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1. Summary

The questions we shall discuss in what follows belong to two fields which
formerly were quite disjoint, the classical theory of probability and the classical
calculus of variations. That there is now considerable overlap is due to the rise
in scientific interest in the field of control processes. Although it is only within
the last few years that the theory of feedback control has penetrated the aca-
demic curriculum and become a respectable member of the mathematical com-
munity, the conventional formulation is already far outmoded. In order to treat
current and future problems of any significance, it is absolutely essential to
introduce stochastic elements. These, however, enter in entirely novel ways, not
in the fairly well understood fashion of conventional stochastic processes, but in
connection with "learning processes" (compare [2]), or, as we shall henceforth
say, adaptive processes.
In what follows we show how the functional equation technique of dynamic

programming can be used to treat adaptive control processes, and how con-
tinuous processes can be defined in terms of the discrete versions.

2. Introduction

In order to prepare a suitable background for the introduction of the new
features, let us review the elementary ideas of feedback control processes. We
are, of course, here interested only in the mathematical presentation of these
concepts, and shall ignore any of the difficulties of engineering or statistical ap-
plication.
One version of the feedback control problem is that of maximizing a func-

tional of the form

(2.1) J(y) = fo F(x,y) dt

over all functions y(t), where x and y are connected by means of a differential
equation

(2.2) dx = G(x, y), x(O) = c,
37
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and y may be subject to further constraints which, in general, wvill depenid
upon x(t).
Although problems of this genre appear to belong in a very natural way to

the calculus of variations, and thus to be susceptible to classical techniques, they
are often more advantageously treated by means of the theory of dynamic pro-
gramming [1], [2]. It turns out to be convenient from many points of view,
conceptual, analytic, and computational, to consider a discrete version of the
foregoing problem.

Let us agree to maximize the function
N

(2-3) JN(y) = E F(Xk, yk),
k=O

where
(2.4) Xk+1 = Xk + G(Xk, Yk), xo = c,
over the set of y: Yl, Y2, YN,Y with, as above, possibly some constraints pres-
ent. Not only are problems posed in this form much more amenable to the ap-
plication of digital computers, but, what is often forgotten, they frequently
represent more realistic descriptions of the original physical process.
So far, everything has been very deterministic. Let us now introduce stochastic

elements. In place of the transformation of (2.2), let us suppose that Xk+1 is
obtained by means of a stochastic transformation
(2.5) Xk+1 = Xk + G(Xk, Yk, rk), XO = C.
In place of the original maximization problem, let us consider the problem of
maximizing the expected value of the function

N
(2-6) JN(y) = E F(Xk, Yk, rk).

k=O

At the moment, we take the rk to represent a sequence of independent random
variables, and the yk are to be chosen in feedback fashion. By this we mean that
yk is chosen with knowledge of xo, xi, * *,X- ,yX ,k y,,YO *Y , Yk-1, ro, r1, ,rk,
but not of rk, nor of any of the following x, y, or r.

In [3] we discussed in some detail the use of the functional equation techniques
of dynamic programming to treat optimization problems of this nature. Our
emphasis there was upon the use of discrete processes to lay a foundation for
the rigorous formnulation of continuous processes.

In this paper we wish to discuss corresponding problems arising in cases in
which the distribution functions for the rk are only partially known. The prob-
lems we discuss here represent only a small part of the cornucopia of questions
which the theory of feedback control thrusts upon us. In a series of papers with
R. Kalaba [4]-[8], we have laid a foundation for the study of such questions.

3. Multistage decision processes
To treat the optimization problems described in the preceding paragraph,

as well as those of more complex nature, we use the concept of a multistage
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decision process. Let p be a point in a space S and T(p, q) a set of transforna-
tions, defined for all p E S and q E Si, a second space, with the property that
T(p, q) CE S for all p E S and q E Si.

Starting with a point pi, a choice of q1 is made, leading to a new point
P2 = T(pi, ql). Repeating the process, a choice of q2 leads to a third point
p3 = T(p2, Q2), and so on. The set of q, that is, [ql, q2, . .. , qN], is called a policy,
and the process itself is called a multistage decision process.

Let us now suppose that the qi are to be chosen so as to maximize a preassigned
criterion function
(3.1) F(pi, P2, * , pN; ql, q2, q*, q ).
A policy which maximizes is called an optimal policy.

Since the problem of determining optimal policies in this generality is much
too difficult, let us restrict ourselves to the case where F is separable,
(3.2) FN = R(pi, ql) + R(p2, q2) + *.. + R(PN, qN).
Fortunately, in many significant applications, F can be taken to have this form.
The case where only the term R(PN, qN) appears is called terminal control in

engineering circles. If the number of stages, N, is itself a function of the sequence
of states and decisions, we speak of an implicit variational problem.
The basic problem is that of determining optimal policies and the value of

the maximum of F.

4. Functional equation approach
For a variety of reasons which we shall not enter into, conventional methods

of calculus are seldom operative by themselves. Let us introduce the sequence
of functions {fN(pl)}, defined by the relation
(4.1) fN(PI) = max R(pi, ql) + R(p2, q2) + * + R(pN, qN),

(qJ

for N = 1, 2, ,and pi E S.
An application of the principle of optimality ([1], p. 83) or, in this case, some

simple manipulation, yields the basic recurrence relation
(4.2) fN(pi) = max R(pi, qi) + fN-i[T(pi, q')],

qi
for N =2,3,***,with

(4-3) fi(pi) = max R(pi, ql).
qi

These equations yield two sequences, the sequence of maxima, {fN(pl)}, and
the sequence of policy functions, {qN(pl)}. The function qN(pi) is the choice of qi
which is made when the system is in state pi and there are N stages remaining.

5. Discussion
The usual approach to the foregoing maximization problem attempts to de-

termine the set [qi, q2, * , qN] at one time, using variatiQnal techniques. In
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place of this, we determine q, in terms of pi and N, then q2 in terms of p2 and
N - 1, and so on. This is feedback control. We determine the "control vector" qi
in terms of the current state of the system, pi, and the duration of the process,
N-i.
For deterministic processes, the two approaches are equivalent. For stochastic

processes, they diverge rapidly. We shall pursue the "feedback" approach since
it is both easier to follow and much the more important.

6. Stochastic multistage decision processes

Let us now suppose that a choice of q, in state p1 yields a state P2 = T(pi, ql, r,),
where ri is a random vector with a given distribution function dG(r,). As above,
we assume that T(p,, ql, ri) E S for pi C S, q, C S' and ri chosen from dG(ri).

In place of the maximization problem in section 3, we consider the problem
of maximizing the expected value of

(6.1) FN = R(pi, q1, ri) + R(p2, q2, r2) + * + R(PN, qN, rN),
over all feedback policies [q,, q2, * * *, qN]. By this we mean that q, is chosen
with a knowledge of pi. After q, is determined, ri is obtained from dG(ri), giving
rise to P2. Then q2 is selected, with knowledge of P2, r2 is obtained from dG(r2),
yielding p3, and so on.

Introducing the sequence of functions

(6.2) fN(p¶) = max E (FN),
(q) Jr)

N = 1, 2, ,we see that

(6.3) fi(pi) = max f R(pi, ql, ri) dG(rO),
q.

and, as above,

(6.4) fN(pi) = max f {R(pi, ql, ri) + fN-l[T(pl, ql, r1)]} dG(ri)
for N = 2, 3,
We see then that stochastic processes of this type can be treated in very much

the same fashion as the deterministic processes discussed earlier.

7. Prediction and information theory

Let us note in passing that these techniques can be used to provide new ap-
proaches to prediction and information theory, and extensions of the previous
results. For prediction theory, see Kalnan [9], and Bellman [10]; for informa-
tion theory, see Bellman and Kalaba [7], [11], and Marschak [12].

8. Adaptive processes

We now wish to consider processes in which not enough is known to use a
formulation of the type given above. There are many ways of treating processes
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of this type, and it is never clear as to which is the proper way of doing this.
Nor is it clear that this adjective "proper" has any meaning in this context.

It must be recognized, however ruefully or regretfully, that no definitive
theory of uncertainty can ever exist. The theories that are used will depend
upon the applications that are made and the personal philosophy of the user.
We are thinking of processes in which
(a) cause and effect may not be known;
(b) the state of the system at any time may not be known;
(c) the range of decisions may not be known;
(d) the utility functions, for example, R(p, q), may not be known;
(e) the duration of the process may not be known;
(f) it may not be known whether deterministic or stochastic influences are

paramount, or whether the process is a one-person or multi-person process.
These are not problems which conventional mathematical techniques are

designed to treat. We propose to show how they can be precisely formulated
and treated analytically by means of the foregoing mathematical apparatus, the
functional equation approach of dynamic programming. For some other ap-
proaches which appear promising, see Robbins [13], Box [14].

9. Information pattern

In treating processes involving uncertainty, our hope is that the multistage
nature of the situation will enable us to reduce the level of uncertainty stage by
stage. This idea leads to some interesting ideas concerning asymptotic behavior
which we shall discuss below.

It is not to be expected that in all cases a simplification will ensue as the
process continues. There is little difficulty in displaying processes which com-
plicate to an extraordinary degree as additional information is obtained.
Without worrying about such matters, let us formulate an important type of

adaptive process. We follow the brief sketch given in [8]. Let the state of the
system S be specified, as usual, by a point p in phase space, and by an informa-
tion pattern P. This information pattern represents the information about the
process that we retain in order to determine some of the properties of the
decision process which are initially unknown. In our case, let us assume that
only the distribution function for r is unknown. The simplest information pat-
tern that one can think of in this case is the entire previous history of the
process. Generally, one can do much better than this and substantially compress
the vast amount of data.
The state of the system is now specified by a point in an extended phase

space, [p, P]. A choice of a decision vector q results in a transformation of p
into Ti(p, P; q, r), and P into T2(p, P; q, r). Here r is a random vector variable,
specified by an a priori probability distribution dG(p, P; q, r), itself a part of
the information pattern P.

Let us suppose, for the sake of simplicity, that the new state pi is known
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after the decision q, has been made. Let the a priori single stage returni be
{[Ti(p, P; q, r), T2(P, P; q, r)]. Then, introducing the function

(9.1) fN(p, P) = min E[O(pN, PN)],
where, as in the preceding cases, the minimum is taken over feedback control
policies, we have the functional equations

(9.2) fN(p, P) = min f fN-l[Ti(p, P; q, r), T2(p, P; q, r)] dG(p, P; q, r),

for N = 2, 3, **,with

(9.3) fi(p, P) = min f k[Ti(p, P; q, r), T2(p, *'; q, r)] dG(p, 1P; q, r).

These relations can be used to establish the existence of optimal policies and
to study further properties of the multistage process. In particular, as we shall
discuss below, they can be used as a basis for the construction of a theory of
continuous processes.

10. Sequential machines, coin weighing, and search processes

The further study of information patterns inevitably leads to a consideration
of sequential machines and search processes in general. As an illustration of the
way in which the information can become complicated in an extraordinary
fashion as a process continues, consider the well-known puzzle of locating a
defective coin in a batch of N coins, given an equal arm balance, and its exten-
sions.
The initial information is that a batch of N coins contains one defective coin.

After a weighing, involving the comparison of two groups of k coins chosen from
this original set of N coins, we know that the defective coin is in one of these
two sets of k coins, or in the remaining batch of untested N - 2k coins. Thus
the form of the information remains constant with each succeeding test, or
stage of the process, and simplifies to the point where we can eliminate the
original uncertainty.

Consider what happens, however, when we start with the knowledge that
there are two defective coins. Comparing two sets of k coins each, we are led to
the following possibilities:

(a) If the scale balances, there is either one defective coin in each of the
k-sets, or none, which means that there are two defectives in the remaining
N - 2k coins.

(b) If the scale unbalances, there is either one defective coin or two defective
coins in one of the k-sets, and either one or none left in the remaining N - 2k
coins.

It is easy to see that as the testing process continues, the information pattern
increases in size and in complexity. If we allow perfectly general testing policies
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which admit the mixing of different batches, it appears to be hopeless to attempt
to keep track of the process.

Problems of this nature are of great practical importance and extremely dif-
ficult to handle by means of analytic techniques. For some preliminary work on
the foregoing problem by means of functional equation techniques, see Bellman
[15], Bellman and Gluss [16], Cairns [17]. For a discussion of problems of
related nature, see M. Sobel and P. A. Groll [18], R. Dorfman [19], and
P. Ungar [20].

11. Continuous adaptive processes

A simple and conceptually important way to found a theory of continuous
processes of any type is by a passage to the limit in a theory of discrete processes.
In some situations it is not difficult to construct a theory of the continuous
process directly. In these cases it is essential to establish the equivalence of the
two approaches. Many theorems of this type exist in connection with the study
of differential and difference equations, in the field of partial differential and
difference equations, and in the theory of probability.

In some fields, only recently developed, the continuous theories do not exist
and seem quite difficult to formulate. For these, a passage from the discrete to
the continuous seems to be the easiest and safest approach.
One advantage of using the passage to the limit approach lies in the fact that

we can in many cases establish the existence of a limiting continuous process
under conditions which are far weaker than those necessary to impose in order
to guarantee the existence of a continuous process constructed directly.

In order to illustrate these comments which at first may not seem reasonable,
let us consider a problem in the calculus of variations.
Suppose that we wish to determine the minimum of the functional

(11. 1) J(u) = fT g(u, u') dt

over all functions u(t) satisfying the initial condition u(0) = c. This problem is
far more complex than it may seem at first glance. In the first place, to assure
that an actual minimum, rather than an infimum, exists, strong conditions must
be imposed upon the function g(u, u'). Secondly, the standard variational tech-
nique, which leads to the Euler equation, possesses many drawbacks; see [2]
for a detailed discussion.
We have then a situation in which it is not easy to establish the existence of a

solution, and not easy to obtain the solution once the existence has been estab-
lished.

Consider, however, a discrete version of the foregoing problem. Suppose that
we wish to minimize

N
(11.2) JN = E g(Uk, Vk)A, U0 = C,

k-0
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where Uk+1 = Uk + VkA. Very mild conditions upon the function g will enable us
to assert the existence of an attained minimum. Furthermore, if we allow u and v
to assume only a finite set of values, all we ask is that the function g(u, v) be
defined for the allowable values of u and v.
The recurrence relation

(11.3) fN(c) = min g(c, v)A + fN-l(c + vA)
v

yields a constructive way of obtaining the desired minimum value.
The question naturally arises as to the relation between the discrete and con-

tinuous versions of this multistage decision process. We suspect that as A -+ 0
the discrete process will converge to the continuous process, if we impose suf-
ficient regularity conditions upon g(u, u').

This is indeed the case. It is quite easy to show that the conditions usually
imposed upon g(u, u') to guarantee the existence of a solution are strong enough
to yield the desired limiting behavior. See the proof by Fleming in [1].
The more interesting problem is to determine conditions upon g(u, u') which

will guarantee that the limit of the discrete process exists as A -O 0. We can then
define a continuous process, not directly by way of (11.1), but in this fashion.

It turns out that this program can be carried out. In [21] it was shown that
using only the recurrence relation of (11.3) and imposing upon g(u, u') conditions
which are far weaker than those required in the classical theory, the existence
of a limit for fN(c) as A -O 0 can be established. It follows that we have a concept
of a continuous variational process which generalizes that of the classical version.

Perhaps the most important aspect of this approach is that it enables us to
introduce the idea of a continuous process in situations in which no classical
theory exists. In [3] we discussed this for stochastic variational processes. It is
clear that we can in a similar fashion build upon the formulation of discrete
adaptive processes we have given in the preceding pages to formulate a theory
of continuous variational processes of adaptive type. Similarly, we can construct
a theory of continuous multistage games, of ordinary stochastic or adaptive
type. See [1] for the formulation of the discrete multistage version.
The problems of convergence of the return function and of the optimal policies

are quite complex. They require a blend of classical analysis and probability
theory which has not heretofore existed.

12. Reduction of dimensionality and sufficient statistics

The functional equations we derived to treat adaptive control processes in-
volve, in many cases, functions of functions. Although these functions can be
used to establish the existence of optimal policies, they are not well suited to
analytic investigation nor to computational work.

In order to obtain analytic and numerical results, it is essential that we reduce
these functions of functions to ordinary functions. In many cases, we can perform
this reduction by using the concept of sufficient statistics. This idea enables us
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to reduce the information pattern from a set of functions to an ordinary vector.
As an example of this, consider a process in which a certain random variable r

assumes only the two values 0 and 1 with unknown probabilities of respectively
1 - p and p. After the process has continued for M stages, we have acquired an
information pattern [0, 0, 1, 1, 1, * *, 0,1] consisting of the values assumed by r
over the preceding M trials.

In place of this set of values which increases in size as the process continues,
we can often use merely the number of 1 and the number of 0 which have been
tabulated. In these cases, the order of occurrence is of no importance.

In place of a function fN(c; S), where S = [0, 0, 1, 1,1,, * *, 0, 1], we will now
have a function fN(c, m, n), where m is the number of 1 and n is the number of 0.
See Bellman [22], Bellman and Kalaba [4], Freimer [23], [24], for applications
of this idea. Clearly, this technique can be used in many ways.
One technique which has not been investigated as yet is that of "asymptotic

sufficient statistics." Perhaps the best example of this is the central limit theo-
rem. If the random variables xi are drawn from an unknown distribution, and
if it is desired to determine the distribution of ZN = E'-L xi, we know that for
large N it is sufficient to tabulate merely the two sums ' 1 xi, J.

If, as in many cases, we are interested only in steady-state policies, which is
to say asymptotic policies, results of this type will enable us to reduce the di-
mension of the problem greatly. Other techniques for reduction of dimension-
ality will be found in Bellman [25], Beckwith [26], Bellman and Kalaba [27],
Bellman and Dreyfus [28].

13. Linear equations and quadratic criteria, I

In view of the analytic complexity of the general problem, and with applica-
tion of the method of successive approximations in mind, it is worth while to
consider processes governed by linear equations and quadratic criteria.

Let us consider first the scalar case. Write

(13.1) U.+1 = aun + vn + r., UO = C,

and suppose that the vi are to be chosen so as to minimize the expected value of
the quadratic form

N
(13.2) JN = E (un + Xvn)).

n =O

Consider first the stochastic case where the ri are independent random vari-
ables with known distributions, which for simplicity of notation we shall take
to be same.

Writing

(13.3) fN(c) = min E(JN).
it is easy to see that
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(13.4) fo(c) = C2,
and
(13.5) fA(c) = min [c2 + Xvo + E{fNjl(ac + vo + ro)}]

vo ro

= min [C2 + XvI + f fN-l(ac + vo + r) dG(r)].
Vo

It is easy to show inductively that fN(c) is a quadratic in c, that is,
(13.6) fN(C) = UN + VNC + WNC2, N = O, 1, 2,
where UN, VN, and WN are independent of c. Using this representation for the
functions fN(c), we readily obtain representations for UN, VN, and WN in terms of
uN-1, vN1i, and wN1,; see Bellman [29], Kramer [30], Beckwith [26], Freimer [23],
Adorno [31].
These results can now be used for computational purposes and to study the

asymptotic behavior of return functions and optimal policies as N x.

14. Linear equations and quadratic criteria, II

Let us now consider an adaptive version. Suppose that {r.} is a sequence of
random variables with probability p of assuming the value 1 and 1 - p of 0.
It is clear that we can use the idea of sufficient statistics. Let
(14.1) fN(c, m, n) = min E(JN),

v r

where m of the 1-values and n of the 0-values have been observed for the ri over
the past m + n stages.

Let dG(p) be an initial a priori distribution for p and suppose that it is agreed
to use the following transformations:

dG(p) pdG(p) ' rO= 1,
fo1p dG(p)

(14.2) (1 - p) dG(p)
r

p
(1- p) dG(p)

The result is that after m + n trials with m of the 1 and n of the 0, we have as
the new a priori distribution

(14.3) dGmn,,o(p) = pm(l - p)n dG(p)
J1 pm(l- p)" dG(p)

We use as an estimate for p for the next stage the value

1 ~~~fopm+1(l - p)n dG(p)
(14.4) Pm,n = X p dGm.n(p) = 1f Pm(1 -p)n dG(p)
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Hence, the functional equation for fN(c, m, n) is
(14.5) fN(c, m, n) = min [c2 + XVg + pmnfjN_j(ac + vo + 1)

VO

+ (1 - p_,n)fN.l(ac + vO)].

As above, we can use the structural relation of (13.6) to simplify this relation.

15. Discussion

The problem of determining the asymptotic behavior of fN(c, m, n) as N°o
has many complex features. It is to be expected that in one sense or another,
fN(c, m, n) - fN(c, po) as N - oo, where p0 is the actual value of p. A particular
version of this problem has been attacked by Adorno [31].

16. Open problems

In the foregoing sections we have indicated how a theory of adaptive control
processes can be constructed. Associated with this approach, there are any num-
ber of analytic problems which we have explicitly or tacitly raised. Some of
these are:

(a) Is the set of transformations in (14.2) the "best" way to modify a priori
information?

(b) Is the estimate of (14.4) the "best" estimate for p?
(c) Asymptotically, does it make much difference what transformations we

employ from stage to stage, and what a priori information we assume?
The analytic difficulties in this field are great, but the conceptual difficulties

are greater. It seems reasonable to believe that there never will be definitive
theories in this area, nor is it clear that the work "optimal" has an absolute
meaning. We can summarize the situation simply by saying that all of the
philosophical paradoxes of statistics and game theory are present, with their
cousins and their sisters and their aunts.
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