = r:—xf(l — x).
Hence f(y) = y for 0 < y = 1; and (9) becomes
(12) Pz, t) = m

By expanding (12) as a power series in z, we deduce
. t*
(13) pk(t) = (I_*_—t)k-)-;.’ ko= 0’ 17 2) .

Equalities (12) and (13) lead to various conclusions, of which the following
are typical. The rth factorial moment of the state number at time ¢ is

09 me) = [ {rvra=m ] =
In particular, the expected state number is

(15) E(k) = E(k1Y) = t;

and the variance of the state number is

(16) E&®) + ER)[1 — Ek)] = 1t + 1).
Since

(17) % - <

the probability at any given time of occupying any given state is a decreasing
function of the state number; and the most likely state is the ground state k = 0.
If the process runs for a time duration T, the expected time spent in state k is

(18) m(T) = ﬁ) T () dt.

The integral (18) can be evaluated directly from (13); but it is more convenient
to use (12), as follows.

(19) Mz, T) =kz:;0 mu(T)z* = ﬁ) T Pz, 1) dt

_log[1+ (1 — z)T]

1 —=x
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The coefficient of 2* on the right of (19) yields

(20) mo(T) =log (1 + 1)
and
k Tr
(21) m(T) =log (1 4+ T) —rgl m—'g k>0
Hence
(22) log (14 1) = £+ S mi(D) < log (1 + 1);

whence, for any fixed £k,
(23) my(T) ~logT as T — .

If the particle is known to have just arrived in some given state k, the expected
time it will remain there before visiting some other state is 1/(2k 4 1), by virtue
of the second equation in (4). Since this quantity is finite whereas the right side
of (23) tends to infinity as 7' — «, we conclude that the state k is visited
infinitely often when the process continues indefinitely; and hence every state
is visited infinitely often.

Finally consider how things will appear to an observer who watches a fixed
point on the line. In a short interval of time, of fixed length At and uniformly
random onset, the conditional probability that the light particle will be observed
to cross this point given that it has velocity v is vAt = (k 4+ 1/2) At. Hence the
relative frequency of velocities of observed particles will be proportional to
(k + 1/2)p«(t). Using (13) and summing over k to evaluate to constant of pro-
portionality, we find that the relative frequencies are

(k + -;-)t"
(24) Su(t) = 7 pt k=01, .
B+ +0)
2
The mode of this distribution occurs when % is close to ¢ 4 1/2. The mean is
i

(25) 2+ 2t +1
and the variance is

‘ I
(26) 20 + 1) + @+ 1

To see the asymptotic behavior of k for large ¢, we make the transformation
z = k/t, which reduces (24) to the form

27) ze"* dz
when { — .

It might be possible to extend the foregoing analysis in several directions.
For instance, an isotropic random factor might be introduced into the right side
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of (1) to simulate collisions in three-dimensional space; and the analysis might
be modified to allow the weightless particle to have some definite fraction of the
weight of the heavy particles. But these extensions will not be pursued here.
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