Appendix

Here we add some important results and calculations which were used
in the main part of the work and which are important by themselves.

A.1. Integral symmetric bilinear forms. Elements of the
discriminant forms technique

Here, for readers’ convenience, we review results about integral symmetric
bilinear forms (lattices) which we used. We follow [Nik80b].

A.1.1. Lattices

Everywhere in the sequel, by a lattice we mean a free Z-module of finite
rank, with a nondegenerate symmetric bilinear form with values in the ring
Z of rational integers (thus, “lattice” replaces the phrase “nondegenerate
integral symmetric bilinear form”).

A lattice M is called even if 22 = z -z is even for each z € M, and odd
otherwise (here we denote by z - y the value of the bilinear form of M at the
pair (z,y)). By M; & M, we denote the orthogonal direct sum of lattices
M, and M,. If M is a lattice, we denote by M (a) the lattice obtained from
M by multiplying the form of M by the rational number a # 0, assuming
that M (a) is also integral.

A.1.2. Finite symmetric bilinear and quadratic forms

By a finite symmetric bilinear form we mean a symmetric bilinear form
b: Y x A — Q/Z defined on a finite Abelian group 2.

By a finite quadratic form we mean a map q : 9 — Q/2Z satisfying
the following conditions:

1) g(na) = n?q(a) foralln € Zand a € .

117



118 APPENDIX

2) g(a + a') — q(a) — g(a’) = 2b(a,a’) (mod 2), where b : Y x Y —
Q/Z is a finite symmetric bilinear form, which we call the bilinear form
of gq.

A finite quadratic form g is nondegenerate when b is nondegenerate. In
the usual way, we introduce the notion of orthogonality (L) and of orthog-
onal sum (&) of finite symmetric bilinear and quadratic forms.

A.1.3. The discriminant form of a lattice

The bilinear form of a lattice M determines a canonical embedding M C
M* = Hom(M, Z). The discriminant group of the lattice M is the factor
group Ay = M*/M. It is finite and Abelian, and its order is equal to
| det(M)|. We remind that the determinant det(M) of M equals det(e;-€;)
for some basis e; of the lattice M. A lattice L is called unimodular if
det(L) = +£1.

We extend the bilinear form of M to one on M*, taking values in Q. We
put

bM(tl + M, t, +M) =t -to+7Z
where ¢,,t, € M*, and
gu(t+ M) =t*+2Z,

if M is even, where t € M*.

We obtain the discriminant bilinear form by, : 2 X Ay — Q/Z and
the discriminant quadratic form g, : 2 — Q/2Z (if M is even) of the
lattice M. They are nondegenerate.

Similarly, one can define discriminant forms of p-adic lattices over the
ring Z,, of p-adic integers for a prime p. The decomposition of (s as a sum
of its p-components (), defines the decomposition of by, and gas as the
orthogonal sum of its p-components (bs), and (gar),. They are equal to the
discriminant forms of the corresponding p-adic lattices M ® Z,,

We denote by:

K (pk) the 1-dimensional p-adic lattice determined by the matrix (6p*),
where k£ > 1and 6 € Z; (taken mod (Z3)%);

U®)(2F) and V(?)(2*) the 2-dimensional 2-adic lattices determined by the
matrices
0 2k 2k+1 2k
( 2k 0 ) ’ ( 2k 2k+1 )
respectively;
(p)

o (p*), u® (2%) and v'P (2), the discriminant quadratic forms of K" (p*),
U@ (2%) and V@ (2%) respectively;
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b (%), u® (2F) and v? (2*), the bilinear forms of ¢ (p*), u'? (2%) and

! (2%) respectively.

These p-adic lattices and finite quadratic and bilinear forms are called ele-
mentary. Any p-adic lattice (respectively finite non-degenerate quadratic,
bilinear form) is an orthogonal sum of elementary ones (Jordan decompo-
sition).

A.1.4. Existence of an even lattice with a given discriminant quadratic
form

The signature of a lattice M is equal to sign M = t(4) — {(_) where (4,
and t(_y are numbers of positive and negative squares of the corresponding
real form M ® R. The formula

signgyy mod 8 =sign M mod 8 =ty —t_) mod 8

where M is an even lattice, correctly defines the signature mod 8 for non-
degenerate finite quadratic forms. For elementary finite quadratic forms we
obtain respectively

sign qép)(pk) =k*(1 — p) +4kn mod 8

where p is odd and (—g—) = (—1)", where we use Legendre symbol;

sign qéz)(Qk) =6+ 4w(f)k mod 8
where w(f) = (6> — 1) /8 mod 2;
sign v(f)(Qk) =4k mod §;

sign uf)(Qk) =0 mod 8.
In particular, sign L = 0 mod 8 if L is an even unimodular lattice.

We denote by [(2() the minimal number of generators of a finite Abelian
group 2. We consider an even lattice M with the invariants (¢(4),t(-),q)
where ¢4, t(_) are its numbers of positive and negative squares, and ¢ =
qum; we denote by 2/, the group where q is defined. The invariants (t(+), t-),
q) are equivalent to the genus of M (see Corollary 1.9.4 in [Nik80b]) .
Thus, they define the isomorphism classes of the p-adic lattices M ® Z,, for
all prime p, and of M ®Q R. ‘

We have (see Theorem 1.10.1 in [Nik80b]):

Theorem A.1. An even lattice with invariants (t(4),t),q) exists if and
only if the following conditions are simultaneously satisfied.:

1) t4y —t(—y =signqg mod 8.

Dty 20,8y 2 0, 4y + 1) 2 U2Ay)-
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3) (-1)')|,| = det(K(g,)) mod (Z3)? for all odd primes p for
which t(4) + t—) = l(,) (here K(qp) is the unique p-adic lattice with
the discriminant quadratic form g, and the rank l(,,))-

4) |, = L det(K(g2)) mod (Z35)? if t(y) + t(-) = U(Ag,) and g2 #
qg2)(2) ® g, (here K(qo) is the unique 2-adic lattice with the discriminant
quadratic form q, and the rank (2, )).

From [(21,) = max, {(2,,), we obtain the important corollary.

Corollary A.2. An even lattice with invariants (t(4),t(-),q) exists if the
following conditions are simultaneously satisfied:

1) t(4) — t(-) =signq mod 8.

2 t) 20,8 20, by +-) > Uly)-

Theorem 1.16.5 and Corollary 1.16.6 in [Nik80b] give similar results
for odd lattices.

A.1.5. Primitive embeddings into even unimodular lattices

We have a simple statement (see Proposition 1.4.1 in [Nik80b]).

Proposition A.3. Let M be an even lattice. Its overlattice M C N of finite
index is equivalent to the isotropic subgroup H = N/M C 9 with respect
to qp. Moreover, we have qn = qu|(H*)/H.

An embedding of lattices M C L is primitive if L/M is a free Z-
module.

Let L be an even unimodular lattice, M C L its primitive sublattice, and
T = Mi. Then M @ T C L is an overlattice of a finite index. Applying
Proposition A.3, we obtain that H = L/(M @ T) is the graph of an iso-
morphism 7 : g = —qr, and this is equivalent to a primitive embedding
M C L into an even unimodular lattice with T = Mj-. Thus we have (see
Proposition 1.6.1 in [Nik80b])

Proposition A.4. A primitive embedding of an even lattice M into an even
unimodular lattice, in which the orthogonal complement is isomorphic to
T, is determined by an isomorphism v : qp = —qr.

Two such isomorphisms -y and ~' determine isomorphic primitive em-
beddings if and only if they are conjugate via an automorphism of T'.

From Theorem A.1 and Corollary A.2 we then obtain (Theorem 1.12.2
and Corollary 1.12.3 in [Nik80b])

Theorem A.5. The following properties are equivalent:
a) There exists a primitive embedding of an even lattice M with invari-
ants (t(4,t(-), q) into some even unimodular lattice of signature (11, l_)).
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b) There exists an even lattice with invariants (I(+)—t (1), l-)—t(=), —9)

c) There exists an even lattice with invariants (I_y —t(_y, L4y —t(4), Q).

d) The following conditions are simultaneously satisfied:

D04 —1l-y=0 mod 8

DUy =ty 20, Uy =) 2 0, lgy + o) =ty = ) 2 UAy).

3) (1)}~ |9l | = det(K(gp)) mod (Z})? for all odd primes p for
which Ly + Ly — t) — t(-) = (Aq,) (here K(qp) is the unique p-adic
lattice with the discriminant quadratic form q, and the rank 1(2,,)).

4) || = £det(K(g2)) mod (Z3)? ifl4) +i—) —tr) —t(-) = UAg,)
and g # qé2)(2) ® g5 (here K(qo) is the unique 2-adic lattice with the
discriminant quadratic form q, and the rank 1(,,)).

Corollary A.6. There exists a primitive embedding of an even lattice M
with invariants (t4), ), q) into some even unimodular lattice of signature
I+, U(=)) if the following conditions are simultaneously satisfied:

1) l(+) — l(_) =0 mod 8.

Dl =ty 20 1y =) 2 0 gy + o) =ty =ty > Uy).

It is well-known that an even unimodular lattice of signature
(I(+),l(=)) is unique if it is indefinite (e. g. see [Ser70]). The same is valid
if l(4y + -y < 8. Thus, Theorem A.5 and Corollary A.6 give existence of
a primitive embedding of M into these unimodular lattices.

A.1.6. Uniqueness

We restrict ourselves to the following uniqueness result (see Theorem 1.14.2
in [Nik80b] and Theorem 1.2’ in [Nik80a]). We note that this is based on
fundamental results about spinor genus of indefinite lattices of the rank > 3
due to M. Eichler and M. Kneser.

Theorem A.7. Let T be an even indefinite lattice with the invariants (t ),
t(—y, q) satisfying the following conditions:

a)tkT > 1(A,,) + 2 forall p # 2.

B) Itk T = U(2Uy,), then gy 2 uP (2) @ ¢’ or gy = v (2) © ¢,

Then the lattice T is unique (up to isomorphisms), and the canonical
homomorphism O(T) — O(qr) is surjective.

Applying additionally Proposition A.4, we obtain the following Ana-
logue of Witt’s Theorem for primitive embeddings into even unimodular
lattices (see Theorem 1.14.4. in [Nik80b]):

Theorem A.8. Let M be an even lattice of signature (t(4),t(-), and let L
be an even unimodular lattice of signature (1 4), l—)). Then a primitive em-
bedding of M into L is unique (up to isomorphisms), provided the following
conditions hold:
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1) Iy —t4) >0 andl_y —t-) > 0.

Dy +loy =ty -ty =22+ l(QlM,,)for all p # 2.

3 If Iy + Loy — by — by = URas,), then qu = u’(2) @ ¢ o
wm=vP 2.

A.2. Classification of main invariants and their geometric
interpretation

Here we apply results of Section A.l1 to classify main invariants S and
(r, a, d) of non-symplectic involutions of K3 surfaces and equivalent right
DPN surfaces; moreover, we give their geometric interpretation (types: el-
liptic, parabolic, hyperbolic, and invariants (k, g, d)) (see Section 2.3). We
also give proofs of results of Section 2.3 which were only cited there. All
these results had been obtained in [Nik80a, Nik80b, Nik79, Nik83, Nik87]
and are well-known. We follow these papers.

We follow notations and considerations of Section 2.3.

According to Section 2.3, the set of main invariants S of K3 surfaces
with non-symplectic involution is exactly the set of isomorphism classes
of 2-elementary even hyperbolic lattices S having a primitive embedding
S C L where L = L3 is an even unimodular lattice of signature (3, 19).
Further we denote L = Lg3;. We remind that a lattice M is called 2-
elementary if its discriminant group 2y = M*/M = (Z/2Z)* is 2-
elementary.

Since the lattice T' = S is also 2-elementary, let us more generally
consider all even 2-elementary lattices M. We denote by (t(+),t(-)) the
numbers of positive and negative squares of M. Since M is 2-elementary,
the discriminant group 2y = (Z/27Z)° is a 2-elementary group where 2° is
its order. We get the important invariant a of the discriminant group 2
(and M itself). We have a € Z and a > 0.

The discriminant form gps of M is a non-degenerate finite quadratic
form on the 2-elementary group 2 (we call such a form 2-elementary.)
By Jordan decomposition (see Section A.1.3), the form g, is orthogonal
sum of elementary finite quadratic forms u(z)(2), vf )(2) and q(2)(2) with
the signature 0 mod 8, 4 mod 8 and =1 mod 8 respectively. If gas is
sum of only elementary forms uf)(2) and vf )(2), then gy is even: it takes
values only in Z/2Z. Otherwise it is odd: at least one of its values belongs
to {—1/2,1/2} mod 2. Therefore, we introduce an important invariant
d € {0,1} of gps (and of M itself). The § = 0 if gy is even, and § = 1 if
qum is odd.
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We have the important relations between elementary forms:

2 ~ 0, (2 2) o (2 2 2 2 2 ~

202 (2) = 22(2), 3¢ = ¢ 9P (2). ¢” (D) @A) @ 4}(2) =

uP (2)6{9q(2) (2). It follows that gjs can be written in the canomcal form de-

pendmg onits invariantsa, 6 and o0 mod 8 = signgy mod 8 = £(4)—t(
mod 8. We have several cases:

0=0:thena=0 mod 2,0 =0 mod 4,andc =0 mod 8ifa = 0. We
have

o = svP(2) @ (a/2 — s)uf(2)
where s = Qor 1 and o = 4s mod 8.

d=1:thena>1,0=a mod 2,0 = +1 mod8ifa=1,ando # 4
mod 8 if a = 2. We have

an =2 2) @ ((a—1)/2)v?(2)if o =41 mod 8;
qM_2q(2)69(a/2—1)u(2)(2)if05:i:2 mod 8;
an 2d?2) @ ¢%©2) @ (a/2 - DuP(2)if o =0 mod 8;

a =2 qdP2) e %) P 2) @ (a/2 -2)uP(2)if o =4 mod 8.
Thus, the discriminant form gy is determined by its invariants (o = t(4) —
t(—y mod 8,a,d). Moreover, we have listed above all conditions of exis-
tence of gy for the given invariants 0 = ¢(;) — ¢{(-) mod 8, a > 0 and
0 € {0,1}.

Assume that these conditions are satisfied. By Corollary A.2, a 2-
elementary lattice M with invariants (¢t(4),t(-), qn) exists if ¢y > 0,
t-y > 0and t) + t-y > a = I(An). The condition t(,) + ¢y = a
1s necessary for the existence. Assume that ¢4y + ¢y = a. If § = 1, then
qm = qi)(2) @ ¢', and the lattice M also does exist by Theorem A.1. If
d = 0, then M (1/2) will be an even unimodular lattice. It follows that the
conditiont(,)—t(_y = 0 mod 8 must be satisfied, and it is sufficient for the
existence of M since an even unimodular lattice M (1/2) with the invariants
(t(+), t(~)) does exist under this condition. Thus, we finally listed all con-
ditions of existence of an even 2-elementary lattice M with the invariants
(t(+), t(-),a, d).

Moreover, we had proved that the invariants (¢4, ), a, ) define the
discriminant quadratic form g of M. We have l (Q[M ) = 0if a prime p is
odd. Ifa > 3, then qas 2 u?(2)Bq’ or qpr = =~ 2 (2)@¢. By Theorem A.7,
then the lattice M is unique if it is indefinite and rk M > 3. Moreover, then
the canonical homomorphism O(M) — O(qas) is epimorphic. If tk M <
2, then M is one of lattices: (+2), (£2) & (+2), U or U(2). One can easily
check for them the same statements directly.
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Thus, finally we get the following classification result about 2-elemen-
~ tary even indefinite (except few exceptions) lattices. It is Theorems 3.6.2
and 3.6.3 from [Nik80b].

Theorem A.9. The genus of an even 2-elementary lattice M is determined
by the invariants (t(1,t(-), a,6), and if either M is indefinite or rk M = 2,
these invariants determine the isomorphism class of M, and the canonical
homomorphism O(M) — O(qu) is epimorphic.

An even 2-elementary lattice M with invariants (t(4), t-), a,d) exists if
and only if all the following conditions are satisfied (it being assumed that
0 =0o0r1, and that a,t(),t-) > 0):

1) a <ty +teoys

)ty +t-)+a=0 mod 2

3)t) —t-) =0 mod 4 ifé=0;

4) (6 =0, t(+) —t(-) =0 mod 8) ifa = 0;

5)t4y —t-)==x1 mod 8ifa=1;

6)6=0if(a=2, t4) —t-) =4 mod 8),

Dtt) —t-) =0 mod 8if (6 =0, a=1ty)+1t)).

Let S be a main invariant and » = rk S. Since S is 2-elementary even
hyperbolic, by Theorem A.9 it is then determined by its invariants (¢(4) =
Lty=r— 1,a,6).

By Theorem A.5, existence of a primitive embedding S C L3 is equiv-
alent to existence of a 2-elementary even lattice T = S+ with invariants
(t+) = 2,t(-y = 20 — 7, a,0) (indeed, gr = —gs has the same invariants a
and 6).

Thus, the set of main invariants S is equal to the set of (r,a, ) such
that both (1,7 — 1,a,6) and (2,20 — r, a, ) satisfy conditions 1) — 7) of
Theorem A.9. It consists of exactly (r, a,d) which are presented in Figure
1.

By Theorem A.9, the orthogonal complement T' = S7 is uniquely de-
termined by (r, a,d), and the canonical homomorphism O(T) — O(gr)
is epimorphic. By Proposition A.4 the primitive embedding S C L3 is
unique up to automorphisms of Ls.

Let us show that O(S C Lgs3) contains an automorphism of spinor norm
—1 (i. e. it changes two connected components of the quadric (gL, see
(30)). Using Theorem A.9, it is easy to see that either T' = (2) & (2), or
T=U®T,orT=U2)®dT,orT =2 (-2)dT".IfT = (2) ®(2),
we consider the automorphism o of T which is +1 on the first (2) and —1
on the second (2). In remaining cases we consider an automorphism o of
T which is —1 on the first 2-dimensional hyperbolic summand of 7', and
which is +1 on T”. It is easy to see that a changes connected components
of the Qscr,,. On the other hand, « is identical on the 7*/T and can be
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continued identically on S. This extension gives an automorphism of L3
which is identical on S and has spinor norm —1.

It follows (see Section 2.3) that for the fixed main invariants (r, a, §) the
moduli space Mod,4,) of K3 surfaces with non-symplectic involution is
irreducible. )

Now let us consider the geometric interpretation of main invariants (7, a,
§) in terms of the set C = X of the fixed points. The set C is non-singular.
Indeed, if z € C a singular point of C, then € is the identity in the tangent
space T,. Then 6*(wx) = wx for any wy € H?°(X) and 0 is symplectic.
We get a contradiction.

For a non-singular irreducible curve C on a K3 surface X we have
g(C)=(C?*+C-Kx)/2+1=C?/24+1 > 0. It follows that C? > 0, if
g(C) > 1. Since the Picard lattice Sx is hyperbolic, it follows that any two
curves on X of genus > 2 must intersect. It then follows that X ° has one
of types A, B, C listed below:

Case A: X° = C;+ E; +- - -+ Ej, where C, is a non-singular irreducible

curve of genus g > 0 and C,; # 0, the curves Fi, ..., E; are non-singular
irreducible rational (i. e. E2 = —2). All curves C,, E; are disjoint to each
other.

CaseB: X! = CV+.. .+ C™ 4+ E; +- - -+ By, where CV + - - .+ C™
is disjoint union of m > 1 elliptic curves (we shall prove in a moment that
actually m = 2 and k£ = 0).

Case C: X% = 0.
By Lefschetz formula, the Euler characteristics x(X%) = 2+7r — (22—
r) = 2r — 20.

By Smith Theory (see [Kha76]), the total Betti number over Z/2Z sat-
isfies

dim H*(X% Z/2Z) = dim H*(X,Z/2Z) — 2a = 24 — 2a if X% # 0.

For any 2-dimensional cycle Z C X one evidently has Z-0(Z) = Z-X°®
mod 2. Thus, X% ~ 0 mod 2 in H%(X,Z) if and only if (z,0*z) = 0
mod 2 for any x € H*(X,Z). Letus writtx € L = H*(X,Z) as z =
Ty + z_ where z, € S* and z_ € (St)*. Then z - 6*(z) = 2% — z2.
Moreover, 22 = 22 + 22 = 0 mod 2 because L is even. Taking the
sum, we get z - 6*(z) = 222 mod 2. Since H*(X,Z) is unimodular,
any r, € S* appears in this identity. It follows that X ~ 0 mod 2
in H?(X,Z) if and only if 2 € Z for any z; € S*. Equivalently, the
invariant 6 = 0. Therefore

6 = 0ifand only if X ~ 0 mod 2in H%(X,Z).

In case B, elliptic curves Cl(i) belong to one elliptic pencil |C| of elliptic
curves where it is known (see [PS-Sh71]) that C' is primitive in Picard lattice
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Sx. Assume that either m > 2 or k > 0. Then @ is trivial on the base PP
of the elliptic pencil. Since it is also trivial on a fibre Cf') which is not
multiple, # is symplectic, and we get a contradiction. Thus, in Case B we
have k=0, m =2and 6 = 0.

In case C, the quotient Y = X/{1, 6} is an Enriques surface. It follows
that r = a = 10 and § = 0 in this case.

Combining all these arguments, we obtain the geometric interpretation
of the invariants (7, a, §) cited in Section 2.3

A.3. The analogue of Witt’s theorem for 2-elementary
finite forms

Here we follow Section 1.9 in [Nik84b] to prove an important Lemma 2.7.
We consider a 2-elementary finite bilinear forms b : Bx B — %Z/ Z and
2-elementary finite quadratic forms ¢ : Q) — %Z/ 2Z on finite 2-elementary
groups B, Q.
In the previous section we gave classification of non-degenerate 2-ele-
mentary finite quadratic forms. Similarly one can classify non-degenerate
2-elementary finite bilinear forms. They are orthogonal sums of elementary

forms b§2) (2) and u?(2). The form b§2’ (2) is the bilinear form of quadratic

forms ¢{?(2), and the form ©®(2) is the bilinear form of quadratic forms

uf)(Z) and vf )(2). We denote by s, the characteristic element of b, i. e.

b(z,x) = b(sp, x) for all z € B. It is easy to see that any non-degenerate
2-elementary finite bilinear form b is

b~ mu'?(2)

if b(z, z) = 0 for all z € B (equivalently the characteristic element s, = 0,
these bilinear forms are the same as skew-symmetric ones);
b= 5P (2) ® mu?(2),
if b(sy, s3) = 3 mod 1;
b= 26 @ mu? (2)
if sp # 0 but b(s, sp) = 0.
We prove (see Section 1.9 in [Nik84b])

Proposition A.10. Let b be a non-degenerate bilinear form on a finite 2-
elementary group B and § : H, — H, be an isomorphism of subgroups of
B which preserves the restrictions b| Hy and b| H, and that maps the charac-
teristic element of the form b to itself (if, of course, it belongs to H,). Then
0 extends to an automorphism of b.
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Proposition A.11. Let q be a quadratic form on a finite 2-elementary group
() whose kernel is zero, that is

{ze@Q|z L Qandqg(z) =0} =0.

Let 8 : Hy — H, be an isomorphism of two subgroups of () that preserves
the restrictions q|H, and q| H, and that maps the elements of the kernel and
the characteristic elements of the bilinear form q into the same sort of ele-
ments (of course, if they belong to Hy). Then ¢ extends to an automorphism
of q (an element s € Q is called characteristic if q(s,x) = q(z, z) for all

z € Q).

We shall prove the propositions by induction on the number of genera-
tors of B and (). Let us begin with Proposition A.10. Suppose there exist
1 € Hy and x5 = 0(z,) € H, such that b(zq,z1) = b(z3,z2) = 1 mod 1.
Write B, = (z1)3, Ba = (22)3, b1 = b|By, by = b| By, H| = (xl)ﬁl’

= (z2)f;, and 6 = 6|H,. Then the same conditions hold for the
nondegenerate forms b; and b, defined on the subgroups B; and B,, their
subgroups H; C B and H;, C B, and an isomorphism ¢’ : H] = H,.
Everything reduces to extending 6’. Since z; and z, are characteristic si-
multaneously, b; and b, are isomorphic (this follows from classification of
nondegenerate bilinear forms). Therefore, the existence of an extension of
@' follows from the induction hypothesis. To complete the proof it remains
to consider the case when the function b(z, ) on H; and H; is zero. De-
note by s the characteristic element of B. It is easy to check (using the
classification again) that the natural homomorphism

O(b) — O(s%)

is epimorphic (we always consider a subgroup with the restriction of the
form b on the subgroup). In our case H, and H, lie in s; therefore, it
suffices to extend 4 to an automorphism of st. If s ¢ s, this is obvious
since in this case s is a nondegenerate skew-symmetric form; for them the
proposition is well-known and obvious. If s € st, then [s] is the kernel of
s*, and, by the hypothesis,

[s]N Hy = 6([s] N Hy) = [s] N Ho.
Let
6: Hi/([s]N Hy) = Hy/([s] N H2)
be the isomorphism § mod [s] N H;. Then, because s* /[s] is nondegener-

ate and skew-symmetric, 6 extends to an automorphism ¢y € O(s*/[s]). Let

1 be a lifting of 1 to an automorphism of (s)*. Then v(z) — 0(z) = g(x)s,
if r € Hy, where g : H; — Z/2Z is a linear function. Extending g to a
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linear function g : s* — Z/2Z, we put

¥(z) = () + flz)sif = € s*.

Evidently 1) € O(s') is the desired extension of 6.

Let us prove Proposition A.11. Assume that the bilinear form of g has
a nonzero kernel. Then it is generated by an element 7, and g(r) = 1
mod 2. Using Proposition A.10, we can extend 6 to an automorphism 3 of
the bilinear form of q. The function f(z) = ¢(z) — q(¥(x)) € Z/2Z, where

z € Q, is linear and vanishes on H;. Evidently, ¥(z) = ¢(z) + f(z)r,
where = € Q, is the desired extension of 6.

It remains to examine the case when the bilinear form g is nondegener-
ate. The case where there exist elements z; € H, and z, = 0(z;) € H,
for which g(z;) = q(z;) = 36 where § ¢ 2Z, can be examined similarly
to the corresponding case of Proposition A.10. Therefore, we assume that
g(z) =0 mod 1if z € H;. For a characteristic element s € () the natural
homomorphism

O(g) — O(s%)

is epimorphic (this easily follows from the classification of nondegenerate
quadratic forms on 2-elementary groups given in Section A.2). In our case
H, and H, lie in s, and it suffices to extend 6 to an automorphism of st.
If the bilinear form on s+ is non-degenerate, this follows from the classical
Witt theorem over the field with two elements. Suppose it is degenerate;
then the kemel of st is generated by s. In the case g(s) = 0, one can
pass to a form on s /[s] and we argue in the same way as in the proof of
Proposition A.10. But if ¢g(s) = 1 mod 2, then we pass to the first case,
already treated. Proposition A.11 is proved.

A.4. Calculations of fundamental chambers

Here we outline calculations of fundamental chambers for hyperbolic re-
flection groups which had been used in the main part of the work. |

A.4.1. Fundamental chambers M (31 of 2-elementary even
hyperbolic lattices of elliptic type (Table 1).

We consider all 50 types of 2-elementary even hyperbolic lattices S of el-
liptic type given by their full invariants (r, a, ). We outline the calculation
of a fundamental chamber M %4 (equivalently, the corresponding Dynkin
diagram I'(P(M %)) for the full reflection group W4 (S) = W(S).
This is the group generated by reflections s; in all roots f of S. They are
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elements f € S either with f2 = —2 or with f2 = —4 and (f,5) = 0
mod 2. The reflection sy € O(S) is then given by

e 2(30}21” )f ,

We use Vinberg’s algorithm [Vin72] which we describe below. It can
be applied to any hyperbolic lattice S and any of its reflection subgroup
W C W(S) which is generated by reflections in some precisely described
subset A C S of primitive roots of S which is W -invariant.

First, we should choose a non-zero H € S with H2 > 0. Then H
defines the half cone V*(S) such that H € V+(S). We want to find a
fundamental chamber M C L(S) = V*(S)/R* of W containing R*h.

Step 0. We consider the subset A of all roots from A which are orthog-
onal to H. This set is either a finite root system or affine root system. One
should choose a bases F, in Ag. For example, one can take another element
H, € S such that H2 > 0, (H, H,) > 0 and (Hy, /) does not contain
zero. Then

Vz € S.

Ag = {fe AOI(f;-Hl) > 0}7
and Py C Ay consists of roots from A which are not non-trivial sums of
others. For f € A with (f, H) > 0 we introduce the height

2(f, H)?

h(f) = —:‘fT“
The height is equivalent to the hyperbolic distance between the point R+ H
and the hyperplane H; which is orthogonal to f. The set of all possible

heights is a discrete ordered subset
(90) h0=0,h1,h2,...hi,...,

of R*. It is always a subset of non-negative integers, and one can always
take Z* as the set of possible heights.

The fundamental chamber M C L£(S) is defined by the set P(M) C A
of orthogonal roots to M which is

91) P(M)=|JP
0<j

where F; is defined above and P; for j > 0 consists of all f € A such that
(f, H) > 0, the height h(f) = h;, and

92) (f, U R-) > 0.

0<i<j-1
Then
(93) M = {R*z € L(S) | (z, P(M)) > 0}.
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If M has finite volume, the algorithm terminates after a finite number
m of steps (i. e. all P; are empty for j > m, and

(94) PM)= | P

0<j<m

whenever (93) defines a polyhedron M of finite volume in £(S) for P(M)
given by (94).

Below we apply this algorithm to 2-elementary hyperbolic lattices S of
elliptic type and W = W(S) = W24 (S). The set A C S consists of all
f € S such that either f2 = —2or f2= —4and (f,S) =0 mod 2.

Cases S = (2) ®lA, where 0 <[ < 8. Then (r,a,6) = (1+1!,1+1,1),
0 < I < 8. We use the standard orthogonal basis h for (2) where h% = 2,
and the standard orthogonal basis vy, . . ., v; for [A; where v? = -+ - = v? =
-2.

Wetake H = h, H; = th + vy + 2vy, + -+ - + lv; where t >> 0. Then
P(M@4) consists of roots: By = h—v; —vyifl = 2; B = h—v; — vy —v3
if [ 23;,81 =V — U2y ..., ,61_1 =’U[-1—’Ulifl 22;ﬂl=v,ifl > 1.

For 2 < | < 8 the polyhedron M%) is obviously a simplex in £(S)
of finite volume. The Gram matrix (3;, ;) gives the Dynkin diagrams of
cases N = 1, N = 3 — 10 of Table 1. Here we repeated calculations by
Vinberg in [Vin72].

Cases S =U ®1A,,0 <! < 8. Then (r,a,d8) = (2,0,0) if l = 0, and
(r,a,0) = (2+1,1,1)if 1 <1 < 8. We use the standard basis c;, c, for
U where ¢2 = ¢2 = 0 and (¢;,¢2) = 1, and the standard orthogonal basis
v1,...,0; forlA; as above.

We take H = c¢;. We can take P, which consists of 8y = ¢; —v; if | > 1;
,81 =V —Vgy..., Bl—l =V-1—U if { Z 2, ,81 = if { Z 1. Then P(M(2’4))
consists of Py, e = —c; + co and additional elements v, = 2¢; + 2¢c; — vy —
Vg — VU3 — Ug — Vs ifl = 5, and'yl = 2C1+202—'U1 — Vg — VU3 — VU4 — Vs — Vg
if | > 6.

We shall discuss the finiteness of volume of M (24) later. We obtain the
diagrams of cases N = 11 — 20 excluding NV = 15 of Table 1.

Cases S=U®D,;®lA;,0 <! <5.Then(r,a,d) =(6,2,0)ifl =0,
and (r,a,8) = (6+1,2+1,1) if 1 <[ < 5. We use the standard bases c;, c;
for U and vy, ..., v for lA; as above. We use the standard orthogonal basis
€1,--.,€m for D, ® Q where €2 = - - - = €2, = —1; the lattice D,, consists
ofall 76, + -- - + T e, Wherez; € Zandz; + - -+ z,, =0 mod 2.

We take H = c;, and we can take P, which consists of ag = ¢; —€; — €9,
Q] = €] —€3,009g = €2 — €3, 03 = —€] + €3+ €3 —€4, 04 = 264,00 =0¢1 — 11
if l > l;ﬁl——*vl—vg, ceey ﬂl—l ='U[_1—'Ulifl 22;,Bl=’l)liflz 1.
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Then P(M®*%) consists of Py, e = —c; + ¢, 71 = 2¢1 + 2¢2 — €1 —
€a—€3—€—vy—vy—v3zifl=3,andy; = 2¢c;+2co—€; —€g —€3— €4 —
V1 — Uy — V3 — Vg ifl 2> 4599 = 2¢1 + 2¢9 — vy — Vg — U3 — vy — U5 if | = 5.

We obtain the diagrams of cases N = 21 — 27 excluding N = 25 of
Table 1.

Cases S = U @ D,, ®lA; where m = 0 mod 2, m > 6,1 > 0,
m+2l <14. Thenr =2+ m+1,a =1+ 2. Moreoveré = 0if | = 0 and
m =0 mod 4, otherwise § = 1.

We use the standard bases c;, ¢, for U, and ¢4, ..., €, for D,, ®Q, and
vy, ..., v; for lA; as above.

We take H = c;, and we can take P, which consists of ag = ¢; —€; — €3,
Q] =€ — €2, ..., Up_1 = €m_] — €m, Oy = 26m; Po =1 — vy if | > 1
Bi=v1—=vg, ..., By = —yifl > 2, =vifl > 1.

Then P(M®4) consists of Py, e = —c; + ¢5, and some additional

elements ~y; depending on m > 6 and [ > 0 where we always assume that
m+2l <l4dandm =0 mod 2.

Ifm=6and! = 2, one must add v; = 2¢;+2¢c, —€;—- - - — €5 — V1 — V5.

Ifm=6and! = 3,onemustaddy; = 2¢; +2c; —€; —---— € — v, —
Ug — U3, Yo = 2C1 + 2C9 — 2€; — U] — Uy — Us.

Ifm=6and! =4,onemustadd v; = 2c; +2cy —€; — -+ —€g — V1 —
Vg — U3, Y2 = 21 + 2¢9 — 2€; — V1 — Vg — V3 — Vy.

If m=8and! =1, one mustadd v; = 2¢; +2¢c, —€; — - - - — €g — ;.

If m =8and! = 2, one must add y; = 2¢;+2¢co—€1—- - - —€g — V1 — V5.

If m =8and! = 3,one mustadd v; = 2c;+2co—€;—+ - - —€g—v; — s,

Yo =2C1+2co — €1 — €3 — €3 — €4 — U] — Vg — U3, Y3 = 2C1 + 2Cy — 2€; —
U1 — V2 — Vs,

If m =10and ! = 0, one must add v; = 2¢; + 2¢co — €; — - - - — €10.

If m=10and/ = 1, one must add vy; = 2¢; +2c; — €3 — - - - — €19 — 1.

If m=10and! = 2, one must add v; = 2¢; +2cy — €1 — - - - — €19 — V1,
’)/2=2C1+202461—"'—66—Ul—"U2,’73=4C1+4CQ—361—-€2—"'—
€10 — 2’01 - 2'02.

If m =12and ! = 0, one must add v; = 2¢; + 2¢c) — €, — - - - — €19.

Ifm=12and! = 1,onemustaddv; = 2c;+2c;—€1— - — €12, V2 =
261+2CQ—€1-—' €8 V1, Y3 = 6Cl+602—461—262-263—-' . '—2611—3’01.

We obtain the diagrams for N = 28 — 50 of Table 1 except N =
30, 34, 40, 41, 44, 49, 50 when eitheré = 0anda > 2,0ra < 1.

Cases S = U(2) & D,,, where m =0 mod 4and 0 < m < 12. Then
(r,a,6) = (2 4+ m,4,0). We use the standard bases c;, ¢, for U(2) where
c? = ¢ = 0and (¢, cy) = 2, and the standard basis €1, . . ., €, for D,, ®Q
as above.

We use H = c; and denote e = —c; + c; with €? = —4.



132 APPENDIX

If m = 0, then P, = @ and P(M©@%) consists of e.
If m = 4, then P, consists of ag = c; — €; — €2 — €3 — €4, @1 = €1 — €3,

Qo = € — €3, A3 = —€1 + €3 + €3 — €4, 0g = 2¢4. Then P(M @) consists
of P and e.
If m > 8, then P, consistsof ag = ¢; —2€;, 1 = €1 — €3, ..., Q1 =
€m—1 — €m, Qm = 2€m.
If m = 8, then P(M @) consists of Py, eandy; = c1+ca—€1— - -—é€s.
If m = 12, then P(M®*) consists of Py, e and y; = 2¢; + ¢z — €1 —
't —€12,72=0C +Cp—€ — - —€s.

We obtain the diagrams for N = 2, 15, 30, 44 of Table 1.

Case U(2) ® Dy & D,. Then (r a,d) = (10,6,0). We use standard

bases c;, c; for U(2) and e?), e ) for the first Dy, and 6(2) ey 6‘(12) for
the second Dg.
We take H = ¢, and P, which consists of a(()l) =c — e&l) - egl) - egl) -

SN O R RN O N P i B O B O B O
o) = 2631) and NN R O T R )
a:(f) B R N N B B R N 9 @

Then P(.M(2 4)) consists of Pyand e = —c; + co.
We obtain the diagram for V = 25 of Table 1.

Cases S=U®E;,,UDEsg, U EgD A1, UDEgD E7,U ® Eg P Es.
Respectively (r,a,8) = (9,1, 1), (10,0,0), (11,1,1), (17,1,1), (18,0,0).
We use the standard basis c;, ¢, for U. For each irreducible root lattice R; =
Ay, E;, Eg of the rank t; we use its standard basis r() .. (’) of roots

with the corresponding Dynkin diagram. We denote by r( )
root of R; corresponding to this basis.

For S = U @ R where R is the sum of irreducible root lattices R; above,
we take H = c¢; and P, which consists of standard bases r(’) .. (’) of R;
andr{) = ¢ — ).

Then P(M@9) consists of P, and e = —c; + c;, and one additional
element vy, if S = U®EsDE;. The element v; € S is shown on the diagram
N = 49 of Table 1 as the right-most vertex. It can be easily computed using
pairings (1, &;) prescribed by this diagram for basis elements ; of S given
above.

We obtained the remaining diagrams of cases N = 34, 40, 41, 49, 50
of Table 1.

the maximal

Finiteness of volume of polyhedra M 2% above. To prove finiteness
of volume of the polyhedra M (24 defined by the subsets P = P(M@%) c
S calculated above with the corresponding diagrams I' = I'( P) of Table 1,
one can use methods developed by Vinberg in [Vin72].
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We remind that a subset 7' C P is called elliptic, parabolic, hyper-
bolic, if its Gram matrix is respectively negative definite, semi-negative
definite, hyperbolic. A hyperbolic subset T is called Lannér if each its
proper subset is elliptic. Dynkin diagrams of all Lannér subsets are classi-
fied by Lannér, e.g. see Table 3 in [Vin72]. They have at most 5 elements.

We exclude trivial cases N = 1, 2, 3, 11 when rk.S < 2. In all other
cases, from our calculations, it easily follows that P generates S ® Q, and
I'(P) is connected. Moreover, by the classification of affine Dynkin dia-
grams, one can check that all connected components (for its Dynkin dia-
gram) of any maximal parabolic subset " C P are also parabolic, and sum
of their ranks is rk S — 2. We remind that the rank of a connected parabolic
subset T' C P is equal to #71 — 1.

From the classification of Lannér subsets, it easily follows that the graph
I" has no Lannér subgraphs if N # 45, 47. By Proposition 1 in [Vin72]),

‘then M4 has finite volume.

Assume that N = 45 or N = 47. Then the only Lannér subset L C P

consists of two elements defining the broken edge (it is thg_o\n_l/y one) of I'.

Finiteness of volume of M%) is then equivalent to L+ N M @4 = (). Here

95) MED = {z € SQR|(z, P(M)) > 0}/R*

is the natural extension of M®%. Let K C P consists of all elements
which are orthogonal to L. Looking at the diagrams I' in Table 1, one
can see that K is elliptic and has rk S — 2 elements. By Proposition 2 in

[Vin72], it is enough to show that (L U K)* N M4 = ( (it then implies

that L+ N M24 = (). Since #K = rkS — 2, the K+ N M4 is the
edge (1-dimensional) r; of MZ4). There are two more elements f, € P
and f, € Psuchthat K; = KU {f;} and K, = K U {f,} are elliptic.
It follows that the edge r; terminates in two vertices A; and A, of M)
which are orthogonal to K; and K, respectively. Any element Rtz € r,
then has z2 > 0. It follows that (z, L) # 0 because L is a hyperbolic subset.

———

It follows that (L U K)* N M24) = (. Thus, M 24 has finite volume for
N = 45, 47 either.

A.4.2. Fundamental chambers Mf"“) of cases N = 7 (Table 2).

We use orthogonal basis h, vy, ..., vs of S ® Q where h? = 8,v2 = ... =
2
'Us = — 4.
Case 7a. As P(M®%), we can take f; = v; — vy, fo = vp — v3,
f3 = v3 — vy, fs = v4 —vs, f5 = v4 + V5 With square (—4) defining the root
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system Ds, and € = (—v; — v; — V3 — U4 + Us)/2 + h/4 with square (—2).
They define the diagram 7a. The Weyl group W = W(Ds) (generated by
reflections in fi,..., f5) is the semi-direct product of permutations of v;,
1 < i < 5, and linear maps v; — (£);v;, 1 <@ < 5, where [, (£):1 = 1,
see [Bou68]. It follows that W (e) consists of

€ilig..ix — (:1:’01 v + ’U5)/2 + h/4

where 1 < i; < i3 < --- < i < 5 show where the signs (—) are placed,
and k = 0 mod 2 (their number is 16 which is the number of exceptional
curves on non-singular del Pezzo surface of degree 4), e.g. we have e =
€1234.

Case 7b. As the basis of the root subsystem 24, & A3 C Dj, we take
fi=v1—vg, fo =01+ Vg, f3 = V3 — vy, fs = vy —vs, f5 = V4 + v5.
Only €134 = (—v1 —v2 —Us — Vs +Vs5)/2+ h/4, e1345 = (—v1 +v2 — V3 —
v4 — Us)/2 + h/4 (from the orbit W (e)) have non-negative pairing with this
basis. We obtain the diagram 7b of Table 2.

A.4.3. Fundamental chambers Mf"l) of cases N = 8 (Table 2).

We use the orthogonal basis h, vy,. .., vg over Q with A2 = 6,0} = - - =
v§ = —2. As root system Eg we can take (see [Bou68]) all roots +v; + v;
1 <1<3< 5)and:l:%(:tv1:l:vgiv3:l:v4:i:v5—vs—'v7+vg)
with even number of (—). I. e. Fg C Eg consists of all roots in Eg which
are orthogonal to roots vg — v7 and v; + vs (they define A;). We denote
W = W(Es), the Weyl group of Eg.

Case 8a. As P(M©?4), we can take f; = (v; — vy — U3 — Vg — Vs — Vg —
U7 +1)/2, fo = U1 + Vg, f3 = —V1 + Vo, fa = —Vy + U3, fs = —U3 + vy,
fe = —v4 + vs (with square —4) defining the basis of the root system Eg,
and

1 1 1 1

2 1 1
e= ——’U5+§’UG+§’U7—§’Ug+§h = —'U5+’U6—§(’U6—'U7)—§(U7+’U8)+§h'

(with square —2). They define the diagram 8a.
We have

2 1 1
W(e) = W(—'U5 + ’Us) - §(’U6 - U7) - g(’U7 + ’Ug) + gh

where W (—wvs+wsg) consists of all roots a of Eg with the properties: (o, vg—
v7) = —2 and (o, v7 + vg) = 0. Thus, W (e) consists of all elements

2 1 1
6¢i=:]:’l)i+'l)6—§(’l)6—'v7)—‘Z);('U7+'U8)+§h7 1S3S5a

ei1i2...ik =
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1 2 1 1
—2—(:t:'v1 + vy + vz vyt vs+vg— V7 +vg) — -é(vs—w) “§(U7+U8)+§h

where 1 < i) < --- < i, < 5 show where are (—),and k =1 mod 2;

2 1 1
€rg = —U7 + Ug — —3-(’06 — ’U7) — §(v7 —+ ’Ug) + §h

(Their number is 27, the number of lines on a non-singular cubic.)

Case 8b. As a basis of A5 & A; C Fg wecantake f; = (v —vy —v3 —
Vg — Vs — Ug — U7 + Vg)/2, fa = —v1 + Vg, fa = —Va + V3, fs = —v3+ 1y,
foe = —vg+vs and fr = (—v; — vy — V3 — Vg — U5 + Ug + V7 — Vg)/2. Only
€y = V1 + v — %(’Us—lh) - %(’U7+’Ug)+%hand65 = (’01 + vg + v3 +
Vs — Vs + Vg — Uz + Us) /2 — 2 (U — v7) — 3 (7 + vs) + }h have non-negative
pairing with this basis. They define the diagram 8b of Table 2.

Case 8c. As a basis of 34, C FEg we can take f; = (v; — vy — v3 —
Vg — Us — Vg — U7 + Vs)/2, f3 = —v1 + Vo fs = —U3 + vy, fo = —vs + vs;
f2 = U1 + Vo, f7 = (—’Ul — Ug — U3 — Uy — Us + Vg + U7 — ’Ug)/z. Only
€+3 = U3 + Vg — %(Ue — vy) — %(’07 + vg) + %h, es = (—v1 — vy +
Uz + Vg4 — Vs + Vg — ’U7+'Ug)/2— %('Uﬁ —-’07) - %(’U7+’U8) + %h, €y =
(v1 — Ve +v3+vg+vs+v—v7+0g) /2 — %(vﬁ——w) — %(v7+v8)+§h have
non-negative pairing with this basis. We obtain the diagram 8c of Table 2.

A.4.4. Fundamental chambers Mf ) ofcases N = 9

We use the orthogonal basis h, vy, ..., vs over Q with h? = 4, v2 = ... =
v = —2. As aroot system E; we can take (see [Bou68)) all roots +v; &+ Vj
(1 <i<j<6), £(vr—us), and £35(tv; v, vzt vyt vs L vg+v7—vs)
with even number of (—). I. e. E; C Eg consists of all roots in Fg which
are orthogonal to the root v7 + vg. We denote W = W (E7), the Weyl group
of E7.

Case 9a. As P(M©@%) we can take f; = (v; — vy — V3 — Ug — U5 — Vg —
v+ 18)/2, fo =1 + V2, fs = —v1 v, fa = —va s, fs = —v3 + vy,
fe = —v4 + vs, fr = —vs + ve (With square —4) defining the basis of the
root system E, and

e= 'U+1’U 1v +1h— v+v—1(v +’U)+1h
= U+ 5Ur — Vst 5h=—vs+vr— (v +vs) + 3

(with square —2). They define the diagram 9a of Table 2.

The orbit W (e) = W (—vg+v7) — 1(vr 4 vs) + 1 h where W (—vg +v7)
consists of all roots a in Fg with the property (o, v; + vg) = —2. It follows
that W (e) consists of

1 1 .
eﬂ7=:tvi+v7—§(v7+vg)+-2—h, 1<:L6;
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1 1
ei,-8=iv,-+vg—§(v7+v8)+§h, ISiSG;

1 1 1
€iy..iy = 5(:1:’()1 vt Evg+ vy +’Ug) - 5(’07 + ’Ug) + §h

where 1 <i4; < -+ < i < 6show (—) and £k = 0 mod 2. Their number
is 56, the number of exceptional curves on a non-singular del Pezzo surface
of degree 2.

Case 9b. As a basis of A; C E7 we can take fs = v7 — vs, f1, f3, fa,
f5, fe, f7. Only eg = (vi + v2 + - - + v + v7 + vs) — 3(v7 + vs) + 1A
and ez¢ have non-negative pairing with the basis. We obtain the diagram 9b
of Table 2.

Case 9¢. As a basis of A, ® A5 C FE; we can take fg = v7 — vg, f1 and
f2, fa, fs, fe, fr. Only e_;s, €16, €1456 have non-negative pairing with this
basis. We obtain the diagram 9c of Table 2.

Case 9d. As a basis of A3 & A; & A3 C FE; we can take fg =
v7 — Ug, f1, fs, and f5, and f5, fs, fr. Only e3s, €26, €12, €1256 have non-
negative pairing with this basis. We obtain the diagram 9d of Table 2.

Case 9e. As a basis of A; & Dg C E; we can take fg = v; — vg and
f2, f3, fa, f5, fe, fr. Only e_gg and €;2345¢ have non-negative pairing with
the basis. We obtain the diagram 9¢ of Table 2.

Case 9f. As abasis of D;®3A;, C E; we can take f5, f3, f4, fs and f7,
fs = v7—vs, fo = —v5—vg. Only e_43, €158, €1234, 2346 have non-negative
pairing with the basis. We obtain the diagram 9f of Table 2.

Case 9g. As a basis of 7A; C E7 we can take u; = vy +vp, us = —v; +
Vg, U3 = U3+ Uy, Ug = —V3+ Uy, Us = V5 + Vg, Ug = —Us + Vg, U7 = VU7 — Ug.
Ol’lly €928, €_48, €68, €2456> €2346> €1246> €123456 have non-negative pamng
with the basis. We obtain the digram 9g described in Section 3.4.4.

A.4.5. Fundamental chambers Mf 4) of cases N = 10

We use the orthogonal basis A, vy, ..., vg of SQQ withh? = 2,02 = ... =
v = —2. As aroot system Fg we can take (see [Bou68]) all roots +v; + v;
(1<i<j<8)and3(+v, £ vy £ - £ vg) with even number of (—). We
denote W = W (FE3), the Weyl group of Es.

Case 10a. As P(M2%) we can take f; = (v; — vy — v3 — Vg — Vs —
Ve —V7+1g)/2, fo = V1+U2, f3 = —U1+s, fa = —Va+vs, f5 = —Us+Uy,
fo = —v4 + vs, fr = —v5 + ve, fs = —ve + v7 (With square —4) defining
the basis of the root system Fg, and e = —v7 — vg + h. They define the
diagram 10a of Table 2.

The orbit W (e) = W(—v; — vs) + h where W (—v; — vg) consists of
all roots a in Fjg. It follows that W (e) consists of

ei,-,ij=j:v,~ivj+h, 1<i<j <8
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1
€i1..4 = E(ivl + Vg +.--% ’Ug) +h

where1 < i) < -+ < i < 8show (—)andk =0 mod 2. Their numberis
240, the number of exceptional curves on a non-singular del Pezzo surface
of degree 1. ,

Case 10b. As a basis of Ag C FEg we can take fi, f3, f4, f5, fe,
fr. fs, fo = —vr —vg. Only eqy 19, €0 = (v1 + - + 18)/2 + h, €67
have non-negative pairing with the basis. We obtain the diagram 10b of
Table 2.

Case 10c. As a basis of A; @ A7 C Eg we can take fi and fo, fa, f5, f»
f7, fs, fo = —v7 —vg. Only e_; 49, €_1 13, €13, €17, €1567 have non-negative
pairing with the basis. We obtain the diagram 10c of Table 2.

Case 10d. As a basis of A, @ A; @ A5 C Eg we can take f;, f3, and
f2’ and f5’ f67 f71 f8a f9 = —U7 — Us. Only €-1,-2, €-2,43, €43,44, €43,48>
€12, €27, €28, €1267 have non-negative pairing with the basis. We obtain the
diagram 10d of Table 2.

Case 10e. As a basis of A4 ® Ay C Eg we can take f;, f3, fi, f» and
fes f1, f8, fo = —vr—us. Only €_3 14, €14, 15, €14 48, €1237, €1238, €23 have
non-negative pairing with the basis. We obtain the diagram 10d of Table 2.

Case 10f. As a basis of Dg C Fs we can take fs, f3, f4, f5, f6, f7, fs»
fo = —v7 — vs. Only e_7 s, €234567 have non-negative pairing with the
basis. We obtain the diagram 10f of Table 2.

Case 10g. As a basis of D5 @ A3 C Fg we can take fi, fa2, fs, fa, [5
and f7, fs, fo = —v7 — vs. Only e_4 45, €45,46, €45,+8, €1234, €2348 have
non-negative pairing with the basis. We obtain the diagram 10g of Table 2.

Case 10h. As a basis of Fg @ A, C Fg we can take f1, fo, f3, fa, f5,
fe» and fg, and fo = —v7 — vg. Only e_5 16, €46,+7, €+6,+8> €123458 have
non-negative pairing with the basis. We obtain the diagram 10h of Table 2.

Case 10i. As a basis of F; & A; C Eg we can take f1, f2, f3, f1, f5,
fes f7, and fg = —v; — vg. Only e_g 47, €4+7.—s, €+7+8 have non-negative
pairing with the basis. We obtain the diagram 10i of Table 2.

Case 10j. As a basis of 24, ® Dg C Eg we can take f> and f3, and f5,
fes f1, fs, fo = —v7 — vs, fio = —v7 + vs. Only e_;,_3, €41,-2, €_2,43,
€+3,+4, €12, €23 have non-negative pairing with the basis. We obtain the
diagram 10j of Table 2.

Case 10k. As a basis of 2D, C Fg we can take f,, f3, fi, f5 and f7,
fa, fo = —v7 — vg, fio = —v7 + vs. Only e_3_4, €_4 45, €45 16, €1234,
e2348 have non-negative pairing with the basis. We obtain the diagram 10k
of Table 2.

Case 101. As a basis of 24, @ 2A; C Eg we can take f5; f3; fs, f6,

Ji1 = v3 + vy fo = —v7 — Ug, fs, fro = —vr +vs. Only e_; 5, €41 o,
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€—_2,—5, €_2,4+6, €—4,—5, €—5 46, 46,47, €123458, €1245, €2345, €2458 have non-
negative pairing with the basis. We obtain the diagram 101 of Table 2.

Case 10m. As a basis of 44, C Fg we can take fy, f3; fa, fio =
%(—’01 — Uy — U3 — Vg — Us + Vs + U7 — Ug); f5, fo; fa, fo = —v7 — s,
Only e_5 13, €13 14, €435, €43,46> €43,48> €46,48> €12, €1257> €1267 €25, €27,
ess have non-negative pairing with the basis. We obtain the diagram 10m of
Table 2.

Case 10n. As a basis of Dy @ 4A; C Eg we can take u; = v; + vy,
Uy = —U; + Vg, U3 = —VU3z+Vy, Ug = —VUg+ U3, U5 = U5+ Vg, Ug = —U5+ Vg,
u7; = —v7 + vg, ug = v7 + vg (this basis agrees with the one used in case
10n of Lemma 3.12 if one replaces f; by u;). Only e_3 _4, €4 6, €—4 -3,
€_5,—6> €+5,—6> €—6,—8> E—7,—8, €4+7,—8, €12345678, €123468> €234568> €234678 have
non-negative pairing with the basis. We obtain the diagram 10n of Figure
1.

Case 100. As a basis of 84; C Eg we can take u; = —v; + Vs, Ug =
V1 + Vg, Uz = —U3z + Vg, Ug = V3 + Vg, Us = —Us + Vg, Ug = Us + Vg,
u7 = —v7 + vg, ug = vy + vg. The set of indices I = 1, ..., 8 has the
structure of a 3-dimensional affine space over F; with (affine) planes J C I
determined by the property % ) jcaUj € Es. 1t is the same as the one used
in case 100 of Lemma 3.12. For i € I we set w; = e; _(;+1) if ¢ is odd, and
w; = e_(;—1),—; if 1 is even. Foraplane w C I we set w, = —% Zieﬂ u; + h.
The introduced elements w;, ¢ € I, and w,, @ C I is a plane, are the only
elements (from the orbit W (e)) which have non-negative pairing with the
basis. We obtain the graph 100 described in Section 3.4.4.

Case of 7A; C Eg. As a basis of 7TA; C Eg we can take uy, = vy + v,

U3 = —Usg + Uy, Ug = V3 + Uy, Us = —Us + Vg, U = U5 + Vg, U7 = —U7 + Us,
ug = vy + vg. We denote u; = —v; + v, (the roots tu, are the only roots of
Eg which are orthogonal to 7A; C Eg. The set of indices I = 1, ..., 8 has

the structure of a 3-dimensional affine space over F, with (affine) planes
J C I determined by the property %EjeJ uj € Eg. Taking 1 € I as an
origin, makes the set / to be a 3-dimensional vector space over F5. As in

the previous case, we define w; for ¢ € I, and w, for an affine plane 7 C I.

We set w§+) = w; = €41,-2 and 'wg_) = e_1,42. If 1 € m, we set w§,+) = Wy,

and w$™) = wy, + uy. The introduced elements w;, i € I — {1}, w§", w{™,

w, for planes 7 C I —{1}, and w$, wl for planes m C I containing 1 are

the only elements (from the orbit W (e)) which have non-negative pairing
with the basis. We obtain the graph described and used in Section 3.4.7
(cases 10n and 100).
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A.4.6. Fundamental chambers Mf"l) of cases N = 20

This case had been partly described (including cases 20a and 20b below)
at the end of Section 3.4.4; here we add further details of calculations for
readers’ convenience. We use the orthogonal basis h, a, vq,..., 13 0f SRQ
with h?2 = 2, a®? = v? = ... = v = —2. As aroot system Dg we can take
(see [Bou68]) all roots +v; +v; (1 <1 < j < 8). We denote W = W (D),
the Weyl group of Ds.

Case 20a. As P(M©24) we can take f; = v; — vy, fo = vy — V3,
fa=u3— vy fa =vs—vs, fs = vs — Vg, fo6 = Vs — U7, fr = U7 — s,
fs = v7 + vg (with square —4) defining the basis of the root system Dg, and
a, b= % —g-v,c=h- %(vl + vy + - - - + vg) (with square —2). They
define the diagram 20a of Table 2.

The orbit W (a) consists of only a; the orbit W (b) consists of all

biz':g—%ivi,lﬁiﬁ&

the orbit W(c) consists of all
1
Cirip, = R+ 5(:!:'01 + vy & - - - % vg)

where 1 < 4; < i3 < --- < i < 8 show where are (—), and kK = 0
mod 2. Thus, P(M®) has 1+ 2 - 8 + 27 = 81 elements. This is the num-
ber of exceptional curves on the right DPN surface with the main invariants
(r,a,6) = (10, 8, 1) and the zero root invariant. One of them (correspond-
ing to a) has square (—4), all other are (—1)-curves.

Case 20b. As abasis of 2A; @ Dg C Dg we can take fi; fo = —v; — vy
f3, fa5 f55 fe» f1, fs. Only a, bia, b_3, C134567, C3as67s have non-negative
pairing with the basis. We obtain the diagram 20b of Table 2.

Case 20c. As abasis of A3 D5 C Dg we cantake f, fa, fo = —v1—vy
and f4, fs, fe, f17, fs. Only a, bys, b_4, C145678, Cs567 have non-negative
pairing with the basis. We obtain the diagram 20c of Table 2.

Case 20d. As abasisof 2D, C Dg we can take fi, fo, f3, fo = —v1—12
and fs, fe, f7, fs. Only «, b4, b_s, c1567, Cs67s have non-negative pairing
with the basis. We obtain the diagram 20d of Table 2.

Case 20e. As a basis of 24, ®2A3 C Dg we can take fi; fo = —v; —vs;

f3, fa fro = —v3 — vg; fe, f1, fs. Only @, bya, bys, bs, Ci367, Ci1678, Ca67s,
ce7 have non-negative pairing with the basis. We obtain the diagram 20e of
Figure 2.

Case 20f. Asabasisof 4A; Dy C Dg we cantake fi; fo = vy +vo; f3;

Jio = vs+vg; f5, fo. fr, fs. Only o, b_y, b_3, b_s, 12345678, C123567, C134567>
135678 have non-negative pairing with the basis. We obtain the diagram 20f

of Figure 3.
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Case 20g. As a basis of 84; C Dg we can take u; = v; — Vg; U =
Uy + Vg; U3 = U3 — Ug; Ug = VU3 + VUg; Us = Us — Us; U = Us + Ue;
u7 = vy —Ug; ug = V7 +s. Only a, b_y, b_3, b_s, b_7, 1357, C135678, C134578,
C134567> C123578, C123567> C123457, C12345678 have non-negative pairing with the
basis. We obtain the diagram 20g of Figure 4.

Case 44, ® A3 C Dg. As a basis of 44; & A3 C Dg we can take
Uy =V — V2, Ug = —VU1 — Vg, U3 = U3 — Uy, Ug = —VU3 — Uyg; U5 = U5 — Ve,
Ug = —Us — Vg, U7 = Vg + V7. Only Q, b+2, b+4, b..7, b_s, b+8 and

1
Clunwiss) = 5 ((=1)"v; + v2 + (—1)"v3 + vg + (—1)"v5 + ve—

—v7 + (_1)(#1+#3+u5+1)U8) + h,

(p1, p3, ps) € (Z/2Z)3, have non-negative pairing with the basis. We ob-
tain the diagram which had been described in Case 20e of Section 3.4.7.

In a usual way, we identify (Z/2Z)3 with the set of vertices V(K of a 3-
dimensional cube K. Thus the last setis c,, v € V(K). Eachu;, 1 < i < 6,
defines a 2-dimensional face ; of the cube K which consists of c, such that
(ui, cy) = 2. Therefore, we further write u; = u.,, where -y; belongs to the
set 7(K) of 2-dimensional faces of K. The u; defines two distinguished
opposite faces s, 76 € 7(K) characterized by (us,u7) = (us,u7) = 2 (.
€. us, U7, ug define the component Aj).

We identify b_; with the pair {~s, 76} C v(K) of distinguished opposite
faces of K. We identify b, and b.4 with the pairs {v1,72} and {73, 74}
of opposite faces of K. Thus, we further numerate them as by, where ¥

belongs to the set y(K') of pairs of opposite 2-dimensional faces of K. We
have (uy,by) = 2if v € 7and 5 € v(K) is different from the pair of two
distinguished opposite faces of K; otherwise it is 0.

We can identify b_g (respectively b.s) with the four vertices C(u, us,us)
where p; + pu3z + ps + 1 = 0 mod 2 (respectively = 1 mod 2). Each of
these four vertices contains one vertex from any two opposite vertices of K,
no three of its vertices belong to a face of K. Thus, we can further denote
big by by where t belongs to the set V(K) of these two fours. We have
(cy,b:) = 2ifv € t € V(K). Otherwise, it is 0.

Case 7TA; C Ds. As a basis of 7TA; C Dg we can take u; = v; — v,
Uy = —V) — V2, U3 = V3 —VUy4; Ug = —VU3 — V4, Us = U5 — Vg; Ug = —Us — Vs,
U7 = VU7 — Us. Only Q, b+2, b+4, b+6, b_7, b+8 and

1 . . _
Chinis2) = 5 (=101 + w2 + (=105 + v + (=1 vt

+vg £ (vr +vg)) + h
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where j; = 1or2,1<i<3,and j; + j2 + j3 + (£2) =0 mod 2, and
1 : ) :
Cjrjojal = 5 ((—I)lel + vy + (—1)32’03 + v4 + (—1)33'05+
+vg —vr+vs) + h

where j; = lor2,1 <i<3,andj; +jo+j3+1 =0 mod 2, have
non-negative pairing with the basis. We obtain the diagram which had been
described in Case 20f,g of Section 3.4.7.

One can denote fi; = uy, fi2 = Uz, fo1 = U3, foz = U4, f31 = us,
f32 = ug, fa1 = uz, by = bio, by = byy, b3 = by, b4(—) = b_7, b4(+) = b,
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