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1. Introduction
The stochastic processes variously called branching, birth, or multiplicative

processes have been considered by writers in many different fields during the past
eighty odd years. We shall not try to characterize such processes mathematically,
although certain related mathematical properties will appear in all the processes
we study. Physically speaking we may say that they represent the evolution of
aggregates or systems whose components can reproduce, be transformed, and die,
the transitions being governed by probability laws. The examples which have been
most frequently considered in applications are the propagation of human and ani-
mal species and genes, nuclear chain reactions, and electronic cascade phenomena.
The first, and probably best known mathematical model, which we shall consider
in section 2, arose in connection with the problem of "the extinction of family
surnames," and was treated by Galton and Watson [1] as far back as 1874.

As we should expect, the mathematical models which are simple enough to make
possible a thorough analytic treatment of the subject are often radical oversimpli-
fications of reality. Nevertheless, certain practical applications of the theory have
been possible.

For a good historical account of the subject, including many references to appli-
cations, as well as interesting original work, we refer the reader to papers by M. S.
Bartlett [2] and David G. Kendall [3]. Their bibliographies, together with that at
the end of this paper, give (not completely exhaustive) references to much of
what has been written in the field. It is unfortunate that some work done during
the war, and classified, is still not available.

The present paper considers a number of stochastic processes which have been
used as models for branching phenomena. We shall be particularly concerned with
limiting theorems and limiting distributions giving the behavior of the systems
studied after long periods of time. One pattern recurs often enough to make the
following statement plausible, although a general mathematical formulation has
not been given. It is strongly suggested by results of Everett and Ulam [4] and
various results of Harris [5] and Bellman and Harris [6].

Consider a family of objects. Each object is described at a given instant of time
by a vector quantity x, where x may describe the age, energy, position in space, or
a combination of these or other traits. The quantity x for a given object may vary
with time in a deterministic or a random fashion. In addition, there is a law for the
probability that an object of "type" x, existing at time t, will produce (or be trans-

305
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formed into) a given aggregate of objects at time t' > t; for example, we may pre-
scribe, for the disjoint sets Xi, X2, . . , of x-values and the integers ki, k2, . . ..
the probability that starting with an object of type x at t, there will be ki objects
at t' whose x-coordinates belong to X1, k2 whose coordinates belong to X2, etc.
Thus we might prescribe the probability that an object of age x be transformed
into ki objects of age < xi and k2 of age > xi.
Now let N(t) be the number of objects at time t, and let Pt(X) be the "distribu-

tion" of the population at t. [Pt(X) is not a probability distribution; it is a ran-
dom quantity giving the number of objects in the set X at t.] Assume that the
system dealt with is one which will grow in size without limit as t C. Then,
under various conditions, it will be true that

(a) N(t)/E[N(t)] converges with probability 1 as t o to a random variable,
E[N(t)] being the expected value of N(t).

(b) Pt(X)/N(t) converges with probability 1, in some sense, to a constant dis-
tribution Q(X); (that is, the same for all realizations of the system).

It appears to be a matter of considerable interest to determine broad conditions
under which (a) and (b) are true. They will be demonstrated for some of the sys-
tems considered in this paper.

In addition to limiting theorems we shall coisider various results especially ap-
plicable to the classical model of Galton and Watson, and its multidimensional
generalization. In particular we shall describe briefly some work of the Russian
school not yet available in English.

2. The simple iterative scheme
In this section we consider the original Galton-Watson model. It has been used

by many writers, and many of its properties have been discovered and rediscovered
several times. In spite of its simplicity it is of considerable importance, partly be-
cause there are intrinsically interesting mathematical problems connected with it,
many of them still unsolved; partly because many results connected with it can
be wholly.or partially generalized to more complicated models.

In this scheme we consider an initial object (ancestor) forming the zero genera-
tion. This object has probabilities pr, r = 0, 1, 2, , of producing r objects,
which will constitute the first generation. Each object in the first generation has
the same probabilities as the ancestor of producing a given number of "children,"
independently of what is produced by any other object in its generation or pre-
ceding ones. Formally we can define the sequence of random variables z,,, n = 0,1,
... , where zn, is the number of objects in the n-th generation, by

P (zo = 1) = 1,
P (z, = r) = p, r = O, 1,...,

and the requirement that if zn = j, then z,,n+ is the sum of j independent random
variables each having the same distribution as zi. (If zn = 0, zn+, = 0.)
We define the generating function of z1 by

0

f ( s) = pTS.
r=O
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Throughout section 2 we shall assume, unless the contrary is stated, that

E r7Pr < X. This insures the existence of second moments for all the random
variables with which we shall be concerned. We shall also exclude the trivial cases
(1) po + pi = 1, and (2) f(s) = Sk for some integer k.
The following facts are then well known.
(a) The generating function of zn, isf,,(s), defined by

fo (s) = ,

fn+i (s) =f [f. (s) I n = 0,1.
(b) Let

Ez =f' (1) = m,

variance (zl) = f" (1) + m-M2 = a2.
Then

(2.1) Ezn=mn,
var (Zn) = a2mn (mn-) / (m2 - m) m 1;

var (zn) = nU2, m=1.

(c) If m < 1 the probability is 1 that Zn = 0 for some n. If m > 1, let a be the
unique root in the half open interval [0, 1) of the equation

a = f (a) .

Then with probability a, Zn = 0 for some n and with probability 1 - a, Zn X-
(d) If m > 1 the random variable

Zn

converges in distribution to a random variable w whose moment generating func-
tion

4, (s) = Ee-
satisfies

(2.2) S(ms) = f[R (s) ] Re (s) _ 0.

As we shall see, many properties of the distribution of w can be deduced from (2.2).
The result (a) is originally due to Galton and Watson and has been rediscovered

a number of times; (b) and (c) have likewise been found several times; (d) appears
to be due first to Hawkins and Ulam [71 and was obtained independently by Yag-
lom [8].
We next consider convergence of the actual sample sequences wn. For this pur-

pose we note the important relations

(2.3) E (Zn+pIZn) = E (zn+pIZn, Zn-1, * *, zo)

= MpZn , P= 1

E(Zn+pZn) = mPEz4, p = O, 1,
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From (2.3), and the definition of wn = Z/mn, we have

(2.4) E (Wn+pIwn) = E (wn+pwIn Xw1, . ., wo)
Wn, p =p O, 1,...

E (wn+pwn) = Ewn p = 0,1.

The relations (2.3) and (2.4), or something analogous, hold in all the models we
shall consider.
We have already mentioned that if m < 1 the sequence Zn, and hence wn, con-

verges to 0 with probability 1. If m > 1 we have
THEOREM 1. If m > 1, wn converges to a random variable w with probability 1.
The proof follows from (2.4), according to which

(2.5) E (wn+p-wn)2 =Ewn+p-Ew,n.
From (1),
(2.6) Ew2=1+ 2 _ (2

n _M2 Mn(M2-m)
whence
(2.7) E (wnurp- W.)2 = 0 (M-,) Xm > I

From (2.7) it follows that wn converges in mean square to a random variable w
and that

(2.8) r~E (w _wn)2 ,O(M-n) <X.
n=1 n=1

From (2.8) it then follows that wn converges with probability 1 to w.
It should be noted that by virtue of (2.4) the random variables wn form what

Doob has called a martingale. Moreover, since wn _ 0 we have E I w" = Ewn = 1.
Since the quantities E Iwn are uniformly bounded it follows from a theorem of
Doob [9, p. 460] that the wn converge with probability 1. Moreover, this argument
does not require the existence of second moments, which we have assumed. How-
ever, the argument depending on second moments appears easier to generalize
to more elaborate models. It also gives a bound for the rate of convergence.

The functional equation (2.2), sometimes called Koenigs' equation, sometimes
Schroder's equation [10], [11], [12], after 19th century mathematicians who
studied it, can be used to find the behavior of +(s) on the imaginary s-axis, the
negative real s-axis, and, if it exists, on the positive real s-axis. Then, using various
kinds of Tauberian theorems, properties of the distribution of w can be inferred.
Some details can be found in [5], but a great deal remains to be done in this
direction.
We now consider some limiting theorems of a different sort. The fact that zn-* 0

when m < 1 makes the limiting situation look uninteresting. However, Yaglom [8]
noticed that we get nontrivial limiting distributions in this case if we consider the
conditional distribution of Zn, given that Zn FF 0.

THEOREm 2 (Yaglom). Let gn(s) be the conditional generating function of Zn,
given zn °

gn( s) = sP (Zn = r Zn O) - f() fn(0)



BRANCHING PROCESSES 309

Then if m < 1,
limgn(s) = g(s)
n avj0

where g(s) satisfies the functional equation
g[f (s)] =mg(s) +1-rm sI_1
g(l) = 1, g'(1-) =K,

K = lim 1-fn(°)
n co

The proof is carried out using the classical work of Koenigs.
The limiting distributions considered in theorems 1 and 2 can assume a great

variety of forms for any value of m, depending on the exact form of f(s). It is
therefore noteworthy that when m = 1 there is a universal limiting distribution,
as seen in theorem 3, first proved for the special casef(s) = e-' by Fisher [13].

THEOREM 3 (Yaglom). Assume m = 1 and E r3p, < co. Then

lim P { 2zn/ [nf"(1) ] _ u zn054 0} = 0

if u < 0 and 1 - e-u if u >_ 0.

If m = 1, E(znZn 0) i-dOnf"(1)/2, n -- -. The proof of theorem 3 is carried
out using a theorem of Fatou [14] on iteration of functions in the neighborhood of
a fixed point with derivative 1.

Another type of limiting distribution is of some interest in the case m = 1.
We may consider the distribution of Zn, given z,,+ i 0, where p is a positive in-
teger. The generating function of this distribution approaches a limit as n -+ ,

the limit being sf,'(s). In fact we can define in this way a conditional probability
measure on the subspace (of zero measure) of sequences (Zn) which never vanish.
A precise statement of the limiting result is clumsy, but it may be given informal-
ly as
THEOREM 4. Assume m = 1,E r3p, < x. Suppose that n and n' - n are both

large. If extinction has not occurred after n' generations then zn/(l + no-2) has ap-
proximately the probability law whose density is 4ue-2udu, u > 0.

The proof is by means of the theorem of Fatou, using the relation
n-1

fn(S) rIf1 [fi[(S) ]I
i=0

Besides Zn, another random variable of interest is

Z = I + Zi +***X

where Z is the total progeny produced in all generations. We have seen that if
m . 1, Z is finite with probability 1, and we can consider its probability dis-
tribution.

Let Q(s) be the generating function for Z,

Q ( s) = sP (Z = r) = Qr S
1-I r=l
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Hawkins and Ulam [7] and Otter [15] have shown that Q(s) satisfies the functional
equation

(2.9) Q(s) = EQrS,= sf [Q(S) I = SyP[(s
r=1 r=O

Otter has investigated the equation (2.9) and has obtained an asymptotic expres-
sion for the coefficients Qr.

Further results and details can be found in Otter's paper. Otter bases his work
on a probability measure defined not on the space of sequences (Zn) but on the
space of "trees." For example, one distinguishes the progeny of the second son of
the fourth son, etc.
We shall only mention another group of problems about which little is known,

those concerned with finding the distribution of upper or lower bounds for z,, as n
ranges over various sets of values. The distribution for the number of generations
to extinction, in case m < 1, has been discussed in [5]. Another distribution of in-
terest, about which nothing seems to be known, is that of sup z_X if m < 1,l<n<0x
and of sup z"/mn if m> 1.

1In<co

3. The multidimensional iterative scheme

We consider in this section the generalization of the model of section 2 to the
multidimensional case. Specifically, we consider a sequence of vector random
variables Zn = (Z, . Zk) where zn represents the number of objects of the i-th
type in the n-th generation. (We shall use bold face lower case letters for vectors,
bold face upper case letters for matrices.) The types 1, . . ., k may be thought of
as representing energy levels in the case of nuclear particles, or age groups in the
case of biological organisms, etc. We assume that an object of type i existing in
the n-th generation has a probability pi(ri, . ,rk) of producing in the next gener-
ation ri objects of type 1, . , rk objects of type k, independently of past history
or of what is produced by other objects. The probabilities pi(ri, . . ., rk), together
with specification of the initial aggregate z0 determine the probability law for the
sequence (Zn)-
Much of the theory of these processes has been developed by Everett and Ulam

[4], Sevast'yanov [16], and Sevast'yanov and Kolmogorov [17]. We shall sum-
marize some of their work and give some further results. I wish to thank Drs.
Everett and Ulam for permission to quote some of their results which have not yet
appeared in the journals.

Defineft(s) andffn(s), i = 1, . .. , k; n = 1, 2, . . .,by

fP(s) =f(S) pi( ri, . . rk) S'l' . s.k,
r1, *- *rk>O

fn 1( S) = P (z = r, z = rk) S5'.* SIk-

We then have the relations

(3.1) f.n+i (s) = fi[fn (s) , - - , fn' (s) ] i = 1, k ; n = 1, 2.
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Now define the first moment matrix

M= (mij),
of l
O Sj 81=... 8=kl=

where mij is the expected number of objects of type j produced in a single genera-
tion by a single object of type i. We exclude the trivial case where all the mi,
vanish.

Differentiation of (3.1) at si = ... = = 1 gives

(3.2) Ez. = zoMn.

We shall consider the second moment matrix later. We shall assume that the sec-
ond moments E(z'zi), i, j = 1, , k, are finite.

Since all elements of M are nonnegative we can use the well known fact that M
has a positive characteristic root X which is at least as large in absolute value as
any other characteristic root and which corresponds to a characteristic vector all of
whose elements are nonnegative. If all the mij are positive, X is simple and larger
in absolute value than any other characteristic root, and every component of the
corresponding characteristic vector is positive. We shall reserve the letter X
throughout section 3 for the largest positive characteristic root of M.
By analogy with the classification of states in Markoff chains we can introduce

the notion of a closed group of types [17], a set of types whose progeny all belong
to the set. A closed group is indecomposable if it does not contain two disjoint
closed subgroups. If the types 1, , k form an indecomposable group, we shall
speak of an indecomposable system. A closed group is called a final group if, with
probability 1, the progeny in the next generation of an object in the group is exactly
one object in the group, and if the group contains no proper closed subgroup with
this property.
A process such that for any zo complete extinction is bound to occur is called

degenerate.
THEOREM 5 (Sevast'yanov). In order that a process be degenerate it is necessary

and sufficient that (a) X < 1 and (b) there are no final groups.
We shall say that a process is completed if only objects belonging to final groups

remain. Suppose that there are K final groups, K _< k, and let qi(ri, . .. , rK) be
the probability that if the initial object is of type i, the process will be com-
pleted, with r1 objects in final group 1, . , rK in final group K, remaining. For
simplicity (and in connection with theorem ; only) we suppose that an object
which dies is transformed into a particular type which represents a death state.

This type then forms a final group.
Let H1, . . , HR be sets of integers, Hr being the numbers corresponding to

the types in the r-th final group. Let

EO M(eastqi(rya
.. . TrK) s ts ( f* S

T-HEOREm{ 6 (Sevast'yanov and Kohlmogorov). The functions 4,6i(s), for I|s|I 1,
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are uniquely determined by the equations

(3.3) 4,i (S) =fi [0J1 (S),.., 14A (S) ]X i { H1I+ . . * + HK;

Oi (s) =sr, i E H, r = 1, . . ., K .

The quantities #i(1) _ 1 are the probabilities of "completion," as previously
defined, if the initial ancestor is of type i, and can be obtained by solving (3.3)
with s = 1.

If there are no final groups, then we may consider the probability ai that ex-
tinction will occur, if the initial object was of type i (dropping henceforth the con-
vention that the "death state" is one of the types). The quantities ai are then de-
termined by the equations

(3.4) ai =f(a', . . .,ak) ,i = 1, . . . , k .

If we make the further assumption that for each i, j = 1, ... , k there is a posi-
tive probability that an object of type i will have among its progeny in some
future generation an object of type j, then ai = 1 for a single i implies ai = 1 for
all i, and ai = 1 if and only if X _ 1.

Theorems 5 and 6, in slightly less general form, were proved by Everett and
Ulam [4].
We shall say that a system is positively regular if X is simple and larger in mag-

nitude than any other characteristic root and if for every i, j = 1, . . . , k there
is a positive probability that an object of type i will have in some generation of
its progeny an object of type j. If every element of M is positive, the positively
regular case is assured.

In the positively regular case we have, from matrix theory,

M = XM1 + N

where M1M1 = M1, M1N = 0, NM1 = 0, and every element of M1 is positive.
The matrix M1 has rank 1 and in fact has the form

M1=(=00)
where /A, ..A.,k are the components of the right eigenvector of X and vl, .. ,v
are those of the left eigenvector. The components usi and vi are all positive, and
with the proper normalization we then have

mij.&'= XI, Svimij= x vi = 1.
j i i

Moreover, there is an al, 0 < al < 1, such that

(3.5) N,, -o (a,), n-> D

where 11 Nn|I is the sum of the absolute values of the elements of N1.
During the remainder of this section we consider only the positively regular

case with X > 1.
THEOREmL 7a. Suppose that X > 1 and the system is positively regular. Then the
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random variable

-(Zn+ * *+ Zn") = Sn

converges with probability 1 to a random variable S.
THEOREM 7b (Everett and Ulam). Suppose X > 1 and the system is positively

regular. If the system does not become extinct the ratios zz:Z ....: Z approach with
probability 1 the ratios vl: V2: . .: vk of the components of the left eigenvector of X.

Theorem 7b, which appeared in a declassified Los Alamos report [4] written
in 1948, is part of extensive results to be published later. As stated by the authors,
it applied to the space of "trees" or "graphs"; compare the remark on Otter's work
in section 2. As we shall see, 7b can be used to prove 7a. However, we shall also
outline a simple method different from that of [4] which proves the two together,
and gives an error term.

Analogously with (3.3), section 2, we have

(3.6) E (Z.+pIZn) = ZnMp

If we divide both sides of (3.6) by )fn+P and multiply (scalar product) both sides
on the right by the column vector JA', the right eigenvector of X, we get

(3.7) E (Zn+ii IZI ) Z,MPJ-iA ZA'
xn+p ~~XI+1p X"'

Let {n denote the scalar random variable defined by

Then (7) gives
(3.8) E( n+,pI ) = -

Use of the theorem of Doob referred to in section 2 proves convergence with prob-
ability 1 of the sequence tn. Knowing from theorem 7b that the direction of zn (if
it does not eventually vanish) approaches a limit, the fact which we have just
observed, that the scalar product zn,'/X" converges, proves that each component
of the vector z./Xn converges, and theorem 7a follows.

As an alternative proof of theorems 7a and 7b we consider the sequence wn =
zn/XIn. From (3.6)
(3.*9) E (w. +p wn ) = x"p
Relation (3.9) looks very much like its one dimensional analogue, (2.4). In fact, if
M has an inverse, the resemblance can be made more striking. However, this line
of argument, based on Doob's theorem, has not been carried out. Instead we argue
on the moments as folloWvs. From (3.9) and remarks made below it will appear that

(3.10) E [ (wn+p,- wn) (wni+, wn) I = 0 (4^) X i j = 1, . . . X k;
0 < a2< 1.

In particular,
(3.11) (wt+, -wi) 0(a'^), i=1 ,k.
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Thus for each i, w, converges with probability 1 to a random variable wi and we
have theorem 7a. We shall see below that the second moment matrix of the wi,
(Ewizwi) has rank 1. Thus the wi are perfectly correlated. Also, it can be shown
that for each i, wi = 0 if and only if extinction occurs, with probability 1. Hence,
if wi #d 0 the ratio wi/wi is the same as the ratio Ewi/Ewi, with probability 1.
Since, as we shall see, Ewi/Ewi = vi/vi, theorem 7b follows.
To obtain (3.10) we first examine the second moment matrix of zn. If u = (ui)

and v = (vi) are vectors we denote the matrix (uivl) by u'v. If u and v are random
variables then E(u'v) = [E(uivi)], while the variance of u is

E (u'u) - Eu'Eu = [E (uiui) - EutEuli .

We shall use M' to denote the transpose of M.
Let e, be the k-component vector with 1 in the r-th place and zeros elsewhere.

Define
Br =E (z'z1 zo= e,) = (E (zizil zo= er)

E (zizi zo= er) = a2fr if i ij

,a2frl =E (z)2-z izo=erl
d i 8=**-=k=

Vr = variance of zi, given zo =e,
= Br-E (z'l zo = e,)E(z1Izo er) = Br- M'erere ;

Cn, = E (zn'z,); qn, = Ezn,n

From elementary considerations we get
k

(3.12)~~ ~ ~ ~ ~ ~~V q n=0, 1,...,(3 .12) C. +I M'C.M+ V int ,1,...

Co z= zo o

whence
Cn M'n Mn 1 M't -i K Mn -i

(3.13) --co0- + -_ __( * ) A2n vAn Xn X2 Xn_}Vi2-2 Xn

From (3.13) we derive C
(3.14) C2n C+O(a) 0< a3 <1;X2n 3'

C =M'4C0+-xE Vi2M1,

(recalling that M1 = lim Mn/Xn), where bi is the i-th component of the vector

zO(I - M/X2)-l', I being the identity matrix.
From (3.14) and the relation of M1 to M we see that C has rank 1 and satisfies

(3.15) CMn = XnC = M1nC n = 0, 1,.
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Now consider wn = z"/Xn. If n and p are nonnegative integers,

(3.16) E[(w'-w')(w p-C)] C-+' +', -E(w'wu+) -E(w' w )nK+p Wn' Wl Wn X2n+2p X2n nn~ lpf

But from (3.15), (3.14), and (3.6),

(3.17) E(w.w.+p) =E(2np EX(zz)Mr
[C+O(an)] pC+ 0(a'), 0< a3< 1

similarly E(wn+,Wn) = C + O(c3). From (3.17), (3.16), and (3.14), we have
(3.10), q.e.d.

Regarding the distribution of w, we have

(3.18) Ew=zoM'1=X ZO(v, , v).

Ew'Ew = M'zzoM1 = M'CoM
and, from (3.14) and (3.18)

(3.19) var (w) M, ( aiVi)M.

We recall that Vi is the variance matrix of zi, given zo = ei, and bi is the i-th com-
ponent of the vector zo(I -M/X2)-l.

The wi, being perfectly correlated, and the random variable S of theorem 7a,
all have the same distribution except for constant factors.

Let 4i(s) be the moment generating function of S, if there was initially one ob-
ject of type i. It is then not difficult to show that the functions 4i(s) satisfy

(3.20) 'i (Xs) = fi [kl (s), . ,4k (s) ], Re (s) _ 0, i = 1, . . ., k.

The functions 4i(s) are uniquely determined by (3.20) and the requirements

i (o) = I -di (°- =Ayi (pl + ...+vk)ds

=E (SI zo= ei),
where ei has 1 in the i-th place and zeros elsewhere.

4. Continuous time parameter, Markov case

Feller [18] was apparently the first to discuss branching or birth processes where
a continuous time parameter is involved, and since then there has been an exten-
sive literature. For references we refer again to Kendall [3]. The point of de-
parture for these treatments has usually been the specification of functions b(n, t)
and d(n, t) where b(n, t) dt is the probability of a birth and d(n, t) dt the probability
of a death between t and t + dt if the size of the population at t is n. When these
functions are specified, differential equations can be obtained for the probability
of a given number of objects at t. Most treatments have assumed the birth and
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death rates to be independent of the age of the objects, although allowing them
to depend on absolute time. We shall discuss the question of age dependence in
section 4.

The model which we now consider is determined as follows. Consider an object
existing at titne t. Assume that there is a probability.

b,At + o (At)

that the object is transformed into r objects, r = 0, 2, 3, . . between t and
t + At, Alt > 0, where

b= bo+b2+b3+... < ,

and a probability 1 - bAt + o(At) of not being transformed. We assume that the
transformation probabilities are independent of the age of the object and the num-
ber of other objects existing. Then if there is initially a single object at t = 0, and
if p,(t) is the probability that there are r objects at I we have the equations

(4.1) drp(t) - (r+ 1) bop,+1 (t)rbppr(t) + ( r- 1) b2p,-l (t)

.+ b,pi (t), r =O, 1,...
with the initial conditions
(4.2) p, (O) = 0, r 1; p (0) = 1.

We assume, henceforth, that the b, are independent of time.
Various special cases of equations (4.1) have been studies both directly and by

means of the generation function

(4.3) F(s, t) = Ep,(t) s?
r=O

which satisfies the equation
aF(s, I) aF(s, t)(4.4) = ~ s)

where

(4.5) (s) = bo-bs + b2s2 +

It is well known that if we define

fn (s) = F (s, nh), n , 1, . . ., h > O

the functionsf.(s) are the successive iterates of the functionf(s) = fi(s) = F(s, h).
Thus every scheme of the sort determined by equations (4.1) has a simple iterative
scheme imbedded in it.

The converse of this statement is not true. It is clear that if f(s) is'an arbitrary
generating function there is not in general a scheme defined by a set of equations
(4.1), and a value to of t such that

(4.6) F (s, to) = f (s).

This is obvious, for example, if f(s) is a polynomial of degree _ 2. We are thus
led to ask under what circumstances it is possible, when a generating function f(s)
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is given, to find a family of generating functions F(s: t) obtained from equations of
type (4.1), with F(s, to) = f(s) for some to. To be precise we shall say that a prob-
bility generating function f(s) belongs to class C (written f C C) if there exists a
family F(s, t),

F ( s, t) = P, (t) Sr
r=O0

such that

(4.7) (a) Pr(t) _ Pr (t) =1;

(b) F [F(s,11), t2] = F ( s, tl + t2), t11.0 t2 _ O, sl<1

(c) F(s, 1) =f (s) = PrS.;
r=O0

(d) F(s, t) = s+t (s) + o(t), tO, sI <1
where i(s) is some function defined for I s I -1 and o(t)lt 0 uniformly in s. Some
kind of regularity condition is necessary and (d) is convenient, although weaker

looking assumptions could be substituted. From (d) we see that ddF (s, t) t=o =
and s(s) is a power series convergent in the unit circle.

Using classical work on the iteration of functions and the general theory of
Markov processes, we can now determine whether a givenf C C, provided f(O) =
Po = 0. The literature on iteration goes back to Abel and is vast. I should like to
thank Professor David Hawkins who first called this field to my attention.
We note that if po = pi = 0, f(s) can never belong to class C; in what follows

we set aside this case as well as the trivial case Pi = 1.
THEOREm 8a. If po = 0, 0 < pi < 1, a necessary and sufficient condition that

f(s) belong to class C is that each of the quantities br, r = 2, 3, . . , should be non-
negative, where the br are defined by the recurrence relations

(4.8) b = I_p b[j - (r-r-j + 1)P.+1], r = 2, 3,. . .;

bi =log pi .

The exact value of bi = - b is unimportant so long as it is negative; #1j is the
coefficient of sr in [f(s)]i.

The criterion of theorem 8a is not very satisfactory since it is often difficult
to apply, and since it does not give any obvious relationship between membership
in class C and the general analytic properties of f(s). We can, however, give

THEOREm 8b. If po = 0, 0 < pi < 1, and f(s) is entire, f(s) does not belong to
class C.
We show first that the criterion of theorem 8a is sufficient. From the classical

work of Koenigs [10] we know that if f(s) is any function analytic in a neighbor-
hood of s = 0, with f(O) = 0 and 0 < f'(0) < 1, there is a family

F(s, t) = Epr (t) St
t-1
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satisfying (4.7-b, c and d) in' a neighborhood of s = 0. The function t(s) is regu-
lar near s = 0 and satisfies

(4.9) [F (s, t) ] = $, (s)-(aF')Fs
aF(s,) aF(s,t1)

(4.1 0) -- t= t ( s)- I

(4.1 1) t' (0) = log ,Pi (1-) = log m

which are evident from (4.7-b and d). Putting t = 1 in (4.9) gives

(4.12) I[f (s) ] = t (s)f' (s), Isl 1.

From (4.12) it is clear that t(O) = 0; (4.11) and (4.12) then determine uniquely
the coefficients in the power series for t(s), which are just the numbers br of (4.8)
with b1 = log pi. If the b7, r > 2, are nonnegative then i(s) must be analytic in
the interior of the unit circle since (4.12) shows that c(s) is analytic for every
real s between 0 and 1; moreover, from (4.12) we have t(1) = 0 so that

(4.13) bj= O .

From (4.10) we see that the pr(t) satisfy the equations

dpr(t) r-1
(4.14) d,t) = -j) bj+lPr-j(t), r= 1, 2,.

But now it is easily seen that equations (4.14), which are in the standard form of
the differential equations for discontinuous Markov processes, have nonnegative
solutions uniquely determined by the initial conditions

Pr (0)= 0, r i- I1; pi (0) = 1,

which come from (4.7-d). The general theory insures that p,(t) < 1, but
r=1

the fact that F(1, 1) = f(l) = 1 shows that E Pr,() = 1 for all t > 0. Thus the
r=l

nonnegativeness of the br is sufficient. The necessity is obvious from (4.14).
We shall obtain theorem 8b as a by product of theorem 9.

We observe that if f E C, with f(O) = 0, 1 r2p, < co implies E r2br < x;
that is, t"(1-) < o. This can be deduced from (4.12). Moreover, ("(1-) < X

impliesE r2p, < c; this seems to be difficult to obtain from (4.12) directly but
can be demonstrated by actual construction of F(s, t) as the solution of (4.10).

Suppose then that f E C, f(0) = 0, S r2p, < o. From section 2 we know that

the random variables zn/mn converge with probability 1 to a random variable w
whose moment generating function +(s) satisfies 0(ms) = f[o(s)]. Alternatively
we can say that the random variable z(t) whose probabilities are defined by (4.14)
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is such that for any h > 0 the sequence z(nh)/Ez(nh), n = 1, 2,... , converges
with probability 1 to w.1 Since it is often the probabilities b3 which are known
initially rather than the pr, it is convenient to determine +(s) in terms of s(s).

THEOREM 9. Suppose f E C, f(O) = 0, z r2Pr < o-. The inverse function of +(s)
is given by
(4.15) q-1(u) =-(1-u)expf[L l + _]dy( O<u_ 1.

(We recall that t'(1) = log f'(1) = log m.) There are several ways of getting
(4.15). We start from (4.12), which implies

n-1

(4.16) [fn ( S) I ( S) II f [ fj( s) I
i5o

= ,(s) f", ( s) .

Since the moment generating function of zn/mn is fn(e/-n) we have

(4.17) lim fn(e ) =+(S), Re(s) _O,
n - co

(4.18) lim d[f = lim e Mnfn( em)n,o ds n-i+nO

=+'(s), Re(s)_ 0.

We can justify (4.18) from the fact that fJ(e'_"), n = 1, 2, ... , are moment
generating functions for the random variables Zn/Mn, whose second moments are
uniformly bounded. Now replace s by el/-' in (4.16), Re(s) < 0, and let n -+ m.
The left side of (4.16) approaches b[O(s)] while the right side approaches s,'(1)0'(s).
We thus have the differential equation

(4.19) t [ (s)]=I (1) s'(s), - < s <O,

which, together with the condition

d -1 (u) =1-du u=1-
gives (4.15).

Theorem 9 holds even if f(O) $ 0 provided m = f'(1) > 1 [that is, even if
bo z- 0 provided t'(1) > 0]. As an example we consider the case

t(S) = JA- (IA+ X)S+ XS2 0 _ 4 < Xt
obtaining

'k( s) =+X+-X * 1 s

Thus the random variable w is zero with probability M/X and otherwise has an

exponential distribution. This is a special case of D. G. Kendall's "generalized
birth and death process" [19].

1 From the theory of Doob [91 it follows that if 4. is any sequence approaching co, z(tn)/Ez(tn)
w with probability 1.



320 SECOND BERKELEY SYMPOSIUM: HARRIS

Suppose now that f(s) belongs to class C with f(O) = 0, and that f(s) is entire.
Then it is easily seen that 4,(s) is entire, and 071(u)/(1- u) is analytic in a neigh-
borhood of u = 1; using (4.15) this means that t(s) is analytic in a neighborhood
of s = 1. Sincef(s) > s for s > 1, andf'(s) > 0, this means that (4.12) can be used
to extend i(s) analytically to the whole positive axis. Since J/I(y) = O(1/y2),
y -- o, we have
(4.20) ft dy <o0.

From (4.20) and (4.15) we see that +-'(u) approaches a finite limit L as u -a ;
that is, +(L) = -. But this contradicts the assumption that 4, is entire. Thus
theorem 8b is proved.

5. Age dependent processes
In the branching processes arising in biology the probability that an object

existing at some time be transformed in a given time interval is not independent of
the age of the object; in other words, the age specific birth and death rates are not
constant. This means that the random variable z(t), the number of objects at t, is
not a Markov process. There are then several possibilities. We may accept the
non-Markov character of z(t) and work with it as well as we can; or we may choose
to describe the state of the system at t by a function z(t, x), the number of objects
whose age is less than x, thus restoring the Markov character; or we may approxi-
mate by introducing a finite number of types, corresponding to age groups, and
use a model of the multidimensional sort discussed in section 3 or the multidi-
mensional extensions of the model of section 4.
We shall consider the following model. An object (of age 0) existing at I = 0 has

a cumulative life length distribution G(t). At the end of its life the object is trans-
formed into r objects with probability qr, r = 0, 1, . . . , each having the same life
length distribution G(t), and so on. If the transformation is always binary we have
the case of bacteriological fission, with which we shall be primarily concerned.
We shall summarize some results obtained by Bellman and Harris [6] on the
distribution of z(t) and then consider the z(t, x) process. Certain results about
z(t, x) for a related but more complicated model have been given recently by
Kendall [3], who has also studied our variable z(t) for the case where G(t) is a con-
volution of exponential distributions [20].

Let

pr(t) =P[z(t) = r], F(s, t) = Epr(t) s'.
.=o0

If the initial object is transformed into r objects at time y < t, the generating
function for the number of objects at t is [F(s, t - y)]?. Thus we see that F(s, t)
satisfies
(5.1) F(s, t) = Jfh [F(s, t- y) I dG(y) + s [1 -G(t)

0
where we have put

h(s) = q,sr.
r=0
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Equation (5.1) determines F(s, t) when G(t) and h(s) are given. Arguments similar
to those used for the model of section 2 show that there is a positive probability
that z(t) never vanishes (and therefore goes to o ) if and only if E rqr > 1.

If G(t) is a step function with a single step, equation (5.1) gives the iterative
scheme of section 2; if G(t) = 1 - e-ct, where c is constant we have the Markov
case of section 4 and in fact equation (5.1) can be reduced to a partial differential
equation of the type of (4.4) in this case.

In the remainder of this section we shall be exclusively concerned with the
case E rqr> 1. For simplicity of exposition we restrict ourselves to the binary
case h(s) = s2. We also assume that G(t) has a density function of bounded total
variation,

(5.2) G(t) =fg(y) dy, f dg(y) <o.

The case where G(t) does not have a density is discussed in [21], a brief account of
which appears in [6].

Equation (5.1) then takes the form
t

(5.3) F(s, t) =JF2(s, t-y) g(y)dy+ s I1-G(t) ].

Similarly, defining
F2 ( sI, s2; 11, t2) = P[ z (ti) = ri, z (12) = r2] Sr' S'2

r1 ,r2

we have, for ti < 12,

(5.4) F2 ( Sl, S2; tl, t2) = F22 ( Sl, S2; tl-y, t2-y) g (y) dy

t2+ SiJ FS2, t2-y) g(y)dy+S Ss2I1-G(2) I

Define
ml )=Ez (t), m2 (t, h) = E [z (t) z (t + h)], h O.

Then ml(t) satisfies the renewal equation

ml (t) = 2 j ml (t-y) g (y) dy+ 1-G (t)

and m2(t, h) satisfies a similar equation. Under the hypotheses (5.2) we have

(5.5) ml (t) = nie,t [ 1 + O(e t)I, El >

(5.6) M2 (t, ) l1-2I2 E2 >O,

where

(5.7) ni= I__ , *2 J e Vyg(y)dy
40f

"

e-"Yyg(y)dy°
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and , is the positive number satisfying

(5.8) 1 = 7ft-g (y) dy.

It should be noted that the O(e-'2') in (5.6) is independent of h. The derivation
of (5.5) and (5.6), using well known methods, is given in [21].

The importance of (5.6) is evident if we define

w ( z)= (t)

Formula (5.6) gives

(5.9) E[z(t+ h)z(t)] = eahE[z (I) ]2[1+ O(e2t)].

In the case of the Markov processes discussed in section 4, the O(e-'2t) on the
right side of (5.9) is replaced by 0. However, (5.9) is sufficient for our purpose, for
using it shows that

(5.10) E [w (I + h) - w (t) ]2 = 0 (tEt) , , e3 > 0.

From (5.10) we have
THEOREM 10. Under the assumptions

h(s) = S2, G(t)= g(y)dy, f dg(y) <,

the random variable z(t)/(nle#t) converges to a random variable w with probability 1 in
the sense that for each h > 0 the sequence z(nh)/(nie nh), n = 1, 2, . . , converges
with probability 1 to w.

Rather than the sequence nh we could pick any sequence tn such that

z O(e7f,'n) < . Presumably, w(t) converges to w with probability 1 in the
n

usual sense also.
Defining +(s) = Eealw, Re(s) < 0, it can be shown that 4(s) satisfies

(5.11) 0(s) =f4 02(se-t) g(y)dy, Re (s) <O.

From (5.11) can be obtained bounds for the magnitude of O(it) and q'(it), t real,
as t-- ± -, whence we get
THEOREM 11. The distribution of w is absolutely continuous.
Details are in [21].
We now consider the process z(t, x), where

(5.12) z(t, x) = number of objects in existence at

time t of age _x
and we introduce

(5.13) M(t, y, x) = expected number of objects of

age _x at t if there was one

object of age y at time 0.
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The function z(t, x) has been considered often in deterministic population studies.
It is known that under certain conditions the age structure of a population (under
deterministic assumptions) converges to a limiting value (see, for example, Leslie
[22] and Lotka [23]). We shall give a probabilistic analogue of this result for our
model which is also an analogue of the "ratio theorem" of Everett and Ulam
(theorem 7b) and is likewise connected with a result of Doob [24] in renewal theory.

Let us first consider, heuristically, some properties of M(t, y, x). Suppose the
age structure of the population at some time ti is given by the function z(tl, x).
The expected number of objects of age < x at time 11 + t2 is then

(5.14) fM(t2, y, x)dyz(ii, y).

Let z(t) be the vector quantity representing z(t, x), considered as a function of x.
We may then define the operator MT by thle requirement that

(5.15) M7H(x) =JM(, y, x)dH(y)

for any function H(x) of bounded variation on (0, co). The operators Ml have
the property that

MTlMT2 = Mp4I+12

We can now write the symbolic equation

(5.16) E [z (t + h) z (T), T _ t] = Mhz (t),

which is the analogue of (2.3) and (3.6).
The operators Mr might be called "positive"; that is, they leave the cone of in-

creasing functions of bounded variation invariant. Thus one would expect some
of the classical theory on matrices with positive elements to carry over; in particu-
lar, the existence of a X > 0 and an A (x), an increasing function of x, such that for
any H = H(x) which is increasing and of bounded variation,

M'H(5.17) lim X = c (H) A
t-t

where c(H) is a linear functional of H; we have not made precise in what sense the
limit in (5.17) should exist.

Although a general theory for positive operators has been given by Krein and
Rutman [25] and Bohnenblust and Karlin .[26], it does not appear to be readily
applicable to the present case. However, we can get the results we need by using
the fact that M(t, y, x) satisfies renewal type equations.
We may define the age distribution of the population at t by the ratio z(t, x)/z(t).

We already know from theorem 10 the behavior of z(t) for large t. We complete
this with
THEOREM 12. Define

fe-u[1 -G (u) I du
(5.18) A(x) = °- I _

f e-u[l -G(u)]duf0
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(5.19) D(t) = supI A (x)- z (t)

Under the assumptions of theorem 10, D(t) -* 0 with probability 1 (in the sense of
theorem 10) as t -* -.

The function A (x) is the analogue of the "stable age distributions" considered
in deterministic population theory.

Although for simplicity we are assuming an initial object of age 0 for theorems
10, 11 and 12, the modifications for an initial object of arbitrary age are obvious.

It is not hard to see that in order to prove theorem 12 it is sufficient to show
that for each x > 0,

(5.20) A (x) z(t, X) t+ .
We do this by defining

(5.21) w(t, x) = z (t, x)

and showing that w(t, x) -+ A (x)w. The methods are similar to those of [21] and
we only sketch the proof.

Let F(y, x, s, t) be the generating function for the number of objects of age < x
at t if initially there was one object of age y. Then F satisfies

(5.22) F(y, x, s, t) = sJ(x-y-t)[1-G(y, t)]

+ fF2p(Ox g)9(y+u) duJ 2(Xx tu 1 Y-G ( y)

where J(t) is the Heaviside function: J(t) = 0 for t < 0, J(t) = 1 for t > 0; G(y, t)
is the lifelength distribution for an object of age y,

G(y, t) =G(t+y) -G(y)1-G(y)

with the convention that G(y, t) and g(y + u)/[1 - G(y)] are to be taken as 0 if
G(y) = 1.

Differentiation of (5.22) with respect to s at s = 1 gives
(5.23) M (t, y, x) = J (x-y-t) I -G (y, t) ]

+2ft:M (t-u, O, x) g (Y + ff) du .

o 1 G(y)
The assumptions we have made enable us to deduce from (5.23), in the manner
of [21], that (putting y = 0)

(5.24) M(t, 0, x) = A (x)-e"t +O(e (-0)t), t- c; ee>-.
40fB te -ftg (t) d t

We have used e to represent a positive number, not necessarily the same each time.
Thus we see that the expected distribution of ages settles down to A (x). To see

that the actual distribution of ages does so we have to consider the joint distribu-
tion of z(ti, xi) and z(t2, x2).
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Define F(y, XI, sI, X2, S2, tl, t2) for t4 < t2 as the joint generating function for
z(tQ, xi) and z(12, x2), given that the initial object had age y. This function satisfies
an integral equation similar to (5.22), which we forbear to write down because of
its length; differentiation of this equation gives a renewal type equation for the
expected value of the product z(t, xl)z(t + r, X2) given that the initial object
was of age y. The methods used to obtain (5.24) then show that for any r > 0

(5.25) E [z (t, xl) z (t+ r, x2)] = 2nI2A (xi) A (x2) e' [1+0(e")11 -2I2
where ni and 12 are defined by (5.7). Equation (5.25) is applicable when the initial
object was of age 0. The term O(e") is independent of r. From (5.25) we can show
that for any xi _ O, x2_0 T> 0

(5.26) E [A (x2) w (t,X1) - A (x1) w (t + r, X2) ]2 = o (e-'), > 0, t ,

where w(t, x) is defined by (5.21). From (5.26) we see that w(t, x) converges in
mean square to A (x)w, where w is the random variable of theorem 10. Theorem 12
follows from this fact.

6. Mutations
A multidimensional analogue for the model of section 5 can be constructed, in

which k types of objects are considered. The asymptotic behavior of the moments
can be discussed using systems of renewal type equations. We shall not pursue
this topic further, but consider a special model for bacteriological mutation.
When bacteria are attacked by a bacterial virus, certain of the bacteria are some-

times resistant to the virus and can transmit this power of resistance to their
descendants. A priori, two hypotheses would appear to be possible: (a) the re-
sistant bacteria arose as mutations before the virus was added; (b) there is a small
probability that any bacterium survives an attack of a virus; bacteria which survive
an attack transmit immunity to their descendants. In case (a) the bacteria which
survive the original onslaught will occur in "clones" of various sizes, each being
the descendants of a mutant. In case (b) the survivors are randomly distributed
throughout the medium.

The problem of distinguishing between (a) and (b) was attacked, using statisti-
cal methods, by Luria and Delbruck [27]. As part of the problem it is necessary to
consider the distribution of the number of bacteria of the mutant form (that is,
mutants or their descendants) at a given time if the hypothesis (a) is true. The
model chosen by Luria and Delbriuck was as follows. The main bacterial culture is
assumed to grow deterministically, the number at time t being

N (t) = Ne'

where N is the initial number. The probability that a mutation arises in the time
interval (t, t + di) is taken as pNe'di + o(dt). The descendants of a mutant in-
crease deterministically, the number of descendants at time T after the mutant
arises being e'.

Let r(t) be the number of the mutant form at time t. Under their hypotheses,
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Luria and Delbriick give the formulas

E (t) = ptNe'

variance [D (t) ] = pNe' (e'- 1)

The distribution of mutations has also been considered by Coulson and Lea, as
mentioned in [28], who apparently assume deterministic growth for the main popu-
lation while the mutants multiply in an age independent probabilistic fashion.
They then determined the generating function for the number of the mutant
form at a given time.
We shall consider the application of age dependent theory to the mutation

problem. We retain the assumption that the parent culture grows deterministical-
ly. We have seen in section 5 that this is approximately true (under the hypotheses
of that section) for cultures with a large number of individuals. Following Luria
and DelbrUck we take the size of the colony at I to be Ne', with a probability
pNe'di + o(dt) of a mutation between t and t + dt. Since the number of mutants
is relatively small, we take a probabilistic model for their growth, assuming that
F(s, t) is the generating function for the number of descendants of a mutant
existing at a time t after creation of the mutant; F(s, t) may be the function of sec-
tion 5, but could be taken as some other function.

Let H(N, s, t) be the generating function for the number of the mutant form at t,
if the mother colony had size N at t = 0, no mutants then being present. The
usual type of reasoning shows that

(6.1) H (N, s, ) I = e -pN(etl) +

XfpNeye-N(ev-1)F (s, t-y) H (Ney, s, t-y) dy.

We can solve (6.1) easily if we think of our stochastic process as depending on the
two "time" parameters N and t. Considered as a function of N, the process is
infinitely divisible: for each N >_ 0, N2 _ 0,

(6.2) H (Nl, s, t) H (N2,s,t) = H (N + N2, s, t)

From (6.2) we can write

(6.3) H (N, s, t) = exp [NL (s, t)]

where NL(e8, t) is the cumulant generating function for the number of mutations
at time t. To determine L(s, t) we substitute (6.3) into (6.1). Considering the quo-
tient

H (N, s, t) - e-pN(et-1)
N

as N -O 0 shows that

(6.4) L(s, t) = -p(e'-1) + pfJ evF(s, t-y)dy.

Letting Q(t) be the number of the mutant form at time t, we have from (6.3)
and (6.4)
(6.5) E[r(I)] =pNf eym(t-y)dy,
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where mQ) = aF s,t) If m(t) ~nie', it follows from (6.5) that

(6.6) E [(t)] pNnitet.

Similar expressions for higher moments can be found.
It should be remembered that (6.6) remains valid only until the number of mu-

tant individuals becomes nonnegligible compared with the nonmutant variety.
Clearly it cannot hold for very large I since ultimately the expression on the right
side of (6.6) becomes larger than Net.
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