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1. Introduction

The purpose of this paper is to review the development of the so-called
Robbins-Monro (RM) process. Moreover, some of the results presented here
seem to be new. A summary of some results in stochastic approximation, in-
cluding papers up to 1956, has been given by C. Derman [1].
The idea of stochastic approximation had its origin in the framework of

sequential design (H. Robbins [2]). There are not only important applications
in fields like biology, metallurgy, and so on, but also it is becoming increasingly
clear that stochastic approximation is related to interesting questions in other
fields of mathematics.

Let us first recall the well-known classical approach to the iterative solution
of an equation of the simplest type. Suppose that M is a mapping from Euclidean
space R1 into R1 and let a be a real number. We are interested in solutions of
the equation

(1) M(x) = a.

It is well known that under weak assumptions on M the following is true. Let xi
be any real number. Let us define a sequence x,, by induction,

(2) x,n+± = x,n + an[a - M(xn)], n > 1,
where an is a giveni sequence of real numbers which has to satisfy some conditions
not enumerated here. Then xn converges to a solution of (1); moreover, this
solution is the one with the smallest distance from xi (R. von Mises and
H. Pollaczek-Geiringer [3]).

In many practical applications it happens that the function M is only em-
pirically given; that is to say, for every real number x the value of the function
M(x) is subject to an error. We suppose that for every x this error can be repre-
sented by a random variable y(x) with distribution function F. in such a way
that M(x) is the mathematical expectation of y(x) for every real number x, so
that M can be considered as a regression line. The problem is again to find a
solution of equation (1). Whether one knows the error law given by F. or not,
the procedure given by (2) does not work, because we have made the assump-
tion that M(x) cannot be determined exactly. What we really can obtain is a
realization for every real x of the random variable y(x) whose mathematical
expectation is M(x). Under these circumstances one could try to define, instead
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of the sequence of real numbers given by (2), a sequence of random variables
which converges, for instance, in probability or with probability 1, to a solu-
tion of (1). This objective was achieved by Robbins and Monro, who invented
the so-called stochastic approximation method which modifies (2) for random
variables. This work makes it possible to find under weak assumptions inter-
esting convergence theorems of the kind mentioned above, and gives other
interesting results. Moreover, it should be pointed out that stochastic approxima-
tion methods are of the nonparametric type.
The following assumptions are made throughout this paper. (R, S, P) is a

fixed probability field and a typical element of R is denoted by W. Let y(x) be a
set of random variables, -X < x < a) [that is, a set of real-valued S-measura-
ble mappings X -- y(x, co)], whose expectations exist for every x and are equal,
say, to M(x). M might satisfy different conditions from case to case. C1, C2, * -
denote positive constants, g1, 92, * denote arbitrary constants throughout.

2. Convergence theorems

2.1. The Robbins-Monro method. In their pioneering paper Robbins and
Monro [4] define a nonstationary real-valued Markov chain xn in the following
manner. Let a be a real number and let a. be a sequence of real positive num-
bers. Let xl be an arbitrary random variable, and define for n _ 1 and every
co E R,

(3) xn+1(w) = xn(w) + an[a - yn(c)]
where yn is a random variable whose conditional distribution, given xi, * X*,
coincides with the distribution of y(xn). It follows that

(4) E(y.lxn) = M(xn), n > 1.

The following results of [4] are cited here as the historically first theorems.
THEOREM 1. Suppose that there exists a C, such that

(5) P{Iy(x)I < C1} = 1
for all real x. Suppose further that M satisfies the following conditions. There
exists a real number a and an q > 0 such that

(6) M(x) < a-?1 for x < a and M(x) > a + q for x > ,

and there exist C2, C3 such that C2/n . an < C3/n for n > 1. Then, if xi is of
finite variance,

(7) E[(Xn-)2]-_ 0 when n- .

(This implies of course the convergence of xn to a in probability.)
Robbins and Monro also proved the following result.
THEOREM 2. If (6) is replaced by the following conditions: M is nondecreasing,

(8) M(a) = a1,
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and the first derivative ofM at a exists and is > 0, then the conclusion of theorem 1
remains valid.

J. Wolfowitz [5] showed, in answer to a question raised in [4], that conver-
gence in probability can be proved under weaker conditions.
From the point of view of a statistician who is mainly interested in applica-

tions these two theorems are quite sufficient. From a more mathematical point
of view questions about convergence of xn with probability 1 are of interest.
The first theorem concerned with convergence with probability 1 was given by
J. R. Blum [6] (see also G. Kallianpur [7]). Using and extending Blum's method
we can prove
THEOREM 3. Suppose that the following conditions are sati.sfied.

(9) M is Borel-measurable
and locally bounded. There exists a a such that for every a > 0 and every N > 0

(10) inf [a - M(x)] > 0 and inf [M(x) - a] > 0.

There exists a C4 such that

(11) E{[y(x) - M(x)]2} < C4 for -x < x <ce.
Further,

(12) E ann=l
and

(13) FE a2 < O0 .n=l
Th.en either Xn(w) converges to auwith probability 1 or for a set of positive probability
xn(w) oscillates in such a nmanner that lim xn(w) = -, liMxn(w) = x, and no
finite limit point of xn(w) exists.
We shall indicate the proof, which uses the following important lemma.
LEMMA 1. Let Vn be a sequence of random variables and assume that the condi-

tional expectation E(vnIv1, ..*, Vn-1) = 0, for n > 1, with probability 1. If oa(Vn),
the variance of Vn, exists for n > 1 and if 2=_ 1 U2(Vn) converges, then F, v
converges with probability 1 to a random variable [8].

Using (4), (9), (11), and (13) it can be seen that lemma 1 can be applied to
the random variables vn = a^[M(xn) - yn], so that

(14) E aj[M(xj) - yj]
j=1

converges to a random variable with probability 1.
Now (3) gives for every w C R

n-1
(15) x.c(w) -xm(w) + E aj{M[xj(.)] - a}

j=m
n-I

= ,2 aj{M[xj(.)] - yj(w)}, n > m > 1.
j=m
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x.(w) cannot diverge in a set of positive probability measure to + 00 or -00
because if it did then (10) and the convergence of (14) with probability 1 and (15)
would together lead to a contradiction. Further, it follows easily from (15), using
the convergence with probability 1 of (14) and the local boundedness of M,
that each of the statements lim x.(w) = oo and -oo < lim x.(w) <0 and
-0- < lim x.(w) < oo and lim xn(w) = -oo can only be true in a set of prob-
ability 0.

Suppose that for a set G of positive probability measure gi = gi(w) =
lim X.(W) < lim Xn(w() = g2(W) = g2 is true. We treat only the case lim x.(c) _ 6,
the case lim x,c(w) > a being managed in exactly the same manner. It follows
from (15) and the convergence of (14) with probability 1 that

n-I
(16) X.(W) -Xm(W) > E aja - M[xj(.)]} -

J =in

with probability 1 for every 11 > 0 and all mn, n > N(-q). Fix an co E G such that
(16) is valid. There is a finite interval I which depends on gi and 92 such that
xn(,) E I for all m, n > N(77). Due to the local boundedness of M there exists
a C5 such that

(17) sup IM(x)I = C5.
xcl

As a consequence of (13) we can choose an Nl(E) _ N(r) for every E > 0 such
that

(18) a, C + al for all 1 _ NI(E).
There always exist g3 and 94 with g9 < 94 < a such that for infinlitely many
pairs of natural numbers n, m > N(,E), we have x,(w) < 93, Xm(W) > 94, and
Xj(O) < 94 if m < j < n, where it may be that n = m + 1 and no such j exists.
It follows that

(19) Xn(W) - Xrn(W) < 9/3 - Y4-

Now using (10), from (16) we get

(20) x x(w()-Xn(w) > -am{l!a + JM[x1n(cw)]} -

and this is > -(e + q) by (17) and (18). This contradicts (19).
Next, suppose that for a set G of positive probability measure the following is

true: lim xn(W) = 00, lim xn(W) = -a>, and there exists at least one finite limit
point h. Let C6, C7 be such that C6 > max (10, lhi) and C7 > C6 and let

(21) C8 = SUP IM(x)I-
XC(-0C7, C7)

Fix an w E G such that (14) converges. Then either there exist infinitely many
pairs (n, m) of natural numbers such that Xn(GW) > C7 while - C7 . Xm(W) < C6,
and xj(w) > C6 for m < j < n or there exist infinitely many pairs (n, m) such
that X (co) <- C7, -C6 < Xm(CO) < C7, and Xj(CO) < -C6 for n < j < n. It
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suffices to treat the first case. Exactly in the same manner as above we get on
the one hand,
(22) xn(W) - Xm(W) > C7 - C6,
and on the other hand, xn(w) -xm(w) < am(jai + C8) + 1, which contradicts
(22) if am is small enough. Hence x. converges with probability 1 to a random
variable if it is not the case that lim xn(cw) = oo and lim x.(w) = -X in a set
of positive probability measure. But this random variable must be equal to a
with probability 1; otherwise the convergence of F_=i aj[M(xj) - a] to a ran-
dom variable with probability 1, which now follows from (15), would lead to a
contradiction with (12). Note that only for this last conclusion has condition (12)
been used.
A counterexample given by Wolfowitz [5] shows that condition (11) cannot

be omitted. Another counterexample also given in [5] shows that (10) cannot
be removed. Moreover, it is easy to modify this counterexample in an obvious
manner so as to show that the local boundedness of M is essential. However,
we can give a further result which contains, so far as I know, all previously
published theorems in this direction.
COROLLARY 1. If the conditions of theorem 3 are satisfied and if further for

-00 < x < o

(23) M(x) > 9g1xl + 96 (or M(x) _ 971X + 98),
then the convergence of xn to a with probability 1 follows.
We observe first that (10) implies g6 _ 0 or 97 > 0. Suppose for instance that

M(x) > g9jxj + g6 for -Xo < x < X and that in a set of positive probability
xn(w) has only the limit points oo and -oo. Fix an c such that (14) converges.
Let n be so large that
(24) a.([aJ + 1961) < e, a.jg5I < 1, ja.{M[xn(cW)] - Yn(W)}I <K
(25) Xn+l(C,) > Cs, Xn(1) < -Cg, C9 > f + 77-

Then it follows easily from (3) that Xn+l('W) < E + -, and this contradicts (25).
It is easy to show that corollary 1 can be falsified if (23) is omitted (Dvoretzky
[9]).
Condition (23) is in a certain sense a Tauberian condition, as can be seen

by the following considerations. Suppose that an = 1/n, for n > 1, that (14)
converges with probability 1, and that nothing is known about M except (9)
and (23). Suppose further that it is known that xn is bounded with probability 1
and that (xi + * * + xn)/n converges to a random variable with probability 1.
It follows from (15), from the convergence of (14) with probability 1, and from
the regularity of the C1-summability that F_ 1 [a - M(xj)]/j is also C0-
summable with probability 1. From the boundedness of x. with probability 1
and from (23) follows

1 1 01C(26) -[a-M(xn)] < n (a -g6jx4-ge) <-n n > 1,
n n n
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with probability 1. But this is a well-known one-sided Tauberian condition for
C1-summability which implies the convergence of F_= I [a - M(xi)]/j and so
that of x. with probability 1. The same conclusion holds if (23) and the bounded-
ness of x. with probability 1 are replaced by the one-sided boundedness of M.

2.2. The Kiefer-Wolfowitz (KW) process. Stimulated by the Robbins-Monro
paper [4], J. Kiefer and J. Wolfowitz [10] constructed a process which enables
the determination of an unknown maximum (or minimum) of a function. This
process is exactly the stochastic version of a classical iterative procedure first
defined by B. Germansky [11]. More precisely, they have proved the following
theorem, which was the first result on stochastic approximation to the maximum
of an unknown function.
THEOREM 4. Let x1 be an arbitrary random variable and define xn for n > 1

and every co by

(27) xn+1(,w) = xn(wo) + an Y2.(G') - Y2n-(W)
Cn

where Y2n-i and Y2n are random variables whose respective conditional distribution,
given X1, * * * , Xn, Yi, ...* *Y-2, are independent and coincide with the distribu-
tion of Y(xn - cn) and Y(xn + cn) respectively. The sequences of positive numbers
an and cn satisfy the following conditions

(28) cn - 0, E an =0 X anc. <°, X a4cn2 < 00
n=1 n=1 n=1

Suppose that M atij,fies condition (11) and that there exists a real number a such
that M is strictly increasing for x < a and strictly decreasing for x > &. Suppose
further that M satisfies the following conditions. There exist positive numbers ,B
and C11 such that x, - 6 + 1X2 - t1 < j implies IM(xi) -M(x2)| < C'1xI -x21.
There exist positive numbers p and C12 such that Ix -x21 < p implies that
IM(XI) - M(X2)1 < C12. For every 5 > 0 there exists a positive 77(5) such that
Ix- tj > a implies

(29) inf IM(x + e)-M(x-e)l± > ±
(/2>>>0()

Then Xn converges in probability to t.
A very simple and typical example of a function M which satisfies these con-

ditions is M(x) = Ci3x - t1 for --o : x < oo. Note that M(x) = (x -)2
for -Xo < x < oo does not satisfy these conditions.

Later these conditions were considerably weakened by J. R. Blum [6], D. L.
Burkholder [12], and by A. Dvoretzky [9] (see below), but Dvoretzky's approach
goes much further. He introduced a general stochastic approximation process
which embraces as special cases the RM and the KW process'es.

2.3. Process of Dvoretzky. Let (xi, - *, xn) -+ T.(x1, ... , xn), for n > 1, be
a sequence of Borel-measurable mappings from Rn to R1. Let xl and un, for
n > 1, be random variables and define for n _ 1 and every w



STOCHASTIC APPROXIMATION 593

(30) x.+1(w) = TR[xl(w), .* * , x,(w)] + u.(w).
Dvoretzky [9] proved the following convergence theorem for this process.
THEOREM 5. Let an, , -,, be nonnegative functions from Rn to R1 which sati fy

the conditions limn- an(xi, * - * , xn) = 0 uniformly for all sequences xl, x2, . * ;
the functions On are Borel-measurable and En 1 3ln(XI, * , Xn) is uniformly con-
vergent and uniformly bounded for all sequences xl, X2, * -Yn(XI, * , Xn)
diverges to oo uniformly for all sequences X1, X2, * with SUpn 1xn! < C14 for every
C14. Let ta be a real number such that

(31) Tn(xi, * * *, xn) -6
_ max {tn(Xi,, -. , x.)[1 + a3n(xl, * * X,X)]Ixn - -Y-Yn(X*, Xn)}

for all (xi, * * * , Xn) E Rn where n > 1. Suppose further that E(unIx1, - * *, xn) = 0
with n > 1, with probability 1, and that E_=1 E(u') < oo. Then Xn converges to t)
with probability 1.

Later Wolfowitz [13] gave another proof of this theorem which is simpler than
Dvoretzky's proof and similar to the proof given for theorem 3.
A specialization of theorem 5 to the case of the RM process, with the relation

Tn(X1 .**. xn) = xn + an[a - M(xn)] for (xi, * * *, xn) E Rn and with un(W) =

an {M[xn(c)]} -yn(co), for w C R, n _ 1 gives a theorem like corollary 1 but
with the one-sided condition (23) replaced by the less general two-sided condi-
tion. A similar specialization to the KW process gives
THEOREM 6. Consider the process defined by (27) and suppose that as3um p-

tions (11) and the first, second, and fourth parts of (28) are satisfied; there exi t
C16 and C16 such that IM(x + 1) - M(X)I < C161XI + C16, for -oo < x < oo;
there exists a real a such that for every 5 > 0 and N > 0 we have, for the upper and
lower derivative of M,
(32) sup DM(x) < 0, inf DM(x) > 0.

a <x-d<N a<d-2x<N

Then xn converges to a with probability 1.
M(x) = - (x - ty)2 obviously satisfies the conditions of theorem 6. Note that

the third part of (28) is superfluous. Roughly speaking, a true convergence
theorem for the RM process "implies" a true convergence theorem for the KW
process if the conditions imposed on M in the RM process are replaced by similar
conditions for the derivative of M.
Dvoretzky [9] and Wolfowitz [13] are interested not only in convergence with

probability 1 but also in mean convergence. More exactly the following result
has been proved.
THEOREM 7. Consider the process defined by (30). Define

(33) bn = E[(xn - 6)2].
E(xl2) < a) together with the assumptions of theorem 5 imply
(34) bn O-*0

T. Kitagawa [14] gave a slight modification of this result. Instead of a single
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real number t, he introduced a sequence of real numbers t£8 and gets (under
weaker assumptions) the conclusion E[(xn - #n)2] -+0.

In previous papers the author ([15], [16], and [17]) showed that in the special
case of the RM process, under stronger conditions, not only can (34) be proved
but also the order of magnitude of bn can be determined. We have
THEOREM 8. Consider the process defined by (3) and suppose that assumptions

(5), (9), (12), and (13) are satisfied, and that x1 is a random variable which is
bounded with probability 1,

(35) [M(X)- a](x - 4) > 0

for all x # t~. There exists an e > 0 such that

(36) [M(x) -al >_ Cl7Ix- t1, Ix- ?1 fE,

and

(37) IM(X) -al _ C18, |X-#1 > e.
Then

(38) b. . bi n:1 (1 - C-1+' (1 - alei [I (1 - C9ar)]}'
where

n
(39) ei =E[(yi -a)2], i _ 1; A, = 1X An =Eai.

i=l

Clg has the following significance. From the assumptions made there follows
the existence of a C19 such that

(40) IM(xn) - al 2A9,i xn- , n _

with probability 1.
A similar theorem is true for the so-called quasi-linear case in which assump-

tions (5), (36), and (37) are replaced by (11) and the following condition. There
exist C20 and C21 with C20 > C21 such that

(41) C2OX-1 >_ IM(X)-al > C211X-tj, -O<x <oo
Then (38) remains true if one replaces ai/Ai-1 by ai for i > 1, and Ci9 by 2C21.
It follows immediately on choosing

(42) a, = n for n > 1, with c >

that bn = 0(1/n).
For the linear case, in which M is supposed to be of the form M(x) = g9x + gio

for every real x, a result like theorem 8 was also obtained by J. L. Hodges, Jr.,
and E. L. Lehmann [18].

Condition (42) deserves still some attention. It is obvious from geometrical
considerations that, for the classical iteration process given by (2), the speed
of the convergence of x. to a is closely related to the slope of M near . The
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greater the slope near ?Y the faster the convergence of x,, provided the sequence a.
in (2) is chosen in a proper way. A very similar situation occurs for the RM
process. Roughly speaking, the smallest slope of M near a is decisive for the
magnitude of the asymptotic variance of the random variable x. given by (3).
The smallest possible order of bn is only attainable if a proper C21 is known. For
the KW process similar studies of the magnitude of the asymptotic variance of
the random variable x. were made by V. Dupa6 [19].

2.4. Other convergence theorems. A generalization of the RM process has been
given recently by Blum [20]. Let {Tn: n _ 1} be a sequence of Borel-measura-
ble mappings from Rn to R1 which satisfy the condition

(43) ~ IT.(xi, , x.)I < °°
n=1

for every sequence xl, x2, - -of real numbers. Let {hn: n _ 1} be a sequence of
Borel-measurable mappings from R. to R1 with the following property. There
exists an integer k > 0 such that for every real number r and every e > 0 and
all n _ N(r, e), we have xi _ r + e [respectively xi < r-e] for i = n-
k + 1, * * *, n implies h.(xi, * , x,) > r [respectively h.(xi, * , x,n) < r]. Then
the following result is true.
THEOREM 9. Suppose that M is bounded and satisfies conditions (9) and (10)

with a = 0 and (11). Suppose further that Tn satisfies (43). Let xl be any random
variable and define by induction xn+i(w) = xn(w) + Tn[XI(w), - * *, Xn(W)] - anwn(W)
for every co E R, for n _ 1, where an is a sequence of positive numbers satisfying (12)
and (13) and where wn is a random variable whose conditional distribution, given
X*..** x,,, coincides with the distribution of y[hn(xi, * * , xn)] for all n _ 1, and
where hn may satisfy the condition listed above. Then xn converges to t with proba-
bility 1.
The proof uses lemma 1 and the following result.
LEMMA 2. Let un, vn be two sequences of random variables. Denote for every

e > 0 the characteristic function of the set {W: Un(wO) _ e, * * , Un-k+l(W) _ e} by
Ce,,,k and by c,f,n,k the characteristic function of the set {w: un(w) < -e, - * * X
Un-k+l(W) <_ -E}. Suppose further that for some positive integer k and every e > 0
we have Fnk Cf,,,k(Vn + IvnI)/2 and 2n=k Ce,n,k(Vn- ID1/2 converge with prob-
ability 1. Then un converges with probability 1 if and only if limn-. Vn = O with
probability 1 [20].

Let us go back once more to the KW process. Theorem 6 shows how to deter-
mine under weak conditions the location a of an unknown maximum or minimum
of a function M. But it may also be of interest to find out the value M(#) of
the extremum. In this direction we note a convergence theorem given by
Burkholder [12].
THEOREM 10. Suppose that the conditions of theorem 6 are satisfied. Suppose

furthermore that M is continuous at t. Then, if the random variables yj for j > 1
have the same significance as in theorem 4, _.= 1 yj/n converges to M(a) with prob-
ability 1.
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The proof depends oni the following lemma, which is onily a reformulationi of
lemma 1.
LEMMA 3. Let {vn: n _ I,' bC a sequence of randonm variables and assume

E(VnIV1x***, Vn-1) = Ofor n > 1, with probability 1. If a2(vn) exists for n _ 1 and
if 2n-l r2(vn)/n2 converges, then 7n'= vn/n converges with probability 1 to a ran-
dom variable.
Apply now lemma 3 to the random variables V21 = Y2n-1 - M(xn - cn) and

V2n = Y2n - M(x. + cn)-

3. Higher moments and the asymptotic distribution

The first results in this direction were given by K. L. Chuig [21] for the case of
the RM process. He developed an interesting method which was used in a very
rudimentary form earlier in [15], [16], and [17]. The method depends on the
study of some linear difference inequalities and can be roughly described in the
following way. Using the notations (33), (39), and dn = E{(xn- t3) [M(xn) - a]}
it is easy to derive from (3) the following equation
(44) bn+1 = bn- 2a.d. + en-

Suppose that it is known that dn _ 0. This is the case, for instance, if condi-
tion (35) is satisfied. Clearly, if a lower [upper] bound for d,(n _ 1) and an
upper [lower] bound for en(n _ 1) can be found, one obtains from (44) linear
difference inequalities for bn and derives from them upper [lower] bounds for b".
In the same manner, using induction too, one can get bounds also for the higher
moments of x. - #. Besides this, Chung [21] obtained with the help of this
method precise results about the asymptotic behavior of the higher moments
of xn - t as n - oo. In [21] the following theorem is actually given.
THEOREM 11. Suppose that (5), (8), (9), and (35) are satisfied and also assume

that

(45) M(x) = a + ai(x - ) + o(Ix -1) as x - O-+0, 0 < a, <ax

For every a > 0 we have

(46) inf IM(x) -al = Ko(b) > 0.

For all x we have

(47) E{[y(x) - M(x)]2} = O2.

Choose an = 1/nl-' for n > 1, with 1/2(1 + C22) < e < 1/2, where C22 has a
significance similar to that of C19 in theorem 8. Then we have for every integer r _ 1

(48)

lim n(l-e)r/2b(r)= if r =2--1,
n- Boo(o2/2a,)A(2s - 1)(2s - 3) ... 3-1 if r = 2s,

where b .) denotes the rth moment of x.-
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Using the well-knowrn theorem of Fr6chet and Shohat onie gets the following
result.
COROLLARY 2. The randomt variable n(l-)/2(x,,-t) has an asytmptotically

normal distribution with n ean 0 and variance a2/2a,.
A similar theorem is true for the quasi-linear case in which (5) and (46) are

replaced by (41) and by the condition that

(49) E[ly(x) - M(x)lP] C(23(p)
for all x and all p _ 1. Then, if (42) is satisfied, we have for every integer r _ 1

(50)
lim /2 bn ) =04<if r = 2s - 1,

n-. ~ L[o2c2/(2a,c - 1)]A(2s - 1)(2s - 3) ... 3-1 if r = 2s.

Obviously we have also a result on the asymptotic normality of n12(x -
which corresponds to corollary 2. But condition (41) is of course very restrictive;
it is not satisfied, for instance, if M is bounded. Hodges and Lehmann [18]
introduced a nice idea which shows that (41) can be replaced by

(51) IM(x) - al _ C24lx - l, -0 < x <00,

if one is only interested in the asymptotic distribution of x. - ta at the sacrifice
of knowledge about the behavior of the moments of xn-d. Let us describe this
without going into details. It follows from (45) that for small t7 > 0 there
exists a C26 with C25 = inflx-1 <,, I[M(x) - a]/(x - t~)I. Choose a. = c/n for
n > 1, with c > 1/2C25. Then (8), (9), (35), (49), and (51) imply the con-
vergence of xn to a with probability 1 as a consequence of corollary 1. This
implies that for every q > 0 and e > 0 we have jxn(w) - tj<< with prob-
ability > 1 - for n 2 N(E, rq). It follows from (45) that (41), with x = Xn
when n _ N(e, q), is satisfied with probability 1 - e. Now a truncation argu-
ment is used. If we remove a set of probability < e the conditions cited above
for the quasi-linear case are satisfied. Hence the asymptotic normality of
n1/2(Xn- t) is proved. This is, especially from the point of view of a statistician,
a satisfactory result. Even in the case of a boundedM we can get an "asymptotic
variance" for xn of order 1/n whereas corollary 2 gives only order 1/nl-E.

C. Derman [22] and V. Dupa6 [19] obtained similar results with the help of
Chung's method for theKW process. Using and refining this method, Burkholder
[12] obtained more general and more sophisticated results for a more general
stochastic approximation process which contains the processes of RM and of KW
as special cases. This process has the following form. For every natural number n
let Mn be a mapping from R, to R1. For every n and every real x let zn(x) be a
random variable, [co -4 zn(x, w)], whose expectation exists and is equal to Mn(x).
Let xi be a random variable and kn a sequence of positive real numbers and
define xn for n > 1 and every co by
(52) xn+1(w) = xR(w) -knZn(@),
where the conditional distribution of zn given xi, * , x,1 is the distribution
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of zn(xn). There exists an analogue to theorem 11 for this process. Moreover,
the quasi-linear case can also be treated and the truncation device of Hodges
and Lehmann [18] is useful also if one is only interested in the asymptotic
distribution of xn.
The most general and complete results concerning asymptotic distribution

of x,, for the RM and KW processes have been obtained by J. Sacks [23]. He
does not use the method of moments and gives theorems which are modeled on
the Lindeberg-Feller central limit theorem. He observes that his method works
under suitable conditions also for the process defined by (52). We will now
formulate such a theorem and give the main lines of the proof.
THEOREM 12. Let there be given a process of type (52). Suppose that conditions

(53) to (62) are satisfied. M. is Borel-measurable for n > 1; there exists a sequence
of real numbers gun with Mn(Mn) = 0 and there exists a a with

(53) IA.-a = 0(n--7), ' > °.

(54) (x - ,IA)M,(x) _ 0

for all real x. There exist C26 and C27 and a bounded sequence of positive numbers In
with

(55) C26-` xMn(Xy) <5 C27ln(X - ,un)=
for all x 4 A,,;
(56) Mn(X) =311l(x - ,',n) + lnT(X -n)
with limx-o r(x)/x = 0. For a t with

(57) 1<< < y,

we have

(58) nt+'/2k,,-- c >

and

(59) nk,,l,, ---> nln .

with
(60) d > t/C26,

(61) sup E{[zn(X) - Mn(X)]2} < x-
x,n

The sequence of mappings x -* E { [zn(x) - M"(X)]2} converges continuously to a
cr2 > 0 at x = afor n -o-. Denote the set {w: Izn(X, c) - Mn(x)I > R} by An,z,R
and take e > 0. Suppose that

(62) lim lim sup | {[Zn(X O) -Mn (X)]2} dP = 0
R- x 0.-0 < f An-z,

uniformly in n. Then nt(xn- ) is asymptotically normally distributed with mean
0 and variance o2c2/(2,1d - 2k).
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Ail iimportailt, tool for the proof is
LEMMA 4. [8]. Let Unk for 1 < k < it anld it _ I bc a set of rantdomit variablcs

whose distribution function will be denoted by Fnk and whose variance ank exists.
Suppose that E(unklUni, * * *, U.k-1) = 0 with probability 1. Define E(u'kntun, *
Unk-1) = Snk. Under the assumptions

(63) E x2dFnk I0, E>0.
0=k_n Jzl _ C98E

(64) _nnk _ C28
k _n

fr n > 1, and
71

(65) _ L'18h - 04 - 0

for n -- o, we htave u,,/0n = Ek <n Unk/0n is asymptotically distributed according
to a normal distribution with mean 0 and variance 1.
Now for simplicity let xi be a constant with probability 1. We observe that

(66) ,B1d- > 0
as a consequence of (55), (56), and (60). From (52) and (56) we immediately
obtain

n
(67) Xn+1 - = (X1 -t7)#On + Oflkmlm3mnum-0)

n n1
- 7 k, [z,,, - Mm(xm)]3m,z - kkmlm3mnr(X-n -U),

lnz= m=1

Avhere f3mn = ITh,n±i(1-fl k/ili). It is easy to see from (59) that

(68) fmn = nioddn-#d + o(niO1dn-sld), n _ iin; I -Co.

Secondly, using (68) and (58) we get

(69) 1In = (ziE 1l>12nz = [2 d2 ~] nc + o(n7)

and it is enough to prove that hn(xn- ) is asymptotically normally distrib-
uted with mean 0 and variance a2. For this it suffices to show that

(a) h.g0o. O;
(b) hn E7t=I kmlm(ii.n m 0;
(c) hn ,_'M=l km[zm - Mm(Xn)]I3mn is asymptotically niormally distributed with

mean 0 and variance a2;
(d) ,Z-M=i kml7mI3mnT(Xm - gm) converges to 0 in probability.
(a) is a consequence of (68), (69), and (66). (b) follows from (53), (68), (69),

(59), and (57). Denote the random variable h-kj0j[zj-Mj(xj)] by unj for
1 < j < n, n > 1. To prove (c) it is enough to show that utni satisfies the condi-
tions of lemma 4. First of all it is easy to see that

(70) E(u,jiu.1, * * , u.j_1) = 0
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with probability 1. Then we will show that

(71) nE f_ un dP -* 0

for every E > 0. But lu,,jl > e together with (58), (68), (69), and (66) implies
that for a proper B(e) > 0

(72) -Zj-llj(xj)I > (E)jI/2
From the assumptions made it follows by theorem 5 that xn converges to t9 with
probability 1, and so as a consequence of (61) and (62)

(73) lim sup f. { [zj - Mj(xj)]2} dP -40,
y?- jfA.,x1,'R

where Aj,xi,R = {co: zj(w) - Mj[xj(co)]j > R}. Hence using (61) and (72), to-
gether with (58), (66), (68), and (69) we have, for a suitable natural number N
and n > N large enough,

n N n

(74) Enj, _ , dP? = E | u% dP + E i,>| u dPj= 1lnjI fj = 1 U _ej = N+1 lnfl
N n1 F[n 2(Oid-t) E m20id-2t-i] + o [n-2(Odd- E S20id-2t-1] o(1)

I'K rn=J. +0 m=N+1 m=1m=N+l

for every e > 0. Next we have to prove (65). As the last part of the above proof
of (71) shows, it is enough to prove that E[IE{[zk - Mk(xk)]21 [zI - Ml(xi)]*
[Zk - Mk_l(xkl)]} - E{[zk - Mk(xk)]2})] converges toO for k oo. But this
follows from

(75) E{[z, - Mk(Xk)]2I [ZI - 3,f1(X1)], k, -1 - Mk-1(Xk-1)])
- E{[Zk - Mk(Xk)] ->0

with probability 1 as a consequenice of (61) and of the well-known theorem on
the term by term integration of boundedly convergent sequences. (75) follows
easily from the convergence of x. to aY with probability 1 and the continuous
convergence of E{[zn(x) - Mn(x)]2} at x = 0.
Now we have to show that (64) is satisfied but it can easily be proved, in the

same way that (75) was proved, that 3' converges to u2. Therefore, some posi-
tive bound C28 for an, with n > 1, exists.

(d) is proved in the following way. For every i7 > 0 there exists ani e > 0
such that
(76) IT(X )| < 721I -
for Ix -7I < e. (Oi the other hand, for every a > 0 anid E > 0, wN-e have
(77) 1tn-1 < e

for all n > N(e, 8) with probability 1 - B. According to the assumptions made
it is possible to choose a natural number N1 = N&(q) > N(e, 8) such that for
n > N1(&) we have |hn rn =Nl kjnlmmnl-CYI < q/2. Then we have for n > N1(q),
using (53),
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(78) P {Ihn EN kmlmlmnT(xm- Mm)l >
mNi

(h
N

Ih.~~~~~ mm3n(X ~ 7) - 0 h km1.l.mf3 ~)

< P 4x|h.kmlImmmnT(Xm -)1 > 71/2

< a +P{hnP El km1mnIXmx 6 > 1/27)}
M=N1

_ a + 2nE Jhn_ N kmlmmnlXm-

using (77) and (76). Using the modified form of (38) for the quasi-linear case
we obtain, under assumption (58), E[(xn- )21] = 0(n-E-112). With the help of
this and of Schwarz's inequality we have from (78)

n

(79) P{ihn.E kmlmf3mnT(Xm - tm)I > 1} _ 6 + 0(2X1).
m-NIF

Moreover, for a fixed N1, P{h,nl __ kmlm3mn(xm- 4m) > j} becomes arbi-
trarily small for every 77 > 0 if n is large enough. This proves (d). It should
still be mentioned that the truncation device of Hodges and Lehmann [18] can
again be used and (55) can be relaxed.
We shall discuss the application of theorem 12 to the KW process defined

by (27). This may be done by introducing the following substitutions
(80) cn = a/cn n 1,

ln = Cn, n > 1,
(81) Zn(X) Y(X C.) Y(X +Cn), <X < n > 1,

and therefore
(82) Mn(x) =M(X-cn) -M(x +cn), - <x<o n 1.
One must first check whether all conditions of theorem 12 are satisfied. Here we
are concerned especially with condition (54). Suppose there exists a real num-
ber d such that

(83) M(xI) < M(x2) for 1 <2 _ a
1 > X2 > ty-

Then it is easy to see that for every E > 0 there exists a ,u(e) such that
(84) [x -,(e)] [M(x- E) - M(x + E)] > 0 for all x (,e).
Burkholder [12] has introduced the following concept. Suppose that M satisfies
(83). M is called 7)-locally even at tQ if

(85) a - A(e) = O(e'+v), X > 0, E -0.

It is not difficult to see that any M satisfying (83) is 0-locally even at t.
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Intuitively it seems very likely that the "asymptotic variance" of x" - ta for
the KW process is smaller the greater q is. Let us make this more precise.
Suppose that M is q-locally even. After making the substitutions (80) to (82)
we immediately recognize from (84) that condition (54) is satisfied with

(86) /I. = (C.X), n _ 1.

Now, from conditions (58) and (59) it follows easily that cn = O(nE-1"2). From
this result, (85), and (86), it follows that condition (53) is satisfied with -Y =
- 1/2)(1 + q). According to (57) we must have 0 < t < (1/2 - t)(1 + 1),

which is equivalent to

(87) 0 < t < 2 4 +2n1
Summing up, we have the following result.
COROLLARY 3. Consider the KW process defined by (27). Suppose that M is

tq-locally even at 6. If (87) is satisfied, then, under some more conditions which
can easily be found by comparison with the condition of theorem 12, nt(xn- 4) is
asymptotically normally distributed.

Sacks [23] has shown that this corollary is still true if in the conclusion nt is
replaced by n'12-11(4+2i7)(log n)-1. The question arises whether the factor (log n)-l
can be omitted. The answer is, in general, no, as has been shown by Sacks [23].

Let us go back for a moment to theorem 12. On the assumptions of this theo-
rem two important and, in most practical applications, unknown parameters
occur: #,i and a2. This means that the result of theorem 12 can in general not be
used for the construction of asymptotic confidence intervals for d6. But it is easy
to see, using lemma 3, that under the assumptions of theorem 12

n

(88) Sn =Ez'/n
j=1

converges to -2 with probability 1. Let us introduce the following notations: fn
is a sequence of positive numbers; zn is a random variable whose conditional
distribution given xi, ... xn, Z1, .* - , Zn-, is independent of the corresponding
conditional distribution of Zn and is given by the distribution of z(x. + fn) for
all n _ 1. Now the following theorem is given in [12], which is of some practical
interest.
THEOREM 13. Suppose that the conditions of theorem 12 are satisfied. If

fn - 0andfW-= O(no)forsome to with0 < to < t then tn = Fj'71 [(zJ- zj)/ljfn]
converges to 631 with probability 1. It follows from theorem 12 and (88) that
nZj2tnd - 2t112(csn)-'(xn- 0) is asymptotically normally distributed with mean 0
and variance 1.
The problem of what happens to the asymptotic distribution of xn, if there is

one, without conditions like (61) and (62), is not yet attacked. But an interesting
investigation of Chung [21] is the linear case for the RM process should never-
theless be mentioned. Suppose that M(x) = x - ta for all x and some real ta
such that a is the solution of the equation M(x) = 0. Suppose further that F is
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any distribution function and that the distribution function F. of y(x) is given
by F. = P[y(x) _ y] = F[y - M(x)] for all real y and every fixed real x. As-
sume further that in the RM process given by (3) a = 0 and a. = l/n, that is,
x.+l(cw) = x(w) - yn(w)/n for all n > 1. Under these assumptions we have
THEOREM 14. All possible limit distributions of xn- ta are stable laws.
The proof can be based on considerations of characteristic functions. If so is

the characteristic function of F we find that

(89) E[ei(x-1-6)t] =I (_L)]n, -so < t < oo.

It follows in particular that every stable law of exponent a, where 1 < a < 2,
is the limit distribution of x. - # for a suitable choice of F.

4. Optimal property of the RM process and stopping rules

Chung [21] has proved with the help of an argument due to Wolfowitz [24]
that the RM process is asymptotically minimax in the quasi-linear case under
certain conditions. We shall clarify this below. Denote by F the mapping x F,
with -oo < x < oo, where F. is the distribution function of the random vari-
able y(x). It is assumed that for every F there exists a corresponding MF.
Clearly, MF is defined for every x by MF(x) = yY dF.(y) according to our
basic assumptions. Let H be a class of mappings F which have the property
that for the corresponding MF and vp the conditions (8), (9), (41), (45) with alF,
(47) with o4, and (49) are satisfied. Suppose furthermore that there exist C29
and C80 such that infH alF _ C29 and supH o < C30. Suppose further that H
contains the set of all mappings x -4 N[C29(x - a), C3o] where N(m, a2) denotes
a normal distribution with mean m and variance a2 and where gg < a < glo
with g9 < g10. Choose in the RM process given by (3)

(90) a. C= n _ 1.

Now let W be a weight function defined over H X R1 as follows. W(F, t) -
C31tIF- tIr for all (F, t) E H X R1 wvhere r > 2 is an integer.
THEOREM 15. If D. is the set of all sequential estimates Tn for tAF based on a

sample of size n and if x,n+i is the estimate given by the RM process with (90), then
under the assumptions made

sup E[W(F, Xn+l)]
(91) lim FEH 1

n1 >inf sup E[W(F, Tn)] 1.
T.(eD. FEH

From the point of view of application this means that in the large sample case
the problem of an optimal choice of the sequence an is solved to a certain extent.
But very little is known about "good" stopping rules for stochastic approxima-
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tion processes in the small sample case. For the case of a fixed sample size a
result of Dvoretzky should be mentioned.
THEOREM 16. Consider a RM process given by (3) and suppose that (10), (9),

(11), and (41) are satisfied. Suppose further that E[(xi -)2] < C32 and that

(92) C32 C
C21(C20- C21)

Then, if

(93) an C21C32nn = 1, ,p,

it follows that

lE,(xpz-a2] C4 + 221C32P
and the choice (93) (of the an is an optinral one in the senEe that if (93) does not hold
then there exists a process given by (3) satisfying (92) for which (94) is false.

Later Block [25] considered some generalizations of theorem 16 (see also
Schmetterer [26]). Obviously, theorems of this kind are closely related to theo-
rem 8.

5. Accelerated stochastic approximation

Consider the process defined by (30). One might have the following idea. As
long as xn- xn-1 always has the same sign, the approximation to a cannot be
very good. If x. is near d then the sign of x. - x,_, will in general fluctuate
frequently. Kesten [27] recently used this idea to obtain a process which may
accelerate the convergence of x. to 6. Let Tn have the same significance as in
the process of Dvoretzky. Let xi and un for all n _ 1 be random variables and
let a. be a sequence of positive numbers. Define x,, for n > 1 by
(95) x.+1(w) = Tn[x1(w), * * xn(c)] + dn(W)Un(c1),
where di = a,, d2 = a2, dn = a, (n) with

(96) s(n) = 2 + E j[(xi -xi-l)(xi-xi2)], {(x)
This means that dn is constant so long as xn -xn- and xn-I -xn2 have the
same sign. Let an, Onl, 'Y be functions defined as in theorem 5. Let

(97) P(b) = inf inf Yn(xl, * * *, x.).
n xi",* **2n1 dn

l2n-|l <a

Kesten [27] proved the following result.
THEOREM 17. Suppose that (12) and (13) are satisfied and that a,,+,< anfor all

n [t1. If ITn(Xl * ** X n)- 1 >0[1 + Tn(xI, - * * , xn)lXn- t1 Y(Xl, * * * , Xn)I
when [Tn(xi, *** Xxn)] (xn - 25) > 0; Tn(xi, -* X Xn) -1 <aCn(Xl, * X.)
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when [Tn(xi, x.* XX) -](x-) _< 0; liml(n)- an(xi, * , x") = 0 uniformly
for all sequences xi, X2, * , with s(n) l; limn - (xn -1)#3(x, *, x,,)/dn = 0
uniformly for all sequences xl, X2, * ; 1 #n(X.*, Xn) converges uniformly
for all sequences xi, x2, - * *; p(5) > 0 for every positive c; E(un1x1X*, * xn) = 0,
E(u!lxi, * * *, xn) < C33 with probability 1;

(98) lim lim inf P{Tn(xi, * * xn) + dnun ?_ Xn,Xl, * , Xn} > 0
XI, * *,Xn-I

and
(99) lim lim inf P{Tn(xI, * * xn) + dnun < Xn|X1,*, , Xnl > 0,

nf-*OO-0 0s:x-tl _T
xi, * * * ,Zn-

then xn,, given by (95), converges to a with probability 1.
The proof of theorem 17 rests on a refinement of Wolfowitz's proof of theo-

rem 5. It would be interesting to find less complicated conditions which guarantee
the conclusion of this theorem.

6. Generalizations to more general spaces

It is quite natural to ask whether the definitions and the results so far ob-
tained may be generalized to the case that M is a mapping from R, to R" or
more generally from some abstract space B into B. It is almost obvious how
to generalize, for example, the definition of the RM process given by (3) to
the definition of an n-dimensional RM process. Suppose that for every x =
(x, * * * , x,,) E R.. an n-dimensional random variable y(x) = y(x1, ... , Xf) =

[y(1)(xi, * - , x,), - * *, y(n)(x1, * , x,,)] is given whose mathematical expecta-
tion M(x) = M(xi, * * * , xn) = [M(1)(x, * , xn), * X M(')(xi, . * * , xn)] say,
exists for every (x1, . * , x ) E R.. Let a (a(i), .* , as(n)) be an element of Rn.
The problem is, of course, to find a solution of the n equations M(x) = a. Let
us start with some n-dimensional random variable xi). Let a3 be a sequence of
positive numbers and define for j> 1 and every w C R

(100) Xj2il(,) = X,1n)(W) + aj[. - 8(n(w)]

where yjfl) is a random variable whose conditional distribution, given
x .n),* * *, xj'), is the distribution of y(x(n)). Relation (100) is the n-dimensional
analogue to the RM process given by (3). The first results in the direction of a
generalization of theorem 5 for the process given by (100) and the analogue of
the KW process were obtained by Blum [28]. Results concerning asymptotic
distributions in the case of the n-dimensional analogue of the RM process and the
KW process were given by Sacks [23], who generalized his method to this case.
Some hints for generalizations of the process of Dvoretzky to the case of

Banach spaces were given by Dvoretzky [9] himself. A convergence theorem
in Banach spaces which generalizes theorem 5 is due to Block [29]. But it should
be pointed out that these theorems are not essentially probabilistic. Let us
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introduce for this the following notations. Let B be a vector space over the real
numbers. Let N be an ordered (not necessarily completely ordered) vector space
over the real numbers. Suppose further that a Hausdorff topology is introduced
in N which is compatible with the structure of N. Suppose that a mapping p
from B into N is given with the following properties: p(x) > 0 for all x E B
and p(x) = 0 implies x = 0. Also p(x + y) . p(x) + p(y) for all x, y E B, and
p(ax) = lalp(x) for all x E R and all a E R1. A sequence x. of elements from B
is called convergent to x C B if p(xn- x) converges to 0 (in the sense of the
given topology). p is called the generalized norm of B (see Kantorovic [30] and
Schroder [31]). Now we can state the following result.
THEOREM 18. Suppose that the conditions below are satisfied. Q is a positive and

linear operator from N into N with the property that Qnp converges to 0 for every
v E N. If vn is a sequence of elements from N which converges to 0 then J -

converges also to 0. Tn is a mappingfrom Bn = B X B X X B into Bfor n _ 1.

(101) p[T.(ul, * , u,n)] < Qp(Un)

for n > 1 and for all (ul, - - - , un) E Bn. Also let zn be a sequence of elements
from B which converges to 0. Let ul E B be any element and define by induction

(102) Un+1 = Tn(ul, * * un) + Zn.-

Then Un converges to 0.
The proof is very simple. It follows from (101) and (102) and the other assump-

tions made that p(un+l) _ Qfp(ui) + ,f_O Qip(zn_) for n _ 1 where QO = E is
the identical mapping. It follows immediately that p(un) converges to 0. If N
is lattice ordered then condition (101) can be replaced by p[Tn(ul, * * * , u.)] _

sup [an, Qp(un)], where an converges to 0. This is a natural generalization of
condition (31). The assumptions made for Q are satisfied if, for example, the
following conditions hold: Q is a positive and linear operator from N into N and
F'=0 QnV converges for every v E N. (This means that the operator (E - Q)-1
exists for all elements of N.) For all elements of N a norm in the usual sense is
defined which is compatible with the given topology. These ideas become im-
portant for questions in numerical analysis (see Schroder [31]).
Suppose now that ul and zn, for n > 1, are random elements which take values

in B. Consider instead of (102) un+l(W) = Tn[ul(), - * * , Un(W)] + zn(w)- If it is
known that zn(W) converges to 0 with probability 1 and that besides this all
conditions of theorem 18 are satisfied, then it follows that un(co) converges to 0,
that is, pun(W) converges to 0, with probability 1. This is, however, a theorem
on stochastic approximation.

It is well known that classicai iteration procedures are closely connected with
fixed point theorems, so it is not surprising that stochastic approximation is
related to the subject of random fixed point theorems. These theorems, however,
are beyond the scope of this paper. General investigations in this direction have
been made by Hang [32], [33] and by Spacek [34].
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7. Some applications of stochastic approximation
A well-known application of the RM process first mentionied by Robbinis anid

Monro themselves is of the following kind. Let M be a response curve for a (not
necessarily biological) population. This means that to every input x a part M(x)
of the population responds and the rest does not. It is natural to suppose that M
is nondecreasing, that M(x) = 0 for x _ 0 and M(x) = 1 for x -+ c, that is,
that M is a distribution function. Very frequently the problem is to determine a
quantile of M. In bioassay, for example, one is often interested in the determina-
tion of the median # (the so-called LD 50) which is a solution of the equation
M(x) = 1/2. Suppose now that M is unknown but that for every input x and
every element of the population an experiment can be performed whose outcome
is a random variable y(x) which takes only two values: 1 (response), 0 (no
response). We have P{y(x) = 1' = M(x), P{y(x) = 0} = 1 - M(x) and there-
fore E[y(x)] = M(x). Hence a quantile of an unknown response curve M can
be obtained by the RM process defined by (3). Another (biological) application
has been considered recently by Guttman and Guttman [35].

Finally we consider an application of the RM process to the problem of round-
ing-off errors. This problem occurs, for example, if one solves equations by
classical iteration processes with the help of electronic computers. We shall only
discuss the simplest problem. Define for every real number x a random variable
y(x) in the following way,

(103) P{y(x) = [x]} = 1 - (x - [x]), P{y(x) = 1 + [x]} = x - [x].
This can be interpreted as a random rounding-off rule in the following manner.
A real number x is replaced by [x] with probability 1 - (x - [x]) and by
1 + [x] with probability x - [x]. Note that E{y(x)} = x. From here we can
deduce as a pattern for more general theorems the following result. If one solves
a linear equation by an iterative procedure, and modifies it by using for every
step of the iteration the random rounding-off rule given by (103), then the
modified procedure converges with probability 1 to a solution of the given equa-
tion. A very similar result was given by Fabian [36].
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