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1. Introduction
It is customary to treat nonparametric statistical theory as a subject completely dif-

ferent from parametric theory. In this paper, I try to study one of the more obvious con-
nections between the two subjects. Clearly a nonparametric problem is at least as diffi-
cult as any of the parametric problems obtained by assuming we have enough knowledge
of the unknown state of nature to restrict it to a finite-dimensional set. For a problem in
which one wants to estimate a single real-valued function of the unknown state of nature
it frequently happens that (in a sense made somewhat more precise in section 2 and, for
special cases, in later sections) there is, through each state of nature, a one-dimensional
problem which is, for large samples, at least as difficult (to a first approximation) as any
other finite-dimensional problem at that point. If a procedure does essentially as well, for
large samples, as one could do for each such one-dimensional problem, one is justified
in considering the procedure efficient for large samples. If there is no such procedure,
one may be forced to adopt a less severe definition of efficiency, as suggested by Wolfo-
witz [1].

Very few results are obtained here, and, with the exception of the lemma of section 3,
they are not rigorous. Also, even for the example of section 4, where a definite procedure
is given, the results are not of immediate practical value. The computations required
are excessive, and the procedure is not efficient for sample sizes likely to occur in practice.

2. A review of the finite-dimensional case

Let e be an open subset of a finite-dimensional Euclidean space. For each 0 E 0, let
pe be a probability density with respect to a a-finite measure u on a a-algebra A of sub-
sets of a space T. Subject to certain differentiability conditions and other regularity
conditions (see for example [2]), the maximum likelihood estimate 0 of 9, based on a
large sample X1,* *, X. independently distributed according to p. for some unknown
e E e, has certain desirable properties.
We define Fisher's information matrix 1(9) at 9 by

(1) Iti (0) =Eo a log Pe (X) a log pe (X)
If . is a continuously differentiable real-valued function on 0, then the asymptotic mean-
sqiwed error of o(O) as an estimate of jo(O) is

(2) M(Vs) 'I- (VIP)
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where V.o, the gradient of sp at 0 is the column vector whose ith coordinate is i%po/90,.
In a sense this is asymptotically the best possible estimate of so(0); roughly speaking,
the mean-squared error cannot be improved appreciably throughout an open subset of e.

Of course, the expression (2) is independent of the (curvilinear) coordinate system
used. More precisely if we introduce new coordinates related to the old in a 1-1 manner,
continuously differentiable in both directions, the value of (2) at a given point 9 of the
set 0 considered geometrically is unchanged. The vector v = f-r(VPo) determines a
direction through 0 which is also independent of the coordinate system used. This de-
termines a one-dimensional subproblem which at 0 is asymptotically as difficult as the
original multidimensional problem. To see this, consider a problem in which the parame-
ter space is an open subset of the real line containing 0 and the density at the point r is
7rT(x) = pe+,,(x), where v is evaluated at 0. The information matrix for this problem at
T = 0 reduces to the real number

(3) E[dlo[ g Po+ (X)]=2 [ 9Elog pe(X)] 2

= v'I v = (VM) 'I-II- (VP) = (VM) '-1 (VMP)
Also the gradient of (p(O + Tv) as a function of T reduces to the real number

d__p ____+Tv) ap ( 0)

(4) d TjO(0+ ) = viae = V (VIP)d-r~~~~.a oj

Evaluating (2) for this one-dimensional problem we see that it has the same value as for
the original problem.
When 0 is infinite-dimensional, that is, in nonparametric problems, the maximum

likelihood method often breaks down. Frequently the maximum likelihood estimate is
undefined (as it is for the problems of sections 4 to 6), and it is not clear that it is good
when it exists. However the existence of a one-dimensional subproblem asymptotically
as difficult as the original problem (of estimating a single real-valued function), often per-
sists, at least formally. In the remainder of this paper we examine a small number of
special cases, of which only one (that of section 4) is treated with any sort of complete-
ness.

The general theory of the infinite-dimensional case would seem to be technically quite
involved. However, a procedure which may work is the following. We can often integrate
the field of most difficult directions, thus expressing the parameter space 0 as a union of
one-dimensional subproblems, each of which is asymptotically a most difficult one-
dimensional problem through each of its points. We then make a crude estimate of the
parameter point 0, using this estimate to select one of the one-dimensional subproblems.
We then proceed as if the true parameter point lay on this curve, using, for example, the
maximum likelihood method to complete the estimation of so(8). To prove that this
works under fairly general conditions seems to be quite difficult.

3. An algebraic lemma
The somewhat trivial lemma obtained in this section is often useful in proving that an

estimation problem is not made more difficult asymptotically by introducing additional
unknown parameters in a certain way. After stating and proving the lemma we indicate
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how it is used. Applications occur in sections 5 and 6. In section 4, a trivial application
could have been made, but it seemed pointless because a more complete solution can
be given.

A B C
LE1MA. Let G = B' D E be a partitioned positive definite symmetric matrix. In

C' E' F
order that the upper left submatrix (of the same size as A) of G-1 be the same as that of
(A B~-1[B' DJ , it is necessary and sufficient that C = BD-1E.

PROOF. The inverse of AB is a matrix (a, 0] which satisfies

(5) aA+MIB'= I

(6) aB+13D=O
(7) 13'B+5D=I
where the I's are identity matrices of appropriate size and 0 is a matrix of O's. It follows
that

(8) x3-aBD-1,
and
(9) a (A-B D-1B') = I .

Applying the same operations to G, we see that for the upper left submatrix of G-1 to be

the same as that of I it is necessary and sufficient that

(10) A - E, F) C')
Letting
(11) H =C-BD-'E,

we shall show that (10) is equivalent toH = 0. We obtain the following equation equiva-
lent to (10).
( 12) B D-1B'= [ B D-1 ( D,E) + (0, H)I L ) [(E,)D-1B'L+( )]

=BD-1 (I, °) DE D-1B'+B D-1 (Iy °) (H

+ (0, H) (I)D-1B'+ (O, H)(I, EF)(H)

=BD-1B'+ (0, H)( , EEy(Oy H)'.

Since (E, F] is positive definite, this is equivalent to H = 0, which completes the

proof.
In the applications we shall make, G is an information matrix. A is obtained from the

partial derivatives with respect to the parameters we are interested in estimating, D from
a set of parameters which (in general) make the problem more difficult, and F from those
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parameters which we wish to show to be superfluous. The upper left submatrix ofG-1 tells
us the asymptotic covariance matrix of the best estimates of the parameters in which we
are interested. Thus the lemma gives us a condition for the problem with the unknown
parameters added in F to be asymptotically no harder than the problem in which these
parameters are known.

4. Testing for the median of a symmetric density
The problem we discuss in this chapter is not one which often arises in practice. How-

ever, it is so simple that we can almost treat it satisfactorily without introducing any
really new methods, and intuitively it is likely that the results obtained in this case also
hold for the more difficult problem considered in the following section.

Let p be an unknown density with respect to Lebesgue measure on the real line, sym-
metrical about 0, that is

(13) p(x)=p(-x)
for all x. Let X1, , X. be real random variables such that for some unknown
t, Xl-,- -, X. - are distributed according to the density p. We want to test
Ho: t = 0 against HI: t > 0 for large n. We shall suppose

(14) .=f p', dx< a>,
where p' is the derivative of p, so that if we knew p, we should have a regular problem.
In order to avoid inessential complications, we shall suppose p continuously differentiable,
although (14) could be given a more general interpretation.

If p is known, the best asymptotic mean-squared error attainable for estimating t is
1/nI and the best asymptotic power for testing t = 0 against t > 0 at the level of signifi-
cance a is

(15) O ( =-_ '2dx

where

(16) a = y2 Je e2'/2dx.

This asymptotic power is achieved (at least for small t) by the test which rejects Ho if
-I [p'(X,)/p(Xi)] is larger than a certain constant depending on n. One gets approxi-
mately the right significance level by taking this constant to be c.^-V . We shall show
that the same asymptotic power is attainable if p is unknown.

In this case it seems plausible to estimate P'( I Xi )/p( I Xi I ), and, the estimate being
Zi, to reject Ho if

(17) Zi sgn Xi

is in the upper proportion a of the 2" numbers E ± Zi with the signs assigned in all pos-
sible ways. Here we are influenced by the identity

p'(-x) _ p'(x)(18) p(-x) p(x)
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It happens that this works provided

(19) Zi = Y( X1,,| Xn|)

that is, the estimates depend only on the absolute values of the observations, and certain
conditions of consistency [see equations (24) and (25)] are satisfied. Let us look at the
conditional distribution ofI Zi sgn Xi given lXii,.. , X. when the Xi are distributed
according to p(X - t). For given lXii,***, X. the sgn Xi are conditionally inde-
pendent with

(20) P{sgn Xi= I lXiI, ,IXRI =p(IXJ P(IX p-()
By the central limit theorem (see, for example, section 21 in Loeve [3]) the conditional
distribution ofI Zi sgn Xi given lXi,***, lX. l nearly normal with mean

(21)(21) g=~~~~p(T-xiT;- t) +p(I xi I + t)

and variance

(22) 2= iZ[1-Pl -)+pli t

provided

(23) maxsZ
is small.

It is intuitively clear that the Zi can be chosen in such a way that (at least if p is
sufficiently regular)
( 2 4) ;&+ ntf P'2(,) dx= o, (Vn)

and with high probability
a2

(25) nf p'(x) dx

for t = O(n-1/2), n X. This will insure that the power of the test is nearly that at-
tainable with known p. For example we may take

2lS.(IXiI + $-a)-2s2(S Xil) +s.QxXi -a___
(26)^s (ls+i 6)SnlXi-)

where S. is the empirical cumulative distribution function of the I XiI, and a is a posi-
tive constant independent of n. However, in order to satisfy (23), any Zi for which

Z2i/ S Zj2> en(where e. 1 0 asn ,but not too rapidly) must be cut down so that

this is no longer the case.
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5. Two distributions differing only in location and scale

For this problem I have not been able to obtain a complete solution. However, a simple
computation will show that formally the problem of estimating (or testing) the difference
of location parameters or ratio of scale parameters is as difficult when the form of the dis-
tribution is known as it is when the form depends in a regular way on an unknown param-
eter. I shall also indicate a method which seems likely to yield efficient tests for the hy-
potheses of equal location parameters or equal scale parameters.

Let p be an unknown density with respect to Lebesgue measure on the real line, and
), 7, a, T unknown real numbers with a, r > 0. With m and n large, X1, * *, Xm are in-
dependently distributed with density p(x - t/a)/o and Yi,,- *, Y. independently dis-
tributed with density p(y - q7/T)l. We are interested in estimating 71- t and r/ca and
in testing hypotheses concerning these quantities. We shall suppose p continuously dif-
ferentiable and

(27) [P'(,) dx<co, X2p2(X) dx<co

which will insure that the problem would be a regular one if we knew p.
Now let us imagine that we know p except for a single unknown parameter 'Y, so that

we shall write p, for p. We suppose

(28) f \ 01(X )) p7(x) dx< c.

We shall give essentially the information matrix for the five unknown parameters t, 7,
a, r, 'y. However, since we are particularly interested in X- and r/1a, it is more con-
venient to use as coordinates Xi, X2, X3, X4, and y where

(29) X,=

(30) -2=

(31) X3= V

(32) X4-= 2+

The information matrix, evaluated at X1 = X= 1, X2 = = 0 (that is, 0= = 0,
Ub = T = 1) is

* ~~~~~/
(m+n)a, (m+n) b, (n - m)a, (n-rm) b, (mr-n) c

(m+n) b, (m+n)d, (n-m) b, (n-m)d, (m-n) e

(33) (n-m)a, (n-rm) b, (m+n)a,l (m+n) b,- (m+n) c

(n-m) b, (n-m) d, (mr+n) b, (m+n)d,-r(m+n) e

(mr-n) c, (m-n) e,-(m+n) c,-(m+n) c, (m+n)f
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where

(34) a =E [1 +X.p(X,y)1] 2

(35) b =EX<p2 (X, y)

(36) c=EXoi (X, 'Y) 2 (X, Y)

(37) d=E op(X,'y)
(38) e =Ep, (X, 'y) 92 (X, y)

(39) f =E o(X,y)

(40) pl(x, y) =
a log p(x)

(41) 2( x ) a log PY ( X)
a-v

and the expectations are for X distributed according to p,.
By the lemma of section 2, in order that the addition of the unknown parameter -y

should not make the problem of estimating Xi = V7/T/ and X2 = -t)/2 more diffi-
cult, it is necessary and sufficient that

((m-n) c) (n-m) a, (n-m) b) (m+n) a, (m+n) b (m+n) c
(42) (m-n) c (n-m) b, (n-m) dJ (m+n) b, (m+n)d) '\-(m+n) e)
which is true. Since any parameter point t, , a, T can be reduced to 0= = 0, a =
T = 1 by affine transformations of the X's and Y's separately, this result must hold at
every parameter point.

In the comparatively simple case where it is known that a = r so that we may as well
take their common value to be 1, it seems reasonable to test the hypothesis Ho: 'I = t
against i > t in the following way. Much as in section 4, we estimate p'(X,)/p(X,),
p'(Y,)/p(Y;). Instead of requiring the estimate to depend only on the absolute values,
we require the estimate to ignore the labelling as X's and Y's, that is, to depend only
on the numerical values of the m + n observations. Let the resulting estimate of p'(X,)/
p(Xi) be Zi, and of p'( Y,)/p( Y,) be Z'. Reject Ho if zi - Zi' is large among the

(m numbers ± Uk where the Uk are the Zi and Z, and the signs are assigned

in all possible ways subject to the condition that exactly m of them are positive. How-
ever, it seems difficult to prove the asymptotic normality ofIZi- Z, under the al-
ternative hypothesis.

6. Estimation of a linear relation
Let X1, *, X. be independently distributed random points in a two-dimensional real

linear space. The Xi are observed and it is assumed that their distribution can be de-
scribed with the aid of unobservable random points Yi, Zi in the following way.

(43) Xi= Y,+ZiI
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where Y1, * * *, Y., Z.. - * *X Z,n are independently distributed, the Yi with common un-
known distribution concentrated on an unknown line L, and the Zi with a common un-
known bivariate normal distribution. We are interested in estimating the slope of L.
Reiersfl [4] has shown that the slope is identifiable if the distribution of the Y, is re-
quired to be nonnormal. (A distribution concentrated at one point will be considered a
special case of a normal distribution.) Neyman [5] has given a consistent estimate in
this case. Further work has been done by Jeeves [6] and Wolfowitz.
We shall consider the parametric problem in which, except for one unknown parame-

ter entering in an arbitrary way, the distribution is known to within an affine transforma-
tion of the plane. However, we find it convenient to modify the specification of the prob-
lem in an inessential way. First we assume the Zi have mean 0, thus shifting their con-
tribution to the mean to the Yi. Then we can represent the Zi as Ui + Vi where the Ui
lie on a line parallel toL and the Vion another line M, and U1, , U., VI, V, are in-
dependently normally distributed.

Letting

(44) 4 = Vi

(45) YU,= Yi+ Ui

we have

(46) Xi= Ys+Z

where the Y and Z' satisfy the same type of conditions as before, and in addition the Z!
are concentrated on a line M through the origin. We now drop the primes.

Suppose that in a particular coordinate system Xi has coordinates XAi, X2i. There
are real random variables R1, * * R,R, S1, "* *, S. (which are merely the Yi and Zi meas-
ured in some arbitrary units along the lines on which they are concentrated) such that

(47) X1;= (Ri + 7) cosG-(uSi++)sin p

(48) X2, = (XRi +ti) sinO - (Si + t) cos so

where 0 is the angle from the first coordinate axis to L, yP the angle from the second co-
ordinate axis to M, X and p are positive real numbers, and q and t are real numbers.
The Ri are independently distributed with nonnormal density p, and the Zi are inde-
pendent unit normal random variables. We suppose

(49) fx2p7(x) dx< co,

(50) P7(x) dx< c,

and

(51) l(a log p-(x)2 p (x)dx< co,

where pj(x) is the derivative of p, with respect to x.
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Then the information matrix (with one observation) for 9, so, 1, r, X, g, -y at the point

9 = = O, v = = O, x = = 1 is

1 ,-ERa(R), 0 ,O, 0 ,0, 0

-ERa(R), Ea2(R) , 0 , 0, 0 , 0, 0

O , 0 , Ea2(R) , 0, -ERa2(R) , O,-Ea(R),B(R)

(52) 0 , 0 , 0 ,1, 0 ,0, 0

0 , 0 , -ERa2(R) 0, EE[I+Ra(R)12, 0,ERa(R),B(R)

o(0 , 0 , 0 ,0, 0 ,2, 0

O , 0 ,-Ea(R),B(R),O, ERa(R)j (R) 0, E,B2(R)

where

( 53) a ( r ) = d~~~log P^r ( r)(53) a 0rlo= 7r
Olr

(54) 0(r)= d log p-,(r)

The expectations are taken with R distributed according to p,
Applying the lemma of section 3 we see that the addition of y as an unknown parame-

ter does not make the problem of estimating 9 and so asymptotically more difficult. Curi-
ously, even the presence of ?q, ?,XL as unknown parameters does not make the problem
asymptotically more difficult.
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