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1. Introduction
In many parts of theoretical physics one has to solve a mathematical problem of

the following type:
Given (a) a partial differential equation

(1) a(u) = 0,
and (b) an open domain D with boundary C (in an n-dimensional Euclidean space),
find a function u(P) satisfying (1) in D and taking given values f(A) on C,

(2) u(P)- f(A) if Pl A .

In each case one has to specify: (a) what conditions (continuity, boundedness,
existence of derivatives, etc.) u(P) must satisfy in order to be considered a regular
solution; (b) what precise meaning the limit in (2) has (limit along given paths,
limit in the mean, etc.); and (c) what class of functionsf(A) (continuous, integrable,
etc.) is one allowed to use for the boundary conditions, in order to secure existence
and uniqueness theorems.
When one looks at the physical facts which give support to this mathematical

setting, one is readily convinced that, due to errors in measurements, to neglected
fluctuations in the phenomena, etc., the boundary conditions cannot be expressed
by only one well-determined function f(A), but that a whole set of functions fo (A)
must be considered. Furthermore, among these we cannot identify the one that will
actually materialize in an experiment; in general, we are only able to say that some
functions in the set are more likely to be observed than some others. We can trans-
late this idea in mathematical language by saying that, in the boundary conditions
corresponding to the real physical problem, the function f(A) must be replaced by
a random function f,(A), where w represents a point in a suitable probability space
(Q, i, p). We have been led to this point of view by our research on the statistical
theory of turbulence [ 2 ] and [ 3 ]. In our opinion the key problem in this theory is
to find random solutions of the Navier-Stokes equations corresponding to a given
random velocity field at time t = 0. But, unfortunately, since the equations of fluid
dynamics are nonlinear we know almost nothing about existence and uniqueness of
their solutions. Since we are attracted to this point of view and yet unable to solve
this most interesting problem, we have had to satisfy ourselves by considering only
linear partial differential equations. In this case it is possible to prove that the con-
sideration of random boundary values makes sense and to build a rather complete
theory of the corresponding random solutions.
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We shall say that u,(P) is a random solution of (1) corresponding to the random
boundary values f<,(A) if

(a) for each fixed wo e - A (where p(A) = 0), the sample function u, 0(P) is a
regular solution of (1) in D and takes the value f. (A) on C,

(b) for each fixed P e D, u.,(P) is A-measurable.
When, in a particular problem, one has been able to prove the existence of a

random solution, the next step is to look at its statistical properties and, first of all,
to compute the moments. To begin with, one must give sufficient conditions on the
random function f,(A) so that the existence of the moment

(3) y(Ai, ** *, Ak) = E[f.(A1) ... f.Ak)I A1, , Ak e C

implies the existence of

(4) I(PI, ** *, Pk) = E[u (PI) ... U.(Pk)] P1, ', Pk eD.

If this is the case one would expect, from heuristic considerations, that r is a solution
of (1) with respect to each of the points P,

(5) apl(r) = 0, GP,.(r) = 0

and that

(6) r(PI,* *Pk) - -(A , **Ak) Pi A,, *- * Pk -* Ak.

Rather than confine ourselves to this rather general plane we find it more illumi-
nating to look in some detail at two particular cases. We have chosen them to be as
different as possible: one elliptic equation in a finite domain, one parabolic equation
in an infinite domain.

2. Random harmonic functions in the unit circle
A function u(P) is harmonic in Dif (a) u(P) is continuous inD, (b) u.,(P) uz.(P)

exist and are continuous in D, (c) u.,z,(P), *- *, uz,z^(P) exist and are finite in D,
and (d) u.,., + * * - + uz, = 0 in D. Here we shall consider only the case in which
D is the interior of the unit circle. We shall say that u(P) e Ha if it is the difference

y
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of two nonnegative harmonic functions in the unit circle. Let us introduce the
kernel

(7) k(r, 0) = 2 1- 2r cos + r2-
There is a one-to-one correspondence between the functions of class Ha and the
signed Borel measures on C, given by the Poisson-Stieltjes integral

r2
(8) u(P) = k(r, 0 a-)dv

The signed Borel measure v is the difference v = -v- of two Borel measures; a
Borel measure is itself a set function defined for every set E e 63 (where 63 is the
Borel field generated by the intervals 0 . a, < a < a2 < 2r), completely additive
and finite

(9) O_ v(E) < v(C) <+ .

Let us consider an arbitrary probability space (Q, §, IA).
DEFINITION 1. vs.(E) is a random measure on C if
(a) v.,(E) is a real-valued function on (B X Q,
(b) for each w e Q, the sample v. is a signed Borel measure,
(c) for each E e 63, v. (E) is ,u-measurable.
THEOREM 1. Given a random measure v<, on C, there is one and only one random

function us (P) in D such that, for each sample,

(A) u,(P) e Ha,

(B) limJ u.(r, 0)d0 = vP(Jo), J. = {a: O < a < ._ 2X}.

This random function us(P) is defined by the Poisson-Stieltjes integral
r2

(10) u.(P) = fJ k(r, 0 -)dv.
The fact that the asserted properties are true for any sample is an obvious con-

sequence of well-known theorems of the classical theory of harmonic functions (see,
for instance, pp. 46-54 in [1]); the proof that, for any fixed P e D, u<,(P) is ,-
measurable is almost trivial here. Since (r, 0) is fixed the kernel k(r, 0 - a) is a
continuous function of a in [0, 27r] and one has

1 i-r 1 1+r_
(1 1) 2= + r < k(r, 0 - a) < 2- I

Divide the interval [m, M] into N parts and consider the approximating sum
N

(12) E akP.(Ek)

Each term is u-measurable by hypothesis and thus the sum is measurable and so is
the integral (10), as limit of such sums.

Let us turn now to the case where the boundary conditions on C are expressed by a
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random function f,(a). Let us call m the Lebesgue measure defined on C by giving
the length a2-a] to the interval O<alCa<a2.27r. We shall say that g(a) e L(C) if
the Lebesgue integral 0T g(a) Ida exists.
DEFINITION 2. A randomfunctionf.,(a) belongs to the class K if
(K1) f,,(a) is measurable with respect to the product measure m X i.
(K2) for each a c C, f., (a) e L(Q).

Introduce the covariance

(13) E[f. (a)f.(0)] y(,)

(K3) y(a, a) c L(C).
Let us remark that since Q2 is of finite measure, (K2) =of,(a) eL(Q2), and thus E[f (a) I
= F(a) exists for all a e C.
LEMMA 1. f,,(a) e K X f,,(a) e L2(C) with probability 1 (that is, if Cl e - A,

/A(A) = 0).
PROOF. f.(a) is m X ,u-measurable and we have by (K3) that

(14) f [j' Ifw(a)I2ds] da < +o .

Thus, by Tonelli's theorem this implies that f,,(a) e L2(C X Q). Now the result fol-
lows by Fubini's theorem.
Note that the measure of C being finite, lemma 1 X f,(a) e L(C) for co e - A.

Thus if we put

(15) .(E) = ,ff(a)da, E eB, e Q2-A,

we define a random Borel-measure, to which we can apply theorem 1. Thus
2r

(16) u.,(P) = f k(r, a-a) f.(a)da

is the unique random function satisfying, for all w e - A,
(A) u%,(P) e Ha
(B') lim u,(P) = f,(0), except at most for a set of 0 of m-measure zero.

rT I

Let us put

(17) U(P) = E[u.(P)]

(18) r(P, Q) = E[u.(P)u.(Q)]-
Then, by an immediate application of Fubini's theorem we have
THEOREM 2. Iff,,(a) e K, then

(19) U(P) = f k(r, 0 - a)F(a)da

(20) r(P, Q) = J J k(r, 0 - a)k(s, f-,l),y(a, fl)dadjf,Qo D
PecD, QecD.
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Thus U(P) is a harmonic function, and r(P, Q) is harmonic in P (for fixed Q) and
in Q (for fixed P). More precisely, U(P) is the unique function satisfying

(21) U(P) e Ha and lim U(P) = F(O), a.a.e,
rT 1

and r(P, Q) is the unique function satisfying

(22) r(P, Q) eHa in P for fixed Q,

(23) r(P, Q) e Ha inQfor fixed P,

(24) rim r(p, Q) = -y(O, At), a.a.0 and #.
rTi, di

One can raise an interesting question: Suppose that we know the exact value of
the boundary condition at a given point A1(= a,); let us say fa(ai) = 77. From this
knowledge, what kind of information do we get about the random function u",(P)?
Let us assume, to take the simpler cases, that the boundary condition is expressed
by a normal (Gaussian) function such that

(25) E[f (a) ] = 0.

Then, obviously, u(P) is also a normal random function, and

(26) E[u (P)] = 0.

Put

(27) z. = u.,(P) - r(P, A1) Mai),y(ai, ai)
where

r2T

(28) r(P, A1) = E[u(P)f,(ai)] = f k(r, 0 - a)y(a, ix)dai .

The random variable z. is also normal, has expectation 0 and satisfies

(29) E[zf.(ai)] = 0.

Thus z<, is independent of f,(aj). Consequently, we can easily compute the condi-
tional expectation and variance of ux(P),
(30) E[u.(P)If.(ai) = ] r(P, Aa) 7 = 71

,y(ai, ai) 2

(31) E[(u.(P) - 11)2 1f(al) = 7] = r(P,P) 1- r(PP)y(a, )2]
The conditional expectation is always smaller than the expectation and the ratio

(32) P~~~~~~~~(P,A1)2(32) 0 :5; r(P, P)'y(aj, ail)
can be conveniently taken as a measure of the information given by the knowledge
of the value of f.(a) at the point ai.
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Returning to the general case, let us now assume that f.0(a) is a stationary (wide
sense) random function

(33) Y(ct, g=9(-A .

Then, obviously g(a) e L(C). Let G(P) be the unique function satisfying

(34) G(P) e Ha, lim G(P) = g(O), a.a. 0.
rt1

We have
f2

(35) G(P) = G(r, 0) = J k(r, 0 - a)g(a)dax.
From the known property of the kernel k

2r
(36) k(rs, 0 -) = f k(r, 0 - a)k(s, 4-a)dac,

we deduce the following theorem from (20).
THEOREM 3. Iff,,(a) cK and f,(a) is stationary (wide sense) then

(37) r(P, Q) = G(rs, 0 - 4').

Two interesting facts appear here. For r fixed, as function of 0, the random function
u.,(P) is stationary (wide sense). Moreover, the covariance depends only on the com-
bination rs. Let us put

(38) p = log, = log.

Now the covariance depends only on p + a. According to the terminology of Lo6ve
[7] u. (P) is thus an exponentially convex function of p. Returning to (37) the fact
that the covariance depends only on the combination rs reflects the semigroup
property of the transformation

2r

(39) T,f = fJ k(r, 0 - a)f(a)da,

which, due to (36), is expressed by the equation

(40) Trs= TrTs =TTr X 0< r < 1, 0 s <1.

3. Random solution of the heat equation on an infinite rod
Because of the well-known interpretation of the heat equation

(41) Ut = U.z

as giving the velocity profile in the so-called shear-flow of an incompressible viscous
fluid, this problem was the first to attract our attention. We have given in [ 41 the
solution in the case when the random initial temperature is stationary (wide sense);
we shall present here only brief remarks on the general case in order to attract
attention to an interpretation which seems to be most useful in problems of this
type. This is the case when each sample of f,(A) and u%(P) belongs to a Banach
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space. Then the theory turns out to be quite similar to the classical presentation of
statistical mechanics.

Let us introduce the kernel (point-source)

(42) k(x, t) = (4zrt)-1/2 e-22/4t
As for the harmonic functions, one could start from solution of the heat equation
given by

(43) u(x, t) = k(x- , t)dv,

where v is a signed Borel measure on the infinite rod - < t < +co, and v(E)
represents the heat content of E, where E is any Borel set on the rod. Let us call
B(T) the strip

(44) B(Tr) ={(X, t): -a) < x < +-, O < t < T _ +-)}

At

B(T) -Tx

Q(y,s) l -

B(77) 0 A(() x

From the results of Widder [11] it is known that every solution of the heat equa-
tion, which is the difference of two nonnegative solutions of the heat equation in the
strip B(1: 4a), is given by (43) where v is such that

(45) eJ>+ea ) d!vI < +

Thus the analog of theorem 1 could be given here. However, overlooking these
generalities, we shall immediately consider the particular case which is of interest
to us.
As domain D we shall take here a strip B(T) (which possibly could be the half-

plane if T = + - ).
DEFINITION 3. u(P) = u(x, t) e He if
(a) u(x, t) is continuous in D
(b) ut, ux, u,, exist and are continuous in D
(e) Ut = uz, inD.
Let us call m the Lebesgue measure on the real line X, - - < x < +co, and con-

sider a probability space (Q, Y, ,). The initial temperature at the point x of the rod
will be the random function f.,(x).
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DEFINITION 4. If p _ 1; a(x) > 0 and a(x) e L[a, b] for everyfinite interval on X,
we say that the random function f,,(x) e £P(a) if

(H1) f,,,(x) is measurable with respect to the product measure m X p,
(H2) f.(x) e Lp(Q) for all x e X; put Mp(x) = fa If (x) Pd,
(H3) a(x) Mp(x) e L(X).
Obviously if 0 < a2(x) < a,i(x), then f, c 21P(a,) = fZ e £P(a2). By the same com-

bination of Tonelli's and Fubini's theorems as in lemma 1 we prove the following
lemma.
LEMMA 2. f,(x) e ZP(a) X a(x) If<,(x) P e L(X) with probability one, that is, if

co Ee - A,,I(A) = 0.
THEOREM 4. If there exists a _ 0 such that f.,(x) e 2P[exp (-ax2) ] then the Poisson-

Fourier integral

(46) u,(x, t) = 3 k(x - t, t)f.(t)dt

is a random function. Each sample corresponding to an X e - A has the following
property:

(A) u.,(x, t) e He in B(1: 4a)
(B) lim u<,(x, t) = f,(x) except possibly for a set E(co) of points x of m-measure

zero. t0+
PROOF. (See [6].) The proof of (A) is based on a theorem of Tychonoff [101,

asserting that, given a function g(x) on X, if for one 7 > 0 we have k(x, r)g(x) eL(X),
then

r+
(47) J k(x -E, t)g(t)dt e He in the strip B(T)

Suppose first that a > 0. Then, due to lemma 2, for C e - A, k(x, 1: 4a) If,(x) P e
L(X). But, using the Holder inequality,

(48) J k (x,l ) I()dx< [UaJr k If(x,Ia| 'd(x

With k(x, 1: 4a)f (x) e L(X) for wc - A, Tychonoff's theorem is equivalent to (A).
Suppose now a = 0, that is, f.(x) E £P(1) and take a decreasing sequence an I+ 0.

For every n, f, e SP(1) =X f. e £P[exp (-a"x2) ]. Thus by the preceding result we
know that for X e Q- A, u.(x, t) e He in the strip B(1: 4an). Obviously An C A,+,
Let A be the limit of the An so that pi(An) = 0 =X ,(A) = 0. Thus if we Q-A,
u.(x, t) e He in every strip B(1: 4a.), that is, in the half-plane B(+o ), which proves
(A).
Moreover, for each sample (B) is simply a known result of Titchmarsh [9 ], p. 31.
Finally the fact that u.(x, t) is ,-measurable at every point (x, t) where the

Poisson-Fourier integral exists follows in exactly the same way as for harmonic
functions, by using the approximating sums.

Consider now the moments (mean and covariance) of the random function
u.,(x, t) and put
(49) E[f.(t) I = F(t) , E[f.(Z)f.(n) ] = y 'i),
(50) E[u,(x, t) ] = U(x, t), E[u.,(x, t)u,(y, s) ] = r(x, y, t, s)
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The same use of Fubini's theorem as for theorem 2, gives the next theorem.
THEOREM 5. Iff. (x) e £P(e--), p _ 1, then

(51) U(x, t) = f k(x -{, t)F(t)dt,

U(x, t) e He in B(1: 4a) and lim U(x, t) = F(x) a.a.x. Iff,(x) e £v(e-o'), p _ 2, then
t-O+

(52) r(x, y, t, s) = J I k(x - t, t)k(y - i, s)#y(%, 7)dEd,7

for a fixed (y, s), as function of (x, t), r eHe in B(1: 4a); and for a fixed (x, t), r eHe in
B(1: 4a). Moreover lim r(x, y, t, s) = -y(x, y) for a.a. x and y.

t-o+,&Jo+

In [4] we proved that if f.(x) is a stationary (wide sense) random function,

(53) 7%t r7) = g(t - 7)
which implies that f. e 22(1), the random function x,(x, t) e He on the whole half-
plane B(+ cD) and that for every (x, t) and (y, s) on the half-plane

(54) r(x, y, t,s) = G(x-y, t + s),

where

(55) G(x, t) = k(x- , t)g(t)dE.

This result means that, as a function of x, the random function u.(x, t) is stationary
(wide sense), and as a function of t is exponentially convex, according to the Loeve
terminology. The remarkable fact that the covariance depends only on t + s reflects
the semigroup property of the transformation

(56) Tsf(x) = f k(x - t, t)f(t)dA

(57) Tt+. = TT. =T8,Tt, O< s < +, O< t <+ .

The set of all functions f(x) such that exp (- ax2) If(x) P e L(X) is a Banach space,
but, in general, the solution u(x, t) of the heat equation corresponding to the initial
temperature f(x) does not belong to the same Banach space for any t > 0. If we
want f(x) and u(x, t) (for each t in 0 < t < 1: 4a) to belong to the same Banach
space, we have to consider another Banach space. One of the simplest and most
useful (because it applies to the case of stationary random functions) seems to be
the Banach space of all functions such that

(58) +x EL(X)

This Banach space, which we will call ap, seems convenient for our purposes because
f(x) E cP u(x, t) e aW for all t > 0.

Let us now suppose that the random function f,(x) e SP(1: 1 + X2). Due to lemma
2, almost all samples belong to Wt. There is thus a correspondence w -0 4 from the
point Xe Q to the point 0 = f. (x) e aW. The probability measure ps in Q induces a
measure X in dP; a set 4b C W is X-measurable if its inverse image +-l(sD) C S is
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,A-measurable and X(b) = 144)1(4)] We can now consider aP as a probability
space and suppose that the points x= f<,(z) is chosen at random in aP according to
the probability law defined by

(59) Pr{4 e4k = X(b).
Because f,(x) (x) e £P exp (-ax2) for any a > 0, the random
function u.(x, t) c He in the half-plane B(+co) and, moreover, almost all samples
belong to ci'. For a sample co e - A we can consider the Fourier-Stieltjes integral

(60) u.(x, t) = J k(x - t, t)f,(t)dt

as a transformation of ci into itself, transforming the point 4 - f.,(x) into the point
0 t - (x, t), let us say

(61) Ot= TtO .

For 0 < t < + , the transformations Tt define a strongly continuous semigroup
of transformations of the Banach space into itself.

In this way our problem takes the same shape as the classical problem of statis-
tical mechanics, with the Banach space aiP playing the role of the phase-space. A
state of the system (that is, the temperature distribution in the rod) is represented
by a point 4 in all. At the initial time, we choose at random (according to a given
probability law) one point 4; then all the states of the system are represented by
the trajectory consisting of the set of points 4t deduced from 4 by the transforma-
tion 4t = Tp4. This interpretation seems to be very fruitful in many cases; it allows
the use of the interesting theory, due to E. Mourier [8], of random elements in
Banach spaces.
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