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Abstract. We outline several specific issues concerning the theory of mul-
ticomponent nonlinear Schrodinger equations with vanishing and constant
boundary conditions. We start with the spectral properties of the Lax op-
erator L for vanishing boundary conditions. We introduce the fundamental
analytic solutions (FAS) and demonstrate their importance for relating the
scattering problem to a Riemann-Hilbert problem, and for the construction of
the resolvent of L. Then we generalize this procedure to constant boundary
conditions case. We start with the structure of the class of allowed potentials
M and give a recipe of how FAS can be constructed on each of the leafs of
the relevant Riemannian surface. This allows us to relate the scattering prob-
lem to a Riemann-Hilbert problem posed on a Riemannian surface. Next we
use these FAS to construct the resolvent of L and study its spectral proper-
ties. We also introduce the minimal set of scattering data on the continuous
spectrum of L which generically has varying multiplicity. The general con-
struction is illustrated by three representative examples related to A.III, C.II
and D.III symmetric spaces. Finally we consider regularized Wronskian re-
lations which allow us to analyze the mapping between the potential of L and
the scattering data.

CONTENTS
Lo Introduction . .. ... ... oo e 89
2. Algebraic Preliminaries.............. .. .. ... i 92
3. Spectral Properties of Lax Operators on Symmetric Spaces. Vanishing
Boundary Conditions . . ... ... .. 94
3.1. Jost Solutions, Scattering Matrix and FAS ........ ... ... ... . ... 94

88



On Spectral Theory of Lax Operators: VBC versus CBC 89

3.2. The Fundamental Analytic Solutions............................. 96
3.3. The FAS and Higher Representations ............................ 100
34. Typical Reductions. ......... .o i, 101
3.5. The Resolvent of L and the Minimal Sets of Scattering Data. ....... 102

4. Spectral Properties of Lax Operators on Symmetric Spaces. Constant
Boundary Conditions ... ... ... e 106
4.1. Jost Solutions and Continuous Spectrumof L ..................... 106
4.2. Jost Solutions, Scattering Matrix and FAS .. ... ... .. .. ... .. ... 109
4.3. The Resolvent of L and Minimal Set of Scattering Data............ 113
S EXAmMPleS . e 114
5.1.  Symmetric Spaces of A.IlI-Type and Vector NLSE ................ 114
5.2.  Symmetric Spaces of C.lland D.III Type ...... ... 118
5.3. The Principal Minors and Fundamental Representations ........... 119
6. DISCUSSION. . ...t e 120
References . ... ... i e 121

1. Introduction

The nonlinear Schrodinger equation (NLSE) with constant boundary condi-
tions (CBC) is well known [17,26,27,29]. Here we address the multicomponent
(MNLSE) with CBC whose dark soliton solutions [24] recently attracted attention
with possible applications to Bose-Einstein condensates [20]. We start with the
formulation of the vector NLSE with CBC:

dq 0%q

imr+ o = 2(a) @a(w.t) + pq(x.1) + (gk gz 1)ge = 0. (D)

Here q(z,t) is an n-component vector-valued function tending to the constant vec-
tors g, i.e., limy 1o q(z,t) = q. and p? = (q;rt, q.). The additional linear in
q terms in (1) are used as a regularization which avoids the strong oscillations of
g(z,t) in ¢t for x — £ o0.

The equation (1) allows a Lax representation [L(\), M ()] = 0 which is similar
to the one for the Manakov model [23]. The Lax operator L is a special form of
the generalized block-matrix Zakharov-Shabat system

dy

Lip(xz, \) = ia + q(z)P(z, A) = AJY(z,A) =0

e (0, e s (L9, @
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All the considerations displayed below are valid for any choice of the block dimen-
sions; in some of the specific examples we take n = 3 for simplicity.
The M -operator is given by

My =15 4 (Vo 0)=Vo,s + 20, =207 ) (a1, 1) = i, 6, NO(A)

d
. o . )
VO(:B’ t) = [adj q, Q(xa t)} +2i adJ gz, Vb,:l: = 111:{1 V0($, t)'

The formal expressions for the Lax pair are written down for the vector NLSE.
However with minor modifications they can be made to hold true for several types
of symmetric spaces: A.IIl, C.II, D.IIT and BD.I. Indeed, let us choose a slightly
more general form of L. It is based on the choice of the simple Lie algebra g and
a Cartan involution that specifies the corresponding symmetric space. As it is well
known [19] each symmetric space is a factor space &/$), where & is the simple
Lie group with Lie algebra g and $) is a normal subgroup of &. In fact, § is the
invariant subspace of the Cartan involution (automorphism of second order). On
algebraic level we can say that the Cartan involution splits the root system A of g
into two subsets

A =AgUA, AT = A UAT (4)
according to the choice of J € f — constant real element of the Cartan subalgebra
of g. The set of roots in Ay are such that a(J) = 0 for any « € A, whereas
B1(J) = B2(J) > 0 for any two roots 31, 32 € A. Below we will specify the
sets A(T, Af and J for each of the relevant symmetric spaces.

The next step is to relate to each symmetric space a Lax operator of the form

d
Iap(ar, 2) =152 + gl 00, ) = AT, N) = 0 (5a)
where the potential ¢z, t) (6) can always be represented as

gz, t) = [J, Q(x, 1)]. (5b)

Here Q(x,t) is a generic element of g. In fact ¢(z, t) provides local coordinates in
the space tangent to &/$) at a given point and can be written down as:

q(z,t) = Z (qalz, 1) Eq + palz, 1) E_s). (6)
a€AT
The Lax operator (2) is a particular case of (5) corresponding to a specific sym-
metric space of A.III type SU(n + 1)/S(U(1) x U(n)); its spectral properties for
vanishing boundary conditions (VBC) were analyzed in [23].
The purpose of the present paper is to outline the spectral properties of L for two
classes of potentials:

i) g(x,1) is a Schwartz-type function of 2 and ¢ taking values in g/b.
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i) g(x,t) is a smooth function of z and ¢ taking values in g/ and satisfying
constant boundary conditions

Jlim gz, t) = g+ )

where g are properly chosen constant elements of g /€.

ii1) We also impose one more implicit condition on the potentials, namely we
assume that g(x, t) is such, that the corresponding Lax operator L has a
finite number of simple eigenvalues.

Next we will use these results for the analysis of the NLEE generated by these Lax
operators.

In doing so we will need somewhat different approaches depending on the choice
of J. The first one applies to J’s given by equation (11) and satisfying the char-
acteristic equation J? = 1. Such choice of J is relevant for symmetric spaces of
types A.IIl, C.II and D.III in the Cartan classification. The second approach deals

with J’s of the form
1 0 0
J=10 0, O (8)
0 0 -1

where 0,, is an n X n matrix whose matrix elements are all vanishing, i.e., the van-
ishing eigenvalue has multiplicity n. Such J’s satisfy the characteristic equation
J™(J?* — 1) = 0 and are relevant for the class of BD.I type symmetric spaces of
the form SO(n + 2)/(SO(n) ® SO(2)). Such spaces exist both for odd and even
values of n. The element .J inevitably has vanishing eigenvalues and is dual to the
vector e;.

Of course, in analyzing the spectral properties of the Lax operators we will use the
typical (i.e., lowest dimensional) representations of the relevant algebras.

In the next Section 2 we provide some algebraic preliminaries for the symmetric
spaces of type A.L, C.II, D.III, and for completeness, also for BD.I-type spaces. In
Section 3 we outline the construction of the Jost solutions, scattering matrix and the
fundamental analytic solutions (FAS) of L for VBC. Most of the considerations
are done in the typical representations of the corresponding simple Lie algebras.
However these results can be generalized to any irreducible representation. In
particular we propose a formulation of the minimal set of scattering data which is
invariant with respect to the choice of the representation. In Section 4 we construct
the Jost solutions, the scattering matrix and the FAS for the CBC case. Section 5
is dedicated to several examples for specific choices of the symmetric spaces of
A, C.II and D.II-types.
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2. Algebraic Preliminaries

In order to proceed with the symmetric spaces we mentioned above we will need
to introduce their Cartan-Weyl basis in the typical representations and the corre-
sponding Cartan involution definitions. In fact it will be sufficient to specify the
sets of roots forming A(‘)" and Af along with the corresponding choice of the real
constant element .J.

First we start with the A.III series; the corresponding Lie algebras are g ~ s[(r+1).
Their set of positive roots is provided by

AT ={ei—e;;1<i<j<r+1} 9)

In fact the root space of s{(r+ 1) is the r-dimensional subspace of E"*! orthogonal
to the vector £y = ZZill er. The Cartan-Weyl basis in the typical representation

is given by
H, = E; — Ej 4, Eo = Eyj, E_,=ET, 1<i<ji<r+1 (10)

where F;; is an r + 1 X r + 1 matrix with matrix elements (E;;); = 6;10;. For
the A.III type symmetric spaces we choose

. 15 0 /
J_<O —]ls/)’ s+8 =r+1 (11)

the element .J is dual to the vector > ;_ ef — Z;ii_i_l e+ (s —38)/(r+1)&in
the root space.

In what follows we will use slightly different definition of the orthogonal and sym-
plectic Lie algebras, namely

gE{X;X+SoXTS()_1=O} (12)
where
2r+1
So=> (-1)*"Eg for g~ so0(2r+1) (13)
s=1
So=> (—1)**' (Es — Fss) for g~ sp(2r) (14)
s=1
So =Y (-1)*"' (Ess + Ess) for g~ so(2r). (15)

s=1
If we denote by N the dimension of the typical representation of the corresponding
algebra then 5 = N + 1 — s and Ej, are N x N matrices defined by (Fjs) ;1 =
0rj0s1. For g ~ so(2r 4+ 1) we have N = 2r + 1; for g ~ s0(2r) and g ~ sp(2r)
we have N = 2r.
Note that S3 = 1 for so(2r + 1) and s0(2r) and SZ = —1 for sp(2r).
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In what follows we denote by e, £ = 1,. .., r the vectors forming an orthonormal
basis in the root spaces E" of the corresponding algebra. The above definitions of g
(12) has the advantage that the Cartan generators Hj, are diagonal. In particular,
if Hy, is dual to ey, it is given by

Hy = Exx — By, E=N+1-k. (16)
The root systems of these algebras A = A™ U (—A™) are well known [19]:
AT ={ei—e;;1<i<j<r+1} for sl(r+1) (17)
AT ={e;+eje;;1<i<j<r} for so(2r+1) (18)
AT ={eifej;1<i<e; <r} for so(2r) (19)
AT ={e; tej,2e;;1<i<j<r} for sp(2r). (20)

We also remind that to each element J € h there corresponds a dual vector @ in
the root space E”. We choose the element .J in the Lax operator in such a way that
a(J) = (a,d) > 0 for all roots & € AT

The Cartan-Weyl basis in the typical representations are given by

1
Hy = Exi, — Y 1, Ee,—e; = Eij (21)
for sl(r + 1);
Hy = Epr — Epg, Bei—e; = Bij — (_1)i+jEﬁ (22)
Eere; = B — (1) By, By =By — (1) Ej 4
for so(2r + 1);
Hy = By — Egg,s Eeime; = Bij — (-1)"E5 (23)
Eeﬁej = Eii + (_1)i+jEﬁ’ E26j = EjJ
for sp(2r);
Hi = Ewp—Exgf, Be—e, = Ejj—(=1)"" Ej;, Eere, = Ej5— (1) E; (24)
for so(2r).

Most of the symmetric spaces which will used below are characterized by an ele-
ment J such that J2 = 1, see (11). J is dual to the @ € h*, J = 3_7_; H},. Using
J we can split the set of positive roots into two subsets A* = AJ U A7.

As we mentioned above, for the A.Ill-type symmetric spaces we choose J to be

dual to the vector @ = 377 _; €, — EgiiH ep+ (s —s)/(r+1)é

Aj ={e;—e;;1<j<sands+1<i<j<N}

L . .. (25)
AT ={e;—ej; 1 <j<sands+1<i<j< N}
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We will pay special attention to the case when r + 1 = 2s and s’ = s. Such
choice allows one also to treat two other classes of symmetric spaces: i) C.II with
g ~ sp(2r) and

A(')" = {e; — ¢}, AT = {2¢;; e; + e}, I<i<j<r (26
and also ii) D.III with g ~ so(2r) and
Af ={ei—ej}, Af={ei+e}, 1<i<j<r. @7

The corresponding .J in both cases is dual to 37 _; e,. For completeness we
include here also the case of BD.I-type symmetric spaces of the form SO(n +
2)/(SO(n) ® SO(2)) which exist both for odd and even values of n. The element
J satisfies the characteristic equation J2 — J = 0 and inevitably has vanishing
eigenvalues, see equation (8). As a result we have two possibilities

Af={ertej, e1;1<j<ry,  Af ={e;itej, e;2<i<j<r}
28

AF ={e1£ej; 1<) <r}, AT ={eite;;2<i<j<r} (28)
where the first line in equation (28) is valid for n = 2r + 1 and the second one —
forn = 2r.

3. Spectral Properties of Lax Operators on Symmetric Spaces.
Vanishing Boundary Conditions

3.1. Jost Solutions, Scattering Matrix and FAS

The spectral theory of the Lax operators related to the symmetric spaces of A.III,
C.II and D.IM-types can be constructed along the same lines'. Their continuous
spectrum for vanishing boundary conditions fills up the real axis of the complex
A-plane, see [4,5,9,23]; more recently the topic was covered in [2]. The corre-
sponding Jost solutions and FAS are also constructed rather straightforwardly. In
our considerations below we will use the lowest-dimensional nontrivial represen-
tation of the corresponding Lie algebras.

In our consideration ¢ plays the role of an additional parameter; for the sake of
brevity the ¢-dependence is mostly suppressed. Condition iii) on page 99 can not
be formulated as a set of explicit conditions on ¢(x); its precise meaning will
become clear below. The main tool here are the Jost solutions defined by their
asymptotics at x — £00

lim o(x, A)e™® = 1, lim ¢z, \)e™® = 1. (29)

T—00 r——0

Due to the fact that the element J for the BD.I-type symmetric spaces has vanishing eigenvalues,
the corresponding spectral problem requires additional considerations.
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Along with the Jost solutions we introduce

E@,N) = P(a, NN p(a, ) = gz, e (30)

which satisfy the following linear integral equations
Eo ) = 1+ [ dye W Eg(y)e(y, e ey G
plo ) =1+ [ aye e g(pm, Ve 3

These are Volterra type equations which, as is well known always have solutions,
provided one can ensure the convergence of the integrals in the right hand side. For
A real the exponential factors in (31) and (32) are just oscillating and the conver-
gence is ensured by condition i) on page 90.

Obviously the Jost solutions as whole can not be extended for im A # 0. However
some of their columns can be extended for A € C., others — for A € C_. Indeed,
the equation (31) for the first s columns of £(z, ) contains only the exponential
factor e*#=¥) which falls off for im A < 0. More precisely we can write down the
Jost solutions ¢(z, \) and ¢(z, A) in the following block-matrix form

Pz, A) = ([ (2, 0), [0 (@A), b, A) = (|67 (2, 0)), 67 (z, X)) (33)
where the superscript + (respectively —) shows that the corresponding block-
matrix allows analytic extension for A € C, (respectively A € C_).

Solving the direct scattering problem means given the potential ¢(z) to find the
scattering matrix 7°(\). By definition 7'(\) relates the two Jost solutions

o =@, T = () 2 e

and has compatible block-matrix structure. In what follows we will need also the
inverse of the scattering matrix

e\ oo (€O a0
v = o VT, T = (S0 G e
where
() =@ N1+ p7p) 7 = (1) ()
) =@+ ) = ()W)
V) =a W)L+ p7p) " = (17 ()
) = @ (" (L + ") = (L + ) (ar ().

The diagonal blocks of both T'(\) and T'(\) allow analytic continuation off the real
axis, namely a™ (), ¢7()) are analytic functions of A for A € C, while a™()),
¢ () are analytic functions of A for A € C..
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By p™(\) and 7%()\) above we have denoted the multicomponent generalizations
of the reflection coefficients [4, 5], generalizing the ones for the scalar case, see
[1,14,21]

PN = bTat(\) = eFdE(N), rE() = aTbhT (W) =dTeE(N). (37)

We will need also the asymptotics for A — oo

Jimg(a, A)eMT = Jim op(x, AeMT =1 Jim T(3) =1 .
)\h_)rgo at(\) = )\li_)rglo c (A =1, )\li_)rgo a (\) = )\h_)n;o ct(\) = 1.
The inverse to the Jost solutions 1(z, A) and ¢(x, A) are solutions to
i N(a(e) = AT) = 0 (39)
satisfying the conditions
lim e MZh(x, \) = 1, lim e MZh(z, ) = 1. (40)

Now it is the collections of rows of 4(z, A) and ¢(, A) that possess analytic pro-

perties in A
; _ (@) ; _ (&~ (@ )|
den=((1E0) wn=(GEN) @

Just like the Jost solutions, their inverse (41) are solutions to linear equations (39)
with regular boundary conditions (40). Therefore, they can have no singularities
in their regions of analyticity. The same holds true also for the scattering matrix
T(A) = ¥(z, N\)d(z, \) and its inverse T'(A) = ¢(x, \)p(z, \), ie.,

at(N) = (@@ N7 (2. 2),  a”(V) =@ (@ N7, N)  @2)

as well as

) = (6T @ VT (@A), () =T @ (@) (43)

are analytic for A € C. and have no singularities in their regions of analyticity.
However they may become degenerate (i.e., their determinants may vanish) for
some values )\;-t € C4 of A. Below we analyze the structure of these degeneracies.

3.2. The Fundamental Analytic Solutions

The next step is to construct the fundamental analytic solutions of L. In our case
this is done simply by combining the blocks of Jost solutions with the same analytic
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properties
X (2, A) = ¢(z, )ST(A) = 9z, NI~ (AN DT(N) )
X~ (2, ) = ¢(z, \)S™(A) = 9(z, VT (\) D~ ())
where the block-triangular functions S*(\) and 7% (\) are given by
e a0 . (1 0
s =5 1) 0= (0 1)
S™(\) = (_TEL(A) g), T+(\) = (g _p;A)) (45)

r=( ) o= ()

and p=(\) and 7= () are given by equation (37).
The factors ST()\), T7F()\) and D=()) are related to the scattering matrix T/(\)
and its inverse T'(\) by
T(\) =T~(A)DT(N)ST(\) =TT (N)D~ (N5~ (V)
T(\) = STANDTNT~(A) = S~ (\ND™(NTT(N).
In other words equation (46) and can be viewed as generalized Gauss decomposi-
tions (see [19]) of T'(\) and its inverse.

The relations between c¢=()\), d*()\) and a*()), b=()\) in equation (36) ensure
that equations (46) become identities. From equations (44), (45) we derive

XT(@ ) =xT (@GN, xT(@ ) =xT(@N)Go(N) @)
A 1 (A
Go) =857 = () 1+ o) )
1+77(N)7m(A) T+(A))
—77(A) 1
valid for A € R, where the block-triangular factors ST(\) and S~(\) are given by
equation (45).

Note that the block-diagonal factors D (\) and D~ () are matrix-valued analytic
functions for A € C, whereas S(\) and 7= (\) are defined only for real € R.

Another well known fact about the FAS y*(z, \) concerns their asymptotic be-
havior for A — £00, namely, if we introduce

XE(z, ) = xT(z, \)eM® (50)

(46)

Go(N) =575~ (\) = ( (49)

then
Jim X*(z,\) = 1. (51)
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With these notations equation (47) can be rewritten in the form

X (x,\) = X (z,\)G(z, ), AeR (52)
where
iz Nz _ 1 TT(A)em 2T
Gz, \) =e Go(A)e = (T_(/\)e2i/\x 1+ ()t ) (53)

From our considerations if y=(x, \) are the FAS of the Lax operator L constructed
above, then X i(30, A) will satisfy equation (52). The inverse is also true. Indeed,
suppose we can construct two matrix-valued functions X*(x, \) which are ana-
lytic for A € C4 respectively, and which satisfy equations (52) and (51). Then one
can show [10,28,30] that X+ (z, A\) satisfy the equation

dXE
i
dx
and using the relation (50) we can recover the FAS of L. This important fact,

along with the construction of the FAS for generalized Zakharov-Shabat systems
has been discovered by Shabat [25].

Equation (52) is known as a Riemann-Hilbert problem (RHP). The additional con-
straint given by equation (51) is known as a canonical normalization of the RHP.

+ q(x)XE (2, \) — A[J, XE(z,\)] =0 (54)

In the derivations that follow the analyticity properties of X*(x, \) for A € Cy
and equation (52) will play crucial role.

Definition 1. We will say that X*(x, \) are regular solution to the RHP with
canonical normalization if they have no singularities or zeroes in their regions
of analyticity.

Then the following theorem holds.

Theorem 1. The RHP (52) has unique regular solution with canonical normaliza-
tion condition (51).

Proof: Let us assume that along with X*(x, \) we have a second regular so-
lution X(il)(:r, A) for the same RHP, and let Y*(z,\) = X(il)(:c, MNXE(z, \).
From equation (52) it is obvious that Y+ (z,A) = Y~ (z,\) for A € R and also
limy_. Y*(z, \) = 1. Since both solutions X*(x, \) and X(ji)(:v, A) are regu-
lar, then Y+ (z, A) have neither zeroes nor singularities anywhere in the complex
plane. Thus, from Liouville theorem there follows that Y *(x, \) = 1, or

X(ﬂ;)(:c, A) = XE(z, ). (55)

The theorem is proved. O
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In what follows we will find out that the RHP allows nontrivial singular solutions,
whose zeroes and singularities are located on the discrete spectrum of L. For the
sake of simplicity in what follows we will reformulate the condition iii) on page 99
as follows

iii") Let the potential g(x) of the operator L be such that the correspond-
ing FAS X=(z, \) have finite number of simple zeroes and singu-
larities, located at the positions )\f eCy,k=1,...,N.

Remark 1. We will denote the set of the points Af by &. As we will see below,
each of these points is a discrete eigenvalue of L.

Note that the Jost solutions have no singularities, therefore singularities and zeroes
of X*(x, \) can come up only if the matrices a=()\), ¢=(\) become degenerate
and, as a result, their inverse @< (), &= ()\) acquire singularities. By simple zeroes
and singularities in condition iii’) above we mean that a*()\), ¢*(\) and their
inverse G=()\), ¢£()\) have the following behavior in the vicinity of A\¥

a* () = af + (A= A)ag + 0 (A= Ap)?)
cF(N) =i + (A= XD + 0 (A= Af)?)

~

- aj 2+ + (56)
a*(N) = —E - 1 aE + 0 (- F)
&0 = = Ai + &+ 0 (=),
Obviously, since we must have a®(\)a=()\) = 1 for all A € C~. the matrices ai,
af, af, af must satisfy
a:ktaf =0, dfa:kIE + ak ak =1 (57
and similarly for the coefficients of ¢=()), ¢ ()
e =0,  &éf+efel =1 (58)

Remark 2. A good tool for treating the scattering data related to the discrete spec-
trum of L is based on the following. Consider first potentials on finite support. For
such potentials not only the Jost solutions but also the scattering matrix elements
allow analytic extension to the whole complex A-plane. In that case the constant
matrices bf, df will be just the values of the functions b= (), d=()\) for A = Af:

b = b W loye s 47 = W)y (59)

Next one is to extend the support of the potential to the infinite line. This limit
substantially changes the picture and the functions b= (\), d*(\) can no more be
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extended outside A € R. Therefore, in this limit bi, df must be understood just
as appropriate matrix-valued constants.

3.3. The FAS and Higher Representations

Here we briefly outline the construction of the FAS for higher irreducible repre-
sentations of g. To this end we will make use of the Cartan-Weyl basis and the
possibility to represent the Gauss factors ST (\) and T () in the form

SE=exp | > Ti(ANEsa|, TT=exp|F Y pl(AN)Esa|. (60)
acAT aEAT
The first step will be to interrelate the coefficients 7] (\), pZ(A) to the matrix
elements of 75(\), pT(\) in the typical representations of g.
To this end we calculate:
SEISEN) =J+2 Y 1E(NEsa
aGAT
TEITEN) =T +2 Y pT(N)Eza.

aEAT

(61)

Here we made use of the specific property of the symmetric spaces, namely for any
two roots (3; and (33 belonging to Ai" their sum 3; + B2 ¢ A is not a root.

Thus we derive the following, invariant with respect to the choice of the represen-

tation expressions for the coefficients 77 (), pZ ()

(STISE(N), Fia) %)) = (T=IT=(N), Exa)
BBy~ Pe (Bar B—a)

where (X,Y) is the Killing form evaluated for X,Y € g. These formulae hold
for any choice of the irreducible representation of g.

TE(A) = (62)

It is also important to derive similar expressions for the coefficients of the varia-
tions 47,7 (\), dpt (). Using similar arguments as above we get

SEESTAN) =+ Y 67 (N Fxa, TTT(N) =T Y 605 (V) Fia- (63)

a€AT acAT
Therefore,
Lo (STESE(N), Era) =y ATETEN), Exo)
0t (A) ==+ BB , dpt(N)=TF B B |- (64)

Such expressions are important in deriving the explicit of the action-angle vari-
ables for the corresponding MNLSE, as well as in analyzing their gauge equivalent
nonlinear evolution equations of Heisenberg ferromagnet type.
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3.4. Typical Reductions

The typical reductions of the Lax pair and, as a consequence, the typical reductions
of the MNLSE are of the form

CoU(z, t, \')Co = U(z,t,\), Uz, t,\) =qlz,t) = A\J  (65)
where C2 = 1. Two possible choices for Cy are most important
a) Cop=1, ie., =4
) Co 7=9q 66)
b) Co=J, ie, qg=Jq'J

Of course, for symmetric spaces of rank higher than 1 one can choose as Cy also
Weyl group element, corresponding to a reflection with respect to a root 1 such,
that a1 (J) = 0. Such reductions have been analyzed in [13].

Each of the above mentioned reductions imposes restriction on the scattering ma-
trix 7(\) and the scattering data as follows

CoT (£, \)Co = T(t, \) (67)
or, in terms of the block-components

@' =c (), (@) ="\

BF DT =ed (1), (BT =ed* (V) (68)
(=N =ep™ V), (TP = (V)
where ¢ = 1 in case a) and € = —1 in case b). From (56) there follows that
A= ()" (69)
besides, relations similar to (68) hold true also for the coefficients af, bf, c,ﬁ;, d,ﬁ;
(ak ) Ck ) (ay, )T = Ck
(by P = (by )F = edy; (70)
(P, ) = epy, (r) = ery
P = bray = efdy o =dler = alby.

We provide also the corresponding constraints which the typical reductions impose
on the coefficients 77 () and pZ ()

Ta (A =e(ma A\)) pa(N) = elpd (A))". (71)

Remark 3. Reduction (66a) is typical for the MNLSE with vanishing boundary
conditions (VBC). An important property of the other reduction (66b), which is
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typical for the MNLSE with CBC, consist in the fact that the Lax equation (2)
becomes equivalent to a self-adjoint eigenvalue problem

Sl N) = 1T+ Taa)e, ) = Mz, ) (72)

since Jq(z,t) = (Jq(x,1))l. The spectrum of such operators must lie on the real
A-axis. However, for VBC the real A-axis is already filled up by the continuous
spectrum of L which leaves “no space” for discrete eigenvalues of L. That is why
the corresponding MNLSE do not have soliton solutions. When we go to CBC the
situation changes. As we shall see below, the continuous spectrum of L with CBC
has lacunae on the real A-axis and they admit real discrete eigenvalues inside these
lacunae. The corresponding soliton solutions of the MNLSE with CBC are known
as dark solitons.

3.5. The Resolvent of /. and the Minimal Sets of Scattering Data

The FAS allow one to construct explicitly the resolvent Ry of L. The resolvent is
an integral operator acting in the space of vector-valued functions f(x) by

(Baf)@) = [~ dyRE @y ) 73

where the superscript + (respectively —) corresponds to A € Cy (respectively
A € C_). For real values of A we use

1
R(z,y,N) = 5 (R (z,5,0) + R™(z,3,0)),  A€R. (74)
The kernel of the resolvent is provided by
1
Ri(ma Y, )‘) = TX:E(:Ba )‘)@i(m - y))%:t(ya )‘)a A€ C:|: (75)

where

O (z—y) = (—G(y 8 P 0(x —Oy)lls')

O (z—y) = (9(3: _oy)]ls —0(y E ZL’)ﬂs’) '

Skipping the details, we formulate the properties of I2y (see [8,10,11]).

(76)

Theorem 2. Let q(x) satisfy conditions i) and iii’) and let )\j': be the simple zeroes
of det a™(\) and det c(\). Then

1. R¥(x,y, \) is an analytic function of X for A € C having pole singular-
ities at /\3i e Cy;

2. RE(x,y, \) is a kernel of a bounded integral operator for im \ # 0;
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3. R* (z,y, \) is uniformly bounded function for A\ € R and provides a kernel
of an unbounded integral operator;

4. R*(x, vy, \) satisfy the equation
LR (z,y,A) = 16(z — ). (77)

Idea of the proof:

1. is obvious from the fact that y=(x, \) are the FAS of L()\). From defini-
tion (44) it follows x=(z, \) and x*(y, A), and consequently, R (x,y, \)
will develop pole singularities for all )\;t for which det a®(\) = 0.

2. Assume that im A > 0 and consider the asymptotic behavior of R (z,y, A)
for z,y — o0o. From equations (44), (45) we find that

RY(z,y, ) = > X (x, e ™ME0OT (2 — ) XT(y, N).  (78)
p=1

Due to the fact that y™(x, \) has block-triangular asymptotics for z — 00
and A € C, and for the correct choice of O (z — y) (76) we check that
the right hand side of (78) falls off exponentially for x — oo and arbitrary
choice of y. All other possibilities are treated analogously.

3. For A € R the arguments of item 2) can not be applied because the expo-
nentials in the right hand side of (78) for im A = 0 only oscillate. Thus
we conclude that R¥(z,y,\) for A € R is only a bounded function for
x — =£oo and thus the corresponding operator R(A) is an unbounded inte-
gral operator.

4. The proof of equation (77) follows from the fact that L(\)x™(z,\) = 0
and
d6=(z — y)
dz
which concludes the proof. U

= 15(z — ) (79)

From Theorem 2, item 3) there follows that the continuous spectrum of L fills up
the whole real A-axis with multiplicity n. By definition the operator L may also
have discrete eigenvalues at the points at which R*(zz, 7, \) have pole singularities.
From item 1) it follows that these are precisely the points )\;-t.

Let us now outline the structure of these singularities and evaluate the correspond-
ing residues. The result is that R* (z,y, A\) have poles of first order in the neigh-
borhood of A>" with residues [11]

Res,_y+ B(2,y,A) = £ily5(2)) 07 (45 (v)| (80)

where p?c are defined in equation (70).
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P

Y—,00

Figure 1. The contours 74+ = RU V4 .

Now we can derive the completeness relation for the eigenfunctions of the Lax op-
erator by applying the contour integration method (see, e.g., [1,17]) to the integral

j(m,y) = 5

1
5 dARY(z,y,\) — —j{ dA R (z,y,\) (81)
71 Sy 271 Joy_

where the contours v+ are shown in Figure 1. Skipping the details we get

§(z —y)J

= o [ an {6t @ ANE OV N~ 167 @ ANa ) V1)

—IZ(W o (W W) = 1y (@)es (67 W) . (82)

The completeness relation (82) is a natural generalization of the one in [17] for the
s[(2) case. An important difference here is that now we have matrix-valued spectral
functions a®(\) whose zeroes determine the location of the discrete eigenvalues.
It also allows us to introduce the minimal sets of scattering data.

Lemma 1. Let the potential q(x) is such that the Lax operator L satisfies the
involution (66a) and has a finite number of discrete eigenvalues. Then as minimal
set of scattering data which determines uniquely the scattering matrix T'(\) and the
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corresponding potential q(x) one can consider either one of the sets T;, i = 1,2
Ti={rf(\), aeAf AeR; A, 7, k=1,...,N}

(83)

To={p"(\), acAl XeR; X, pf, k=1,...,N}L
Outline of the proof: First we consider the class of potentials for which the Lax
operator has no discrete eigenvalues, i.e., N = 0.

Let ¥; be given. Using the involution (68) we determine also 7~ (A). Thus we
easily construct ST (\) and the sewing functions G y(\) and G j(z, \), see equa-
tion (53). The next step consists in solving the RHP with canonical normaliza-
tion for the FAS X*(z, \). Since the Lax operator has no discrete eigenvalues,
X*(x, \) are regular solutions of the RHP and therefore are uniquely determined.

The next step is to use the asymptotics of X i(;16, A) for z — £o00. From equa-
tions (44), (50) we have

lim XE(z,\) = TTD=(\) (84)
whose block diagonal part gives us both DT () and D~ (). Finally from the right
hand sides of (84) we recover uniquely also 7T (\) and T5. The reconstruction of
T'(A) is easily done, since we know its Gauss factors.

Let us explain how, given the solutions X*(x, \) one recovers the corresponding
potential ¢(x). Since X=(x, \) are solution of a RHP with canonical normalization
they allow asymptotic expansions for A — oo

XE@, ) =1+ A X (),  XFa,N) =1+ VNFXF(@). (85)
k=1 k=1

It remains to remember that y=(z, \) = X*(x,t, A\)e"*/? is a fundamental solu-
tion of L. Inserting it into equation (2) and taking the limit A — oo we get

q(x) = lim A(J — XTIXZ(z,\)) = [/, XF ()] (86)
A—00
where we took into account that X7 (z) = —XT ().

The reconstruction of 7'(A) and ¢(z) from T can be done in an analogous way
using the FAS

X"z, \) = XF (2, \)D*F = = (2, )TT(\) = ¢=(x, \)ST(A\)DT(N). (87)

If N > 1 the FAS are solutions of singular RHP. In this case we have to give
additional considerations to show that PZ_ and )\; fix up uniquely the correspond-
ing singular solutions of the RHP. Such considerations are based on the dressing
Zakharov-Shabat method [30]. O



106 Vladimir S. Gerdjikov

We finish this Section by noting, that using the FAS one can construct the “squared
solutions” of I which map the potential ¢(x) to the corresponding sets of minimal
scattering data T;, ¢ = 1,2. Then one can prove the completeness relation for the
“squared solutions” and interpret the mapping g(xz) — T; as a generalized Fourier
transform. In fact the completeness relation of the “squared solutions” provides
the spectral decomposition for the operators AL that generate the corresponding
class of NLEE.

4. Spectral Properties of Lax Operators on Symmetric Spaces.
Constant Boundary Conditions

Here we show that the constant boundary conditions substantially modify the form
of the spectrum of L and the construction of the FAS. Nevertheless our aim is
to demonstrate that FAS can be constructed also in this case and the programm
outlined above can be implemented also for soliton equations with CBC.

We start by defining the notion of an admissible potential () satisfying the above
conditions and ensuring regular solutions to the direct and inverse scattering prob-
lems for L. First we note that the manifold M of all admissible potentials is a
nonlinear one, i.e., linear combination of two admissible potentials generically is
not admissible.

4.1. Jost Solutions and Continuous Spectrum of L

Like for the case of VBC, the Jost solutions of L with CBC are determined by
their asymptotics for x — =£oo. This is the crucial point which is the source
of the substantial differences between the two cases. In order to determine these
asymptotics we need to find the eigenfunctions of the two asymptotic operators

d as
Lutpas(z, \) = i ;/; gt ) — Atpas( A) = 0
L_¢as(m,\) = idiss + q—Pas(m, A) — AT @as(x, ) =0 (83)
, 0 ql(z,t) 1 0
ax =l (@) = (—q*i(gc,t) 0 ) I= (0 —]1)'

Here we already imposed on the Lax operator the involution (66b), see also Re-
mark 3.
The two asymptotic operators L. are ordinary differential operators with constant
coefficients. In order to calculate their fundamental solutions we need to diago-
nalize the matrices U+ = g+ — AJ and find their eigenvalues. The answer is as
follows

Usr(MNo(A) = —bo(A)J(N), U_(N)do(A) = —da(N)J(A) (89
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where the eigenvalues are

+jr(N) = =/ A2 — p3, k=1,...,s

and an eigenvalue A with multiplicity s’ — s. We will arrange them in a diagonal
matrix J(A) as follows

JA) =diag [ 71(A), -y Js(A) A oo A —ds(N)y o =1 (A) |- (90)
N —’
§'—s
The matrices ¥o(\) and ¢o(A) are of the form
Po(A) = @5 Uo(N), $o(A) = vq Ug(A)
+ A 0 B
0 oD
80(:)|: - (% :I:) ) Uo(A) = | 0 Ly, O) .
LD B 0 A
Here the s X s matrix ff and s’ x s’ matrix ff are determined by
qzaky = o1 p alasg; = o0
A = Agdj g, Bjr = Brdjs+1-k

Ay — I\ + ik By — A — jk (92)
2jr 2k

p= diag(p?,...,p2), p' = diag(0,...,0, P2, p2).
N e’
s'—s
Remark 4. Without loss of generality we can consider 19(A) and ¢o(\) as group
elements. In the case of A.IIl symmetric spaces we assume that ff and £2i are
elements of the groups SU(s) and SU(s’), respectively. Similarly, for C.II-type

(respectively D.III-type) symmetric spaces we will choose n = 2(s + s’) and
gf € Sp(2s), fét € Sp(2s’) (respectively fli e SO(2s), £2i e SO(2s).

Remark 5. For reasons, that will become clear below, we require that the two

asymptotic operators have the same spectrum, i.e., we imposed the condition q_% =

¢, which in block components gives qlq L= qT_q_ and g +q1 = q_qT_.

More specifically, we assume that there exist a block diagonal matrix Wy which is
an integral of motion for the MNLSE which commutes with J(A), i.e.,

wo1 0 0
q— = Wy g W, Wo=1 0 wp 0 ©3)

0 0 SoWo1 .§0

wor = diag(wor;1, . -+, Wots), woz € SU(s" — s).
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Generalizing the ideas, developed by Faddeev and Takhtadjan in [26] we split the
manifold M into the union of disjoint submanifolds [16]

M= ) Mwyq., (94)

WO sq+

on each of which besides the limiting value g also the integral of motion Wy is
fixed up. More precisely, the elements of Myy, ,. are the matrix-valued functions
q(x) of the form as in (2) and satisfying (93).

The operators L. have purely continuous spectrum, determined by the eigenvalues
p2 of the matrices o(\) and ¢g(\), which due to the involution, must be real. For
definiteness we will choose them to be all different

pL>p2> > ps >0 95)

Cases when subsets of {p, } are equal can be considered analogously.

Obviously, each of the eigenvalues j;(A) in fact introduces a Riemannian surface
2R}, which has two leafs Ry, = R UM, corresponding to the sign of im j (\). So
in fact we have to deal with the collection of Riemannian surfaces ‘R

% —Cu | R (96)
k=1

With all this the solutions of equation (88) take the form

Pas(x, N) = ho(N)e VT b (2, N) = go(N)e Nz, 97)

Note that the exponential factors in the right hand side of equation (97) become os-
cillating for different intervals on the real A-axis. Indeed, exp(=£ij;(A)z) oscillates
on two semi-intervals on the real A-axis

(., =(—00o <ReX < —pyl, 07 = [pr <Re) < ). (98)

In fact these are the cuts that determine the Riemannian surface 3. So it is natural
to introduce the projectors

Pe(A) =0(|ReAl—pg),  k=1,....s (99)

which, when applied to the real axis, pick up {3, = £, U Eg‘.

Now we are ready to state that the continuous spectrum of L consists of the union
Uz _1€s UR. The multiplicity of the spectrum on each ¢}, is two.

The continuous spectrum of L coincides with the spectra of L, see Figure 2.
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A
—Pls---s —Ps Psy---5P1
Figure 2. The continuous spectrum of the operators Ly and L.

4.2. Jost Solutions, Scattering Matrix and FAS

We introduce the Jost solutions as follows
lim 1p(z, A)e?MT = gy (\)P(N)
r—o0
] T (100)
lim ¢ (z, A)e’ ™) = ¢y () P(A)

P(A) =Y Pi(A(Egi + Eg ) + Po, Po= > Epg (101)

k=1 k=s+1
withk =n+1— k.
The presence of the projector P()) in the definition of the Jost solutions reflects
the first important difference between the VBC and CBC case: it reflects the fact

that the multiplicity of the continuous spectrum of  is no more constant. It means
also that the rank of the Jost solution varies with A € R

rank ¥(x, \) = rank ¢(z, A) = n for |RelA| > p1
rank ¢(z, \) = rank ¢(z,\) =n—2k for pr > |ReA| > prr1  (102)
rank ¥(z, \) = rank ¢(z,\) = s —s for ps > |Rel|.
This means also that the Jost solution does not have inverse for any A. Therefore,
we slightly modify the definitions of ¢)(x, A) and ¢(x, \) so that they exist on the
image of P(\). We consider them as the Jost solutions of the dual linear problem
A

i - Pz, \)(q(z) — AJ) = 0. (103)
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This linear problem also has Jost solutions which are introduced by

lim e Ty (2 A) = P(A\)ibo(N) (104)
) l_i)r_nooe_u(’\)mqb(x, A) = P(N)go(N) (105)
Bo(N) = ¢iTa(N),  do(A) = & Uo(N). (106)

Note also that 10g(A) and ¢(\) and their inverse depend on A only through Uy(\)
and that

A A 0 -B'
UN=| 0 14, 0 |. (107)
-BT 0 A

In proving that Uy(\)Ug()\) = 1 we use the relations
A2-B2=1, k=1,...,s. (108)

Next we derive the integral equations for the Jost solutions. To this end it is conve-
nient to introduce the quantities

X (2,A) = Yoz, NN Yz, \) = dop(z, A)el! NT (109)
which satisfy the equations
1S Qu VX () — [T, X (@, A)] = 0
v 110)
dy (

where the “potentials” Q1 (x, \)

Q+(x,3) = dolg(®) — g+)do(N),  Q-(x,A) = do(a(x) — ¢-)do(N) (111)
now depend also on the spectral parameter. Since from equation (100) there fol-

lows that
lim X(z,\) =1, lir_n Y({z,\) =1 (112)

T—00

we are able to derive the following integral equations for X (x, A) and Y (x, A)

X(z,A) = 1+ / dy e TNEDQ L (2 )X (2, N NED (113)
Y(x,A) =1 +i / dy e NEYQ_ (2, \)Y (2, \)eNEY) - (114)

The scattering matrix is introduced like in the VBC case

~

T(/\) - 7/}(1" )\)¢(.Z’, )‘) (115)

The important difference as compare to the VBC case concerns the analyticity
properties of the different columns of the Jost solutions. For VBC we verified
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(see equation (33)) that each of the columns of the Jost solutions can be extended
analytically either for A € C, or for A € C_.

For CBC the picture is substantially different. First, now we are dealing with
analyticity on the sheets of the Riemannian surface described above. The second
difference is in the fact, that now J(A) has more than two different eigenvalues.
From this point of view the problem of constructing the FAS for CBC resembles
the one for NV-wave problem [25,28]. The first step of the solution is to introduce
an ordering in the matrix elements of J(A). From equation (95) we find, that
an ordering im Ji(\) > im J;(A) for k& < [ can be introduced on the main leaf
RT=C.U Uizl‘ﬁ'k" of the Riemannian surface. Indeed, one can check that from
equation (95) there follows

im j1(A) > im ja(A) > -+ > im js(A) > 0, AEnRT. (116)

Using this ordering we will outline how it is possible to construct a FAS on the
main leaf ™ and on its antipode leaf R~ = C_ U U;_,MR; . Similar procedure
exists for each of the other leafs of the Riemannian surface. In order to simplify
the analysis we assume that s’ = s.

Skipping the details we formulate the procedure of constructing the FAS Z=(z, \)
on the leafs R*. Since any two fundamental solutions must be linearly related we
first introduce them by

ZE(z,N) = ¢z, \)ST(A) = ¢z, NTT(N)DT(N) (117)

where ST(\), T%(\) and D¥(\) are the factors of the Gauss decomposition [19]
of the scattering matrix

T(\) =T~ (A)DT(N)ST(N). (118)

In other words, 7" and ST (respectively 7'~ and S™) are upper- (respectively
lower-) triangular matrices taking values in the corresponding group and D= (\)
are diagonal matrices (i.e., elements of the Cartan subgroup).

The proof of the fact that Z*(z, \) (respectively Z~(x, \)) is analytic for A € R™
(respectively for A € 9R7) is based on the analysis of the set of integral equations
that Z=(z, \) satisfy. It is more convenient to write down those equations for

Zi(x, A) = qf;g(/\)Zi'(:):, )\)ei.]()\)m
Z,;;(:B, A) = iy +i/ dy o= TN =T (V) (@—y) Z Q- raly, A)Z(j;)(y, N
- a=1
(119a)
for k > p and

Z];;(.’L‘, /\) — 1/ dy e—i(Jk(A)—JP(A))(IE—y) Z Q—;ka(ya A)Z(j;)(y, A) (119b)

o0 a=1
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for k < pand A € ™. Similarly we have

n

Zi, ) = Gy +1 [y e ORI ST Q (3,3 Zi )
w 1

(120a)

a=

for k < p and

Zi (@) =i / dy I R-BONE 3 O (1 N Zo (y.)  (120b)

a=1

fork >pand A € R™.

The analyticity properties follow from the fact that with the above ordering of
the im ji () all exponential factors in the integrands of (119) (respectively in the
integrands of (120)) fall off for A € R™ (respectively for A € ™).

It remains to note that the matrix elements of the Gaussian factors T ()), S*())
and D () can be expressed explicitly as functions of the matrix elements of T'(\).
The corresponding formulae are well known [10,19]. Here we will write down only
the expressions for the matrix elements of D¥ () for the case when T'(\) € SL(n):

My ki1 ()

+ _
ka()\) N My (A)

A
m { ))6kp, Dy () = Srep (121)

mi_l(/\

where m; ()) (respectively m; ()\)) is the principal upper-minor (respectively prin-
ciple lower-minor) of T()\). Here we assume that mZ(\) = 1; recall also that
det T(\) = 1,i.e., mE()) = 1.

n
Since Z(x, \) (respectively Z~(x, \)) are analytic for A € R (respectively for
A € J7) we find, that also their asymptotics for x — oo are also analytic. As a
result the next lemma follows.

Lemma 2. The principle minors m; (A), k = 1,...,n — 1 (respectively my, (\),
= 1,...,n — 1) are analytic functions of X for \ € R (respectively for \ €
M.

Remark 6. There exist FAS on each of the leafs of the Riemannian surface. Their
construction is done using the same ideas. On each of these leafs we have different
ordering of the im ji(A). So, the first step should be to make a permutation of the
rows and columns of the matrices in Q+(x, A), and in J(A) so that the eigenvalues
of the new matrix J(A) are ordered like in equation (116). The rest of the con-
struction remains the same. At the end one should revert to the initial ordering of
columns and rows.
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4.3. The Resolvent of L and Minimal Set of Scattering Data

The detailed analysis for the CBC in the general situation is rather involved and
will be presented elsewhere. Here we just outline some of the ideas along which it
should be done.

The first one is to show that the spectral problem for the Lax operator with CBC
can be reduced to an RHP on the Riemannian surface ‘R. We outlined above how
one can construct the FAS not only on the main leaf 3™ of R, but on any of the
leafs R;. If we denote by Z(ﬁ;) (z,\) the FAS on the leaf 9R;, then any two FAS

will be linearly related on the intersection of the two leafs by
Zoy (@A) = 25y (@, N Gemy (2,0, A€ RN Ry,

O & . (122)
Ghmy (2, ) = ™I VTSG (ST (V).

This RHP also has unique regular solution with canonical normalization. An im-
portant problem is to generalize the Zakharov-Shabat dressing method [30] and to
construct explicitly the singular solutions of these RHP. For the one-component
case this has been done [17,26,27] and some particular multicomponent cases has
also been treated, see [2,18,22] but a lot still has to be done.

The FAS constructed above can be used to construct the kernel of the resolvent of
L. On the main leaf this kernel is similar to the one in equation (75)

1

where the matrix ©© (:): — y) is given by equation (76). What is important to do
here is the derivation of the completeness relation for L with CBC. This can be
done again by using the contour integration method. There are two difficulties
which must be resolved here. The first one is to evaluate explicitly the asymptotics
of R(il)(m, y,A) for A — 00. The second one is the evaluation of the jump of the
resolvent through the cuts ¢

Finally one can construct the minimal set of scattering data. Like in the VBC case,

we can consider the minimal sets of scattering data on the continuous spectrum to
be

={r7(N;aeAf, e}, Sa={p"(N;aecAl, rel} 124
where ¢ = U3 _, £, U R. The coefficients 7 (), p= (\) are introduced by
oy 2 BRIEN Be) T (. Fee)

¢ <EOH E—Ot> ’ “ <Eow E—a>

Due to the varying multiplicity of the continuous spectrum here one has to take
into account that each of the functions 7.7 (\) and p(\) has its own domain of

(125)
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definition. In addition one has to add also the data corresponding to the discrete
spectrum of L.

Here we stop with the general theory and give some more concrete examples.

5. Examples

5.1. Symmetric Spaces of A.III-Type and Vector NLSE

We start with the symmetric spaces SU(n+1)/S(U(1)®U(n)). The corresponding
potential ¢(x) and J take the form

0= ) (L) e

So we have to set in the general case considered above s = 1 and s = n; we also
put p; = p. Then formulae (90)—(92) simplify into

J(A) = diag | j1(A), A, .. A, —j1(N) (127)
n—1
1 0 A1 0 B1
L B, 0 A

Since ¢'is a vector the set of eigenvectors 5 of *q*T consist of n— 1 normalized
vectors orthogonal to ¢*. The last eigenvector corresponding to the only non-
vanishing eigenvalue p? is proportional to ¢*. The Riemann surface has four leafs
R = Ry UR] UC, UC_. We will need also the uniformization variable z =
(A+3N)/p, 1)z =(A—j(N))/pand for n = 3 we get

1 2 B:  B*
= — | 2245 +24F — Z4% L -1 129
Q= (2, 2) 4p(z 2 T 247 — A+ o+ (129)
wherijzl:AS::FAli%—Ag:IFAﬂ_:l—kAﬂ_:Q and
000 —af 000 0 000 0
+_[000 0 + _|oo00 0 + _|0o00aF
42 =1000 o0 ’A—2_0000’A1_000a§:
000 O 000 af 000 0
(130)
0 000 —hE bE bF —ai?
s —a¥ 00 0 4=_| 0 0 0 0
17 —ag 000 70 0o 0 0 0
+,% + + +
0 000 oF b —bF A
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* ‘1’ g% 2
+ + q2,3;i(q . q) %,3(53)/0
of = (¢'(z)as) - p*, A2,3 = qi,+p (131)

=+ + + +,%
b2,3 = ql(l')q2,3;:i: - Q2,3(x)Q1,ia hi =ai(z) + a7 ().

Then using the uniformizing variable z we rewrite the Lax operator in the form

 dep .

IE + Q-i—(xa Z)w(maz) - J(Z)’l/;(.’l,‘, Z) =0
0 1 Q (@, 2)3(m N) — (), 2) = 0 (132)
J(z) = gdiag (z— é,—z— é,—z— é,—z—ﬁ— é)

where the new potential function has special dependence on z with its coefficient
functions Aji, B,:f tend to zero for z — 0.

Next we introduce Jost solutions and scattering matrix as

mh—»Igo ,I/;(:L,’Z)eij(z)m =1, ]lI_l’l QE(SL‘, Z)eiJ(Z)m =1, T(Z) = "/Zd;(xa Z)
(133)

The continuous spectrum of L coincides with the continuous spectrum of the as-
ymptotic operators L. ,s. To this end we have to find out the curves on the complex

A-plane (respectively complex z-plane) on which e~ /(N% (respectively e—17(2)7)
oscillates, i.e., we have to solve the equation
im Ji(z) =0, k=1,23,4. (134)

In terms of the uniformizing variable fills up the real z-axis and the circle S; with
radius 1. This spectrum splits the complex z-plane into four regions Ry, £ =
1,...,4 (see also Figure 3)

Ri={imz <0, |z]>1}, Ro={imz<0, |z]<1}

Rz ={imz >0, |z|<1}, Ri={imz>0, |z|>1}. (135)
In each of these regions the imaginary parts of Jy(z) are ordered as follows
Ri = imJi(z) >imJo(z) > 0> imJy(z)
Re = imJi(z) >0>imJy(z) > im Jy(z)
Rs = imJa(2)>imJa(z) >0 > imJy(2) (136)

Rs = imJy(z) >0>imJy(z) > imJi(z).

Remark 7. The continuous spectrum of L has variable multiplicity. Note that the
conformal map from A to z maps the semiaxis | Re A| > p; onto the real axis in
the z-plane whereas the interval —p; < Re A < p; is mapped onto the circle with
radius 1.
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Figure 3. The continuous spectrum of L on the complex z-plane.

The construction of FAS is done again by using equation (117). The difference is
that now we have to make use of a generalized Gauss decomposition (GGD) of
the scattering matrix 7'(\) and its inverse 7'(\). More specifically, let us introduce
the block-matrix notations

T11 Thg Tis ) 7?11 1?12 7:113
T(z) = {121 Tae T3 |, T(z) = | To1 Tho Tos (137)
T T3z 133 131 139 T33

where T51, Ths, Tf;z, and T3T2 are n — 1-component vectors, 171, 113, T31, 133,
are scalar functions and 7o is an (n — 1) X (n — 1) matrix. Notice that this is
compatible with the block-matrix structure of J(z). Then the above mentioned
GGD takes the form

T(z) =T~ (2)DT(2)§%(2),  S§T(z) =(ST)"1(2) (138)

where T~ (respectively S™) is lower- (respectively upper-) block-triangular matri-
ces

1 00 1 sty si3
T™(z)={m 1 0|, S%z)=[0 L s 1
T3l T3 1 0 0 1 (139)
DT (2) = diag(m{,m3,m3), DT (2) = diag(1/m{,m3,1/m3)
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where
T . R
+ 12 + _ +
Sip = ——, 893 = Iazmg, 813 = 113mg
my
T A T:
- . + 431
Ty = —— 732 = I3amg, T31 = —F (140)
my my
T, T N NN
+ 21412 A+ +
my =111, my = Too — o My = Too — To1T12m3 .

As a consequence of the analyticity of Z=(z, \) we establish that m7 ()\) and

my (\) are analytic functions on R] N C

Remark 8. A more detailed analysis shows that the number of independent matrix
elements of Gauss factors ST and '~ is n, the same as the number of independent
elements in the potential q.

Remark 9. The Jost solutions and the scattering matrix 7'(z) are well defined on
the continuous spectrum of . Thus the factors S¥(z) and T (2) in (138) are
defined on the boundary of R1, whereas X(1)(, ) allows analytical continuation
for any z € R.

The construction of the FAS in any other of the sections Ry, £ = 2, 3,4 requires
one additional procedure. Namely, we start first by reordering the columns and
the rows of ¢(z, z) — J(z) so that after the reordering the imaginary parts of J(z)
satisfy the first line of equation (136). Obviously the same reordering must be
applied also to T'(z) and T'(z). Then we apply the same GGD to the reordered
T'(z) and T'(z) and determine the corresponding X (k) (T, 2).

The set of FAS Z (k) (, 2) satisfy the relations

Z(k)(xaz) = Z(m)(xaz)G(k,m)(xaz)a z2€ReNRp (141)

where the sewing function G';, ,,,)(z, 2) is given by
G o)z, 2) = <Z)z§(tn)s(+k)e—” (2)z (142)
Imposing the condition lim,_, 5(1)(:1:, z) = 1 we can treat the set of equa-

tions (141) as a generalized Riemann-Hilbert problem with canonical normaliza-
tion. Thus the Inverse Scattering Problem (ISP) for the Lax operator L is reduced
to a RHP. We also assume that the RHP (141) has unique regular solution, i.e., solu-
tion for which det é(k) (z,z) # 0 for all z € Rj. Then the set of sewing functions
G (k,m) (T, z) uniquely determines the corresponding potential ¢(z, z) via the first
asymptotic coefficients of é(k) (z, z) around the points z = 1, z = —1, z = 0 and
z = 00.
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5.2, Symmetric Spaces of C.II and D.III Type

The first example here will be the case of g ~ sp(4) where the potential q(x, t) is
parametrized by three functions

q(:L’,t) _ ( 0 Q("g’t)> : q(m,t) _ (Q12 Q'l) (143)

—q'(z,1) @2 q2
while the one for g ~ s0(8) contains six independent functions

qia 13 q2 0
0 q(z,t) g4 g23 0 qi2
x,t) = : x,t) = . (144
q(z,1) (_qT(m’t) 0 ) W) =1 00 g s | 1Y
0 ¢34 —gaa qua
The corresponding sets of MNLSE for these two choices of g(x,t) and for VBC
were first derived in [7]. For CBC with the involution (66b) they take the form
0q  0%q
is+ 55— 2(dh @alz, g(e,t) + (gL, qz)a(@, 1) + (gL, q(x,1)qx = 0.
(145)
The additional linear in g terms ensure regular behavior for ¢ — oo [18].
Here we briefly describe the spectrum of the corresponding Lax operators. To
this end we start by determining the corresponding eigenvalues of the asymptotic
matrices q4.
These eigenvalues for g(z) € sp(4) are the roots of the characteristic equation (see
equation (92))

PP~ Kop+Ki =0, Ko=trquql, Ky —=detqrql (146
and determine the end points of the spectrum. Taking g, to be 2 x 2 constant
matrices as in (143) we get
2 2 2 2 2

+lape? + 20q2el? K =|(02w)? — qizga| - (147)

Since Ko > 0 and K7 > 0 both roots or equation (146) must be positive. Thus we
have two possibilities for the roots p?, p3 of equation (146):

Ko = |q1.+

a) p? > p32, i.e., the branch points are different and positive. The continuous
spectrum of L fills up two pairs of rays on the real axis | Re A| > p; and
| Re A| > Re p2;

b) p? = p2, i.e., the branch points now coincide; the total multiplicity of the
spectrum is 4.

One can expect that the corresponding characteristic polynomial for so(8) is of
power 4. However, due to the orthogonal symmetry it takes more simple form

det(goql — p) = (p* — Kop + K1)* (148)
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and reduces to a polynomial of second order. Now the coefficients K; are given by

Ko=tr(qeqh) = > lgy=l
1<i<j<4 (149)
1/2 + + + + + £ 2
Ky = (det(q.qh))"? = q305; — d3adiz — 45053l
Again it is obvious that both coefficients Ko > 0 and K; > 0 are positive and
therefore both roots of the characteristic polynomial are positive. So we again
have the same two options listed above. The difference between the two symmetric
spaces on the level of spectra of L. consists in the fact that in the so(8) case each of

the roots has multiplicity 2. Therefore, the multiplicities of the continuous spectra
of s0(8) MNLSE are twice higher than for the so(4) case.

5.3. The Principal Minors and Fundamental Representations

The function DT () is analytic function of X in R which generates the integrals
of motion for the MNLSE. Using the properties of the fundamental representations
of the C, and D, series we have [9]

(Wi IT(N)ws) = (| DT(\)|wj) = exp((w;, 67 (V) (150)

where w; is the j-th fundamental weight of g and S\ =30, 5 (N)eg. Note
that the simple roots oy, and the fundamental weights w; satisfy the relation

2(wj, o)/ (ag, ) = .

More specifically for our examples we have
+ + L2
51 ()\) - ]IITH()\), 52 ()\) =In (151)
12
T(\)
for sp(4) and

57(\) = In Tha (\), 55 () :ln{i ;}

e
(152)
123

1 1234
oy — s+ +yy — &
55 (M) _1n{1 : 3}m) ST, 6F O 2ln{1 23 4}Tm

for s0(8). Here by {1 o :} we denote the upper principal minor of order
e TO
k of the scattering matrix 7'(\).

Note that due to the orthogonal symmetry inherent in D all functions exp(8; (1))
are polynomial expressions in terms of the matrix elements of T'()).
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6. Discussion

Here we briefly outline another important application of the FAS which is based
on the Wronskian relations. It allows one to analyze the mapping 7 : M — T
between the class of allowed potentials M and the scattering data 7 of L [4, 5].
They are the tool that allows us to show that the Inverse Scattering Method (ISM)
is a generalized Fourier transform. For the constant boundary conditions case they
require an additional regularization. Therefore we use the identity [3, 12]

¥ (e, t) = A) X@NE =i [ RN (15

which follows from equation (2). Here x(z, A) can be any fundamental solution of
L. For convenience we choose it to be the FAS in the region R ;. The left hand side
of (153) can be calculated explicitly by using the asymptotic of FAS for x — +o0.
It would be expressed by the matrix elements of the factors ST(\), T~ ()\) and
D7 () which determine the scattering data of L. Thus for our first example

iz [® )
STZ;p(Z) = __/ dy tr (quEp—}-l,lX(x’ Z))
(154)

ip() = o [ Ay (@B (. 2)
where Ej,, is an (n + 1) X (n + 1) matrix given by ( Egm)pl = Okpdmi. Note that
the integrands in the right hand sides of equations (154) are analytic functions in z

in the region R that tend to zero for y — +oo. This ensures the existence of the
integrals.

The second set of Wronskian relations which we consider relates the variation of
the potential dq to the corresponding variations of the scattering data dp and §7 .
For this purpose we use the identity

Rox(@ N2 == [ dyRoaly)x(u, V). (155)

Here we consider the special class of variations of ¢(x) which preserve q_, i.e.,
dq. = 0. Then dwo + = 0 and we arrive at

Is1p,(2) = / dy tr (6q(y)XEpt+1,1X(2, 2))
0533.5(2) = i / dy tr (0q(y) x En+1,p+1X(2, 2)) (156)

dlnmy (z) = 1/ dy tr (dg(y)xEr,1x(x, 2)).

We finish by some comments on the Hamiltonian properties of equation (1). We
already mentioned the nontrivial structure of the space of allowed potentials M
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which plays the role of a phase space for the MNLSE, due to the nontrivial bound-
ary conditions. It reflects also on the integrals of motion and on the Hamiltonian
vector fields that they generate. To be more specific we list the first three integrals
of motion of equation (1)

I = %/_O:O dy ((a,aw)) - »*)
I = i f_ O:O dy ((a}.a)) - (¢'.q,)) (157)

I3 = g/_o:o dy ((ql’qy) + (@' q) - p4) '

Note that though all the integrals in (157) are convergent, their variational deriva-
tives 611, /6¢q" are not necessarily vanishing for  — Zoo. This is true only for
0lz/ 5qT. Therefore, in order to generate regular Hamiltonian dynamics /3, which
is the candidate for a Hamiltonian for (1), needs to be regularized. This can be
done by using one additional integral of motion which is proportional to /; for the
scalar case [18]

L= /OO dy ((a',a2)(aL.a() - 5"). (158)

-

Then we obtain the Hamiltonian of (1) to be

8 ~
Hreg = §I3 - p2I1 - I

= /_ dy ((a}.q,) + (a".9)* - p*(a". @) — (a' a)(ak. @) + ") . (159)

The regularized Wronskian relations along with the FAS of L can be used to con-
struct the ‘squared solutions’ and then to interpret the ISM as a generalized Fourier
transform. For the scalar case see [22].

It will be instructive to derive the dark-dark and dark-bright soliton solutions [24]
of (1) by modifying the dressing Zakharov-Shabat method [28] to systems of the
form (132), or by using the Darboux transformation method [6].
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