CHAPTER 2. ANALYTIC PROPERTIES

DIFFERENTIABILITY AND MOMENTS

The cumulant generating function has several nice properties.
Among these are the fact that its defining expression may be differentiated
under the integral sign. In this manner one obtains the moments of X from
the derivatives of y.

One needs first to establish a simple bound.
2.1 Lemma

Let B = conhull {b; : i=1,...,I} < R*. Let C < B® be compact and

let b0 € C. Then there are constants Kz (depending on C,B) 2=0,1,... such th

. I b:ex
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Proof. Let € > 0. Note that there exists a K1 e <° such that
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Let {ei : i=1,...,k} denote the elementary (orthogonal) unit vectors in Rk.

Then
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where Ki

for all b € C.
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¢ = k(l_z)/zK . Choose € > 0 such that (b 1—€ei) € B, i=1,...

2,€

See Figure 2.1(1). By convexity

. ). bsex
e(bi€e1) X < max(e 1 ) ,

since X is convex in a € R® and (btee.) € B = conhull {b;}. Then
o K eeex -€€; X k  (b+ee;)-x

“xHIbe< ;Z'eebxz(e j +e 1 ) SK’;‘E E(e 1
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+ e( i) ) 2k K!' max(e ') < 2k Ki . Le 1
i=1

Figure 2.1(1):

B, C, and p;, = b +ee, for the proof of Lemma 2.1.
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This proves (1), with Ky = 2k Ki,e .

Note that (2) may also be written

b-bjy) - x
o) x 3 o(bi~ bo)ex
-1

< K
_ - 1
b bO

i
. . . bo'x

Hence it suffices to prove (2) in the case where b0 = 0, (so that e = 1)

and we make this assumption below. Note that re"-e"+1 > 0 and also that for

r<0 1-e" < |rl. Using the first inequality when bex > 0 and the second

when b.x < 0 yields

eb-x -1 eb-x -
[Tb[T IIX”' = ’ b-x
. max(b-xeb'x,glglxl)
= [bex] '
Hence
X ) bex ) by -x
[errer ] < 101+ lixl] < 2 e

by (1) since b€ C and 0 € C. ||

FORMULAS FOR MOMENTS

k
Let Qi > 0 be non-negative integers with % 21 = 2. Formal
i=1
calculation yields
L k 2.

(1) ‘?’g‘if A(e) = (T Xil)ee *u(dx)

T i=1

i=1
In particular
(2) wa(8) = rxe¥*u(dx)

These calculations are justified by the following theorem.

2.2 Theorem

Suppose 90 € N° . Then all derivatives of X and of y exist at
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Bg- They are given by the above expressions (1), (2) derived by formally
differentiating under the integral sign.
Proof. We prove only (2). (The proof of the general formula (1) is similar
and proceeds by induction on &. See Exercise 2.2.1.) Let eo € N°. Then
there is a B = conhu]l{ei: i=1,...,I1} =« N° and C = B®, C compact, with
eo € C°.
Let
B X Bn°x
X 07 (9-60) . xe 0
(3) d(e, x) =
e - 6g!!
By Lemma 2.1
6.‘-
(4) sup |d(8, x)| < 2K1 ve
0€C
Also
(5) |d(6, x)|] -+ O as 6 > 8
. B X
since ve® X|9=e = xe O . Hence
0
fd(e, x)v(dx) -» 0 as 8 -6,
by the dominated convergence theorem, so that
89" X
A(e) - A(eo) - (8 - eo) - /xe v(dx)
(6) - 0,
116 - 6yl 629,
which proves (1). I
Theorem 2.2 immediately yields the following fundamental formulae.
k 2%f
For f : R* > R introduce the notation sz for the kxk matrix (,()x X )
LRN
An alternate expression is V'Vf since V' converts each element of the (column)
vector %;— into the row vector (a(g?(i)/axj : j=1,...,k), and hence sz = V'Vf.
i i

2.3 Corollary

Consider a standard exponential family. Let 6 € N°. Then
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(1) Ee(X) = vy(e)
(2) cov, X = Dz¢(e) = v'vy(e)

Notation. In the sequel we frequently use the notation

(1) £(6) = wp(e) = Ey(X)
and
(2') 7(8) = Do) = z,(X)

Proof. Calculating formally,

rxe®"%u(dx)/re® *u(dx)

]

vy(6)

= Ee(X) .

The calculation is justified by Theorem 2.2. This proves (2). The proof of

(1) is similar. I

2.4 Examples

The reader is invited to use Corollary 2.3 to calculate the
familiar formulae for mean and variance in the classic exponential families
such as (univariate) normal, multinomial, Poisson, gamma, negative binomial, etc..

For the multivariate normal distribution Corollary 2.3 provides a
benefit in the reverse direction. Let Y be m-variate normal (u, %), as in
Example 1.14. Fix u = 0. Direct calculation (not using Corollary 2.3)

yields the familiar result

(1 BV Yy) = oy = (@7hyy = -6’

when p = 0, where Qfl = (613). Calculation using Corollary 2.3 and the

formula 1.14(3) for the cumulant generating function thus yields for i # j

(2) 3 1 = ij
aTiJT(‘/z)‘°9|'Q| = -6/(1+ 6
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since the corresponding canonical statistics are Yin/(l + Gij)' Let

B = -Q. Then (2) shows that for any positive definite symmetric matrix, B,

a Py
(3) g5 ToglBl = 2/(1+6;;) where B

1)

-1

(b')
Hence, also,

3 _ onid
(4) o, IBI = 2b IBI/(1+6].J-) . [

The convexity of ¥ together with Theorem 2.2 yields the

following useful result.

2.5 Corollary

Let 91,92 € N°. Then
(1) (87 - 8,) - (g(oy) - £(6,)) > 0
Equality holds in (1) if and only if Py = Py . Consequently g(el) = 5(62)
1 2
if and only if Pe = Pe . (If {pe} is minimal this happens only when
1 2
61 = 82.)
Proof. Y is convex. Hence the directional derivative of ¥ in direction
61 - 82 is non-decreasing as one moves along the 1line from 62 to 61.

That is,
(2) (67 = 0,) = Vu(o, + 00, - 0,)) = (6, - 6,) + £(6, *+ o(6; - 6,))

is non-decreasing in p. This yields (1).

If Pe # Pe then  is strictly convex on the line joining 6, and
1 2

8- Hence (2) s strictly increasing for p € (0,1). This yields the

2

remaining assertions of the corollary. (The parenthetical assertion is

contained in Theorem 1.13.) [

The final corollary to Theorem 2.2 establishes the possibility of
differentiating inside the integral sign for expectations involving exponential

families. The result is stated only for real valued statistics, but obviously
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generalizes to higher dimensional statistics.

2.6 Corollary
Let T : Rk + R. Let

(1) N(T) = (6 : £]T(x)]e® %u(dx) < w}
Then N(T) is convex. Define
(2) h(e) = ST(x)e® *u(dx) = e“’(e)ze(T(x))

for 6 € N(T). Then all derivatives of h exist at every 6 € N°(T), and they

may be computed under the integral sign. In particular
(3) VEg(T(X)) = J(x - £(8))T(x)exp(6-x - ¥(6))v(dx)

Proof. Suppose T(x) > 0. Applying Theorem 2.2 to the measure
w(dx) = T(x)v(dx) yields the desired results. For general T the corollary

follows upon using the above to separately treat T and 1. |

Note that if T and ITl_.| are bounded then N(T) D N.

ANALYTICITY

The moment generating function is analytic. This fact is implicit
in the proof of Theorem 2.2. As a preliminary we extend the definition of A

and ¢ to the complex domain.

Let

A C-~TC
be defined by the same expression as previously, i.e.
(1) A(6) = sexp(® + x)v(dx)

For 6 € Gk let Re 6 denote the vector with coordinates

(Re B15--sRe 8,). Note that for x € rK

(2) |ee'Xl - e(Re e)'X
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Hence A(B) exists for Re 6 € N .

2.7 Theorem

x(8) is analytic on {6 € Gk : Re 8 € N°} .

Proof. Lemma 2.1 (and its proof) apply for b € ck, x € Rk. Similarly the
proof of Theorem 2.2(2) is valid verbatim for 6 € Ek. Thus VA(8) exists for
Re & € N° (and has the expression 2.2(2)). This implies that X is analytic

on this domain. I

Two important properties of analytic functions are: (i) they can be
expanded in a Taylor series; and (ii) they are analytic in each variable
separately. Thus, for a fixed value of (6,,...,8,), A((*.6,....,6,)) is
analytic. A((-,ez,...,ek)) is determined by its values on any subset having

an accumulation point. This is the basis for the following result.

2.8 Lemma

let T : Rk + R, and let

(1) h(8) = IST(x)e®*v(dx), for Re 8 € N(T), as defined in 2.6(1).

k

Then h is analytic on {6 € L" : Re 6 € N°(T)}.

Let L be a 1ine in Rk, and Tet B <L n N(T) be any subset of

L n N(T) having an accumulation point in N°(T). Then
(2) h(sg) = 0 V6O EB
implies h(8) = 0 for all 6 € Rk such that 6 € L n N°(T).

Proof. The first assertion follows upon applying Theorem 2.7 to T+(x)v(dx),
and T (x)v(dx).
Next, one may apply linked affine transformations as in Proposition

1.6. Because of this it suffices to consider the case where

L=1{0¢€RE: 6, ... =6, =0l h((6;,0,...,0)) is an analytic function of

61 € C, as already noted. Hence (2) implies h(8,0,..,0) = 0 on its domain of

analyticity, which is {(6,0,...,0) : Re 9 € L n N°(T)}. This proves the
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analyticity, which is {(6,0,...,0): Re® €L nN°(T)}. This proves the second
assertion. [

Note that, more generally, if B is as above then the values of h on B
uniquely determine by analytic continuation its value on all of L N N°(T).

(Straight 1ines play a special role in the above lemma. However we
note that there is a valid generalization of the above lemma in which L can be
replaced by a suitable one dimensional curve determined as the locus of points
satisfying (n - 1) simultaneous analytic equations (C. Earle (1980), personal
communication). For example L may be taken to be the curve

2 2 _ _ _ _
Xptx; = 1, X3 = eee =X = 0.)

2.9 Example

A question which arises, in statistical estimation theory, is whether
the positive part James-Stein estimator for an unknown normal mean,

s(x) = (1 - (k-2)|1x]1"2*x,  x € RrK,

can possibly be generalized Bayes for squared error loss. This is equivalent
to asking whether §(+) can be the gradient of a cumulant generating function
for some measure v(de) having N = Rk. (Note interchange of roles of 6 and x.)
See Theorem 4.16. The answer is, "No." To see this note that §(x) = 0 for
[1x[| < 1. Hence if 6(x) = vy(x) = va(x)/a(x) for ||x|| < 1 it follows by

analyticity that y(x) = 0 on its domain of analyticity, which in this case is

RK. This implies 6(x) = 0, a contradiction. I

2.10 Example

The question arises in the theory of hypothesis tests as to whether
the unit square,
S = (x €R : Ix; <11, k> 2,
can be a Bayes acceptance region for testing the mean of a normal distribution.
Placed in a general context, the question is whether there exist two distinct
non-zero finite measures G0 and G1 (concentrated on disjoint sets 99 and

0, < Rk) such that
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2
(1) d(x) = se® /26 (do) - 6 (do)) > 0 if x €5,

and d(x) < 0 if x € S. The answer is, "No."

2
Proof.  Let . (de) = e™® /%.(ds), 1 = 0,1. Then d(x) = 2g(x) = A7(x)

where A is the moment generating function of My Note that Nu = Rk, i=0,1.

i
Hence d(-) is analytic on Rk.

For convenience consider only the case k = 2. Expand d in a Taylor
series about (1,1) as
o i .

d((1, 1) + (yq5 ¥,)) =
1> %2 120 jf

Jj i-2
o 3»i-3 Y12

(agg = 0 since d((1, 1)) = 0.) Let i' be the smallest index for which

r la; .1 5] > 0. 1i' exists since d #Z 0 if (1) is valid.
1 -
j=0 J,1°-J
Suppose i' is even. Then for y, >0, i = 1,2,
i' j .il J' i. ( )j )i' j
(2) Eoa; syl V= onoa o ey ) -yt
j:o Js1 J .l 2 ‘]-=0 Js1 J ] 2

There are values (y1, yz) in the first quadrant for which (2) # 0, since (2)

is a non-zero homogeneous polynomial. Suppose (y?, yg) is such a value. Then

. i s .
|p|-1 d((]; ])) + (py?, Dyg)) = J'EO ai|’.i|_j(y(]))‘](.y(2))1 =J + O(Q)

c+olp) as |p| >0

with ¢ # 0. If c > 0 it follows that d((1, 1)) + (py?, oyg)) >0 forp>0
sufficiently small; and this would contradict (1). If c < 0 it follows that
d((1, 1) + (py?, pyg)) < 0 for p < 0 sufficiently small; and this would also
contradict (1).

If i' is odd analogous reasoning yields
Hyl7 d0, 1)+ (ygs =yp)) = HyHTH a0, 1) + (ygs ¥,)) + 0(1)
as ||y|| ~ 0, and that there are values of (y?, -yg) > 0 for which

Tim ||y||'i'd((1, 1) + p(y?, -yg)) # 0. It follows that there are values of
p+0
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y in either the fourth quadrant or the second quadrant for which
d((1, 1) +y) > 0. This again contradicts (1).

Hence (1) is impossible. [
COMPLETENESS

2.11 Remarks
A family {Fe : 6 € 0} of probability distributions (or their
associated densities, if these exist) is called statistically complete if

T: R 5 R with

(1) JT(x)Fg(dx) = 0 V68 EOD
implies
(2) T(x) = 0 a.e. (Fe) LACIC)

(Implicit in (1) is the condition that f]T(x)lFe(dx) <o VBOEO.)

Standard exponential families are complete if the parameter space
is large enough. This result, which is equivalent to the uniqueness theorem for
Laplace transforms, is proved in Theorem 2.12. (The uniqueness theorem for
Laplace transforms states that if N; n N; # ¢ then Au = A, if and only if
U = v.) The most convenient way to prove this theorem seems to be to invoke
the uniqueness theorem for Fourier-Stieltjes transforms (equals characteristic
functions) which is described in the next paragraph.

Let Im = {bi € € : b € R} denote the pure imaginary numbers. Let F

be a finite (non-negative) measure on Rk. The function k : Rk + € defined by

<p(b) = Ac(bi) b € rR¥

is the Fourier-Stieltjes transform (or, Fourier transform, or, characteristic
funetion) of F. Hence AF restricted to the domain (Im)k is equivalent to k.
Note that . always exists (i.e. Re((Im)k) = 0 < N). The uniqueness theorem

for Fourier transforms is as follows.

Theorem. Let F and G be two finite non-negative measures on Rk. Then F = G
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k

if and only if KE = Kg (i.e. AF(bi) = AG(bi) v b €R").

Proof. This is a standard result in the theory of characteristic functions.
Proofs abound. A quick proof may be found in Feller (1966, XV,3). (This
proof is explicitly for R, but generalizes immediately to Rk.) I

Here is the classic result on completeness of exponential families.

2.12 Theorem
Let {pe}: 6 € 0} be a standard exponential family. Suppose

@° # ¢. Then {pe} is complete.

Proof. Let 00 € 0. One may translate coordinates using Proposition 1.6 so

that 60 = 0. There is thus no loss of generality in assuming eo = 0.

Suppose fT(x)pe(x)v(dx) =0Ve €0. Then, letting T = o1,

(1) IT+(x)ee.xv(dx) = fT-(x)ee°Xv(dx) Y 6 €0

Let F(dx) = 77 (x)v(dx), G(dx) = T (x)v(dx). Then (1) becomes

(2) Ap(e) = o8 XF(dx) = re%%a(dx) = rg(8) vV e€o

Both AF(-) and AG(-) are analytic on the domain 0° x (Im)k.

(2) states that
they agree on @ x 0 € 0 x (Im)k. Hence AF(x) = AG(z) for all z such that

re z €0° . (This follows directly from analyticity. Alternately one may
apply the second half of Lemma 2.8 to all lines which intersect @ .) In

particular

(3) Ap(0 + bi) = A0 + bi) v b €RK

since 0 € 0°. Thus, F = G by Theorem 2.11. This says that
TH(x)v(dx) = T (x)v(dx), which implies T' = T~ a.e.(v), which implies

T=0 a.e.(v). Hence {pe} is complete. [

Note from the above that any canonical family is complete.

From this we derive:
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2.13 Corollary

A standard family with N® # ¢ is uniquely determined by its Laplace
transform (or by its cumulant generating function).
Note that the corollary applies to all minimal families since they

always have N° # ¢.

Proof. Consider the standard families in Rk generated by the measures u
o = = =
and v. Suppose Nu # ¢ and wu =V, Then Nu Nv N.
Let w = (u *+ v)/2. Then, w generates an exponential family with

Ay = (Au + kv)/2. Hence M» = N and v, = wu =Y,

Let T = du _dv . Then

do  dw
0+ x-,,(6) 1., 8x-v (8) 8-x-y (8)
IT(x)e O w(dx) = () (e Yo u(dr) - e v(dx))
=1-2=0 vV BEN

Hence T = 0 a.e.(w) by Theorem 2.12; which implies u = v. |

Theorem 2.12 has many other important applications in statistics.
It plays an important role, for example, in the theory of unbiased estimates
and in the construction of unbiased tests. Some aspects of this role are

described in the exercises and in succeeding chapters.

MUTUAL INDEPENDENCE

Lehamnn (1959, p. 162-163) describes a nice proof of the
independence of X, 52 in a normal sample. A different but related proof
is a special instance of an argument which applies in several important
exponential families. (See Example 2.15.) The basic parts of the
argument are due to Neyman (1938) and Basu (1955), but the full result in
Theorem 2.14, below, was only recently proved by Bar-Lev (1983) and
by Barndorff-Nielsen and Blaesild (1983). The proof below follows
that in the second of these papers. See the exercises for an additional
related result of Bar-Lev and for several applications of this theorem.

Through most of this subsection we consider the situation where
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8 and x are, respectively, partitioned as 68' = (961)’ 982))’ x' = (le), xiz)).
As in Sections 1.7 and 1.15, problems not in this form can sometimes be

reduced to this form through use of linked linear transformations on 6 and x.
Where convenient, we write y(9) = w(e(l), 6(2)). We use the notation

Y ~ Expf (6) to mean that the distributions of Y form a standard exponential
family with natural parameter 6. We also use the notation X L Y to mean that X

and Y are independent.

2.14 Theorem
Let X ~ Expf (8) with 6° € 0°. Let X' = (le), xzz)) where X(;) is

ki dimensional, and let h(X(l)) be a k2 aimensional statistic. Let

01(6(1), 6(2)) = Tlog E, (exp((e(l) - ezl)) . X(l)

(1) + (9(2) = 922)) * h(x(l))))

02(6(2)) = log Ee (eXp((e(z) - 922)) . (X(Z) - h(X(l)))) .

Then the following conditions are equivalent:

(2) X1y + &gy - h(x(y))) under e°

(2") Xy L (Kgy - hX(qy))  forall 6 €0

(3) W61y 8p)) = p1(B(1ys B(p)) *ep(B5)) v G €0

(4) (X(2y = hX(q))~ Expf (85))

%) (1) bk~ B@F(0q)> B(z))

Proof. For convenience, assume without loss of generality that 6° = 0.

(See Proposition 1.6.) Let w denote the joint distribution under 0 of
= - . i the standard exponential famil
v (X(l)’ h(X(l)), X(2) h(X(l))) Consider the s p %

generated by w, with natural parameter space NV’ Note that, in general,
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{X(l) 1 (X(Z) - h(X(l)))} ® {(X(l)’ h(X(l))) 1 (X(2) - h(X<1)))} . The

equivalence of (2) and (2') is seen in this fashion to be a special case of
Exercise 1.7.1.

(2) = (3) follows from a direct calculation.

(3) = (2): Let w) denote the distribution under 6° = 0 of

(V(l)’ V(Z)) = (X(l)’ h(X(l))) and w, that of V(3) = X(l) - h(X(l))'

Let w* = Wy X Wy Then the cumulant generating function y* of w* satisfies

@) 02) B2) T P18y Oz)) *ealO(z))s (8g)n 8p)) €O

Furthermore, the cumulant generating function of the linear function

(V(l)’ V(2) + V(3)) is Y** given by
V() B(z)) = VHB(g)s B(p)s 8(2)) = 0(B(q)s B(g)) 0(8(5))

w(e(l), 9(2)) , B €O
It follows from Corollary 2.13, since 0° # ¢, that (V(1), Vi) * V(3)) has
the same distribution under 6° as (X 1ys X(5y). Thus (X 1)s Xy = h(X(1)))
has the same joint distribution under 8° as (V(1), V(p) * V(gy - h(V(qy)).
But, Vip) * Vigy - h(V(py) = V(3). Hence X1y L (X(5y = h(X1))) under 6°
since V() L V(3

(2) = (4) and (5), as can be seen by direct calculation of the
marginal distributions involved via the standard formulae (6) and (8), below.
(4) = (2): The marginal density of V(3) = X(2) - h(X(l)) relative

to the marginal distribution w, is

(6) qe(v(3)) = fEXP(e(l) . V(l) + 9(2) . h(V(l))

+ 9(2) T V(3) " w(e)) w(dv(l) | v(3)) (a.e.)

where w(+|+) denotes the indicated conditional distribution. By (4)

qe(v(3))= exp(e(z)v(3) - pz(e(z))) (a.e.). Setting 6(2) = 0 yields
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(1) exp(w(6q)s 0) = 0,(0))

= fexp(e(l) . V(l)) w(dv(l)lv(3)) , (9(1), 0) eo, (a.e.) .

Here the Laplace transform of w(e

v(3)) exists on an open set and is indepen-
dent of v(3) (a.e.). It follows from another application of Corollary 2.13
that w(-

v(3)) is independent of V(3) (a.e.). So, V(l) is independent of V(3).
This verifies (2).

The proof that (5) = (2) is similar. The marginal joint density of
Vioiyvs V i
(1) '(2)

(8)  aglviyys V(g)) = Lexp(8(q) * Vi) *8(p) * v+ 85 * V(3

- 9(0)) w'(dV(3)|V(1)) (a.e.)
Setting 0(1) = 0 and cancelling terms in (5) implies
exp(y(0, 9(2)) - p(0, 6(2))) = fexp(e(z) . v(3)) w‘(dv(3)lv(1)) (a.e.).

Hence, as before w'(-[v(l)) is independent of v( (a.e.), which yields (2). ||

1)

2.15 Examples
(i) Let Y]""’Yn be independent N(u,oz) variables. Then (Example

1.12) (V,, ) & Expf(u/o?, -1/26%). Hence (xY,, 15) » Expf(u/a2, -1/25%).

1

Also (zVY., (zYi)z/n) W Expf(u/oz, -1/202). This verifies 2.14(5). Hence
2, - 2¥/m = B(Y,- 7)% ~ Expf(-1/20°) and is independent of T by 2.14(4)

and 2.14(2').

~ e N =

(i1) Similarly, let Xl""’xn be independent T'(a, o). Then
(Example 1.12) r(in, z In Xi) ~ Expf(-1/0, na). The marginal distribution
of X is also (na, o); hence (in’ 1n ZXi) ~ Expf(-1/0, na). Again,

Theorem 2.14 yields that (Z1n Xi - 1n ZXi) L in‘ This is often re-expressed

1/n

oo ~ n '
in the form X/X L X where here X = ( 1 Xi) denotes the geometric mean of

i=1
the observations. Also, 1n(X/X) ~ Expf(na). See the Exercises for a double
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extension of this conclusion.

There are further applications of this theorem. For some of these
see the exercises and the references cited above. In particular there are
several applications to problems involving the inverse Gaussian

distribution. See Chapter 3.

CONTINUITY THEOREM

The continuity theorem for Laplace transforms refers to the limiting
behavior of a sequence of measures and the associated Laplace transforms.

We first need a standard definition and some related remarks.

2.16 Definition

Consider Rk. Let C denote the space of continuous (real-valued)
functions on Rk. Let C0 < C denote the subspace of continuous functions with
compact support -- i.e.

c(x) = 0 for 1IxIl >r, some r <

A (non-negative) measure v is called locally finite if
v({x : lIxlIl <r}) <oV r €R. Except where specifically noted, all measures
are assumed to be locally finite, o-finite, and non-negative. Let {vn} be a

sequence of measures. We say

v, >V (weak*) if

(1) I C(X)vn(dx) - fc{x)v(dx) VecEC,

Here are several important facts concerning weak* convergence.

For v finite let Vv denote the cumulative distribution function:

Vv(t) = v({x : X5 < tos i=1,...,k}).

(i) Then v, >V if and only if

(2) v, (t) - Vv (t) Vte Rk at which V (+) is continuous.
n v N

k

(i1) Suppose v, > V. Then 1lim inf vn(R ) 3_v(Rk). Suppose there

N>
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isac€cC, c >0, with

(3) lim c(x) = o
1Ix] [0
such that
(3") 1im sup fc(x)vn(dx) <®
n-o

Then

(4) limv.(RY) = vRK) < w
N->c0 n

(ii1) Furthermore, (4) implies

(5) fC(x)vn(dx) + fe(x)v(dx)

for all bounded ¢ € C. (Condition (3), (3') is sometimes referred to by saying

the sequence is tight.)

(iv) 1If Vi > 0 is any bounded sequence (i.e. 71im sup vn(Rk) < )
N-xc0

then there is a subsequence {vn_} and a finite measure v such that v, -»v .
i i

For a proof of these facts see Neveu (1965).

2.17 Theorem
Let S < Rk and let B = conhull S. Suppose B® # ¢. Let v be a
sequence of measures on Rk such that

(1) liminf supx_ (b) < » v beS.
nxo beS n

Let b0 € B°. Then there exists a subsequence {ni} and a locally

finite measure v such that

(2) eDo X v, (dx) - eP0"Xy(dx)
1

and

(3) A"n (b) - )\v(b) v b €B°

The convergence in (3) is uniform on compact subsets of B,
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(Condition (3) is of course equivalent to

wvn.(b) > wv(b) v b € B°
i

Condition (1) implies the measures v, are locally finite.)

Remark. Lemma 2.1 together with (3) shows that

bex vn-(dx) > fxeb'xv(dx), b € B° ,

i

(4) Ixe
and similarly for higher moments of x. Hence

(5) van.(b) > vxv(b), b € B®
1

and similarly for higher order partial derivatives of A. See Exercise 2.17.1.

Similar reasoning also shows that

(6) Py (o) - e®Pu(de) weak* v b By
i

Hence the measure v in (2) does not depend on the choice of b0 € B0 .

Proof. We exploit Proposition 1.6 and assume without loss of generality

0 € B°. It also suffices to assume that B is a convex polytope

that b0

(i.e. B = conhull {bi : i=1,...,m}) since the interior of any convex set is a

countable union of such polytopes, and a compact subset of the interior will be
contained in one of them.

Now,

m b.-x
lim sge! =
FIXT =0 i=1

by Lemma 2.1. Thus, for some subsequence {nj}

moy..
(7) Tim sup f( ¢ Pi7X

)\)nl(dx) < o s
Nesoo i j

1 J

by (1). Hence, the sequence {vn.} is tight, and there exists a further
J

subsequence {vn.} and a limiting measure v such that V. TV This immediately
i i

bex b.

implies that also e®™, (dx) » e®*Xy(dx) for any b € RK.

1
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o : b-i'X bex
Let b € B°. Then 1lim (Ze /e” ") = o, again by Lemma 2.1.

[ 1x] =00
As in (7)
Zebi.x b
1im sup S e X dx) < e.
msup S vni( )

Hence the sequence eb'xvn (dx) is also tight. This implies
i

feb°xvn.(dx) > feb'xv(dx), which yields (3).
i
Let C = B® be compact. Then

[[x[1e2* < kzel

by Lemma 2.1. This yields

I~

M hsex
lim sup sup [[VA, (b)]] Timsup Ksze ! v (dx)
jro0 beC ni i i=1 n'i

m
Tim sup K ¢ A(bi) <

oo i=1

In

The functions A, (+) are thus uniformly (in {"i}) uniformly continuous on C.
n.
i

The convergence in (3) is therefore uniform on C. [

2.18 Uniform Convergence

Theorem 2.17 shows that if

N (b) > wx(b) for all b eB®#¢ then v; >V
i

There is a useful uniform version of this statement. Let

(1) vyp # 1=lheesa €A}

be a family of sequences of measures and {va : o € A} be a family of measures.

A1l of these are assumed locally finite. We say

> weak*) uniformly in a
Van * Y (weak*) uniformly

when for each c € CO
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(2) Se(x)vy(dx) > Je(x)v (dx)

v
n->e o
uniformly over oo € A. For notational convenience in the following, let

Va = Vva, etc.

Proposition. Suppose the family of cumulative distribution functions

k

{Va: a € A} is equicontinuous at every x € R°. Then Van Ve uniformly in

o if and only if

(3) Ven > Yy uniformly for a €A

Proof. The necessity of (3) is proved by applying (2) to continuous

functions ¢ satisfying

1 X: < Xps = & for all i=1,...,k

i—"0i
c(x) =

0 xi > in

+6 for some i=1,...,k
and then choosing § sufficiently small.

Conversely, (3) implies Sg(x)d(V_ (x) - Va(x)) =

on

f(van(x) - Va(x))dg(x) > 0 uniformly in o for each differentiable g € C0 .
If ceCyjande >0 there is a differentiable g € C0 with |g - cl < e . Then

[f(c(x) - g(x)) d(Van(x) - Vu(x))l < 2¢ uniformly for all o € A and all n.

Combining these facts yields the uniform convergence of Yan to Vo [

Extra care in the proof of the above proposition will show that if
the {Va : a € A} are equicontinuous uniformly over x € S and Van = Va

uniformly in a then (3) holds uniformly for a € A, x € S.

2.19 Theorem

Let {van} and {va} be as in 2.18(1). Suppose B = conhull S,

\Y

and B° # ¢. Let Ay = A, » etc. Suppose
[0

(1) A (b) - a(b) v bes

N->co

uniformly over o € A, and suppose
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(2) sup sup Aa(b) <
beS «a

Then Van ~ Va uniformly over a € A,

Proof. If Van » Yy uniformly over o € A, there is a c € C0 and a sequence

o such that

(3) lim |/c(® (de)-v_ (de > 0
Him [ fe( )(v“n“ Y )|

In view of (3) there exists a subsequence n, and Timiting measures

* * i 1 = = o
v} # Vo such that if we write v“n ni w; and van w; then
i i
*
(4) Wi > V] Awi(b) -> Av;(b) s b€B ;
and
(5) ;> v; . A&i(b) - Av;(b) beB |,

by Theorem 2.17. (To establish (4) we exploit (2) to guarantee condition 2.17(1)

for the sequence {wn 1)
i

Assumption (1) implies Av*(b) = AV*(b), b € B, which implies
1 2

v{ = v; . This is a contradiction. It follows that Van * Y uniformly over

a € A. |

TOTAL POSITIVITY

2.20 Definitions

let S=cRand h : S>R . Let {x0<...<xn} < S. The sequence
{xi €S : i=0,1,...,n} is called a strictly changing sequence for h having

order n if

(1) (sgn h(x;_{))(sgn h(x,)) = -1 i=1,...,n
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The number S™(h) -- the number of strict sign changes of h -- is the maximal
order of a sequence of strict sign changes of h. Clearly 0 5_5'(h) <o
Let S(h) = n < = and let {xi €S : 1i=0,...,n} be a strictly changing sequence

for h having order n. Then the (strict) initial sign of h is
(2) IS"(h) = sgn h(x,)

(It is easy to check that this definition is well-formulated -- i.e. does not
depend on the chosen strictly changing sequence for h.)
Similarly a sequence {Xi €S :i=0,...,n} is called a weakly

changing sequence for h having order n if

(3) (sgn h(xp;))(sgn h(xy;,4)) < 0

for i=0,...,[n/2], j=0,...,[(n-1)/2]

This means that zeros of the sequence {sgn h(xi) : i=0,1,...,n} can be
reassigned as either a (+1) or a (-1) in a manner so that the resulting
sequence of 1's alternates in sign.  The number S+(h) is the maximal order

of such a sequence. Clearly, 0 §_S+(h) < o, and
(4) s'(h) > s (h)

Let S+(h) =n < »and let {Xi €S :1i=0,...,n} be a weakly changing sequence

for h of order n. Then

.) >0 for some i=0,...,[n/2]
(5) IS(h) = 0 if h(x;) =0 i=0,...,n

21.) <0 for some i=0,...,[n/2]
It can be checked that this definition is well formulated.

2.21 Theorem
Let {pe} be a standard one parameter exponential family. Let

g : R> R such that vi{x : g(x) # 0} >0 . Let



ANALYTIC PROPERTIES 55

(1) h(e) = Egla(x)) , 6 € N°(g)
Then
(2) s'h) < s7(q)

If equality holds in (2) then

(3) 1s'(h) = 187(q)

Remark. The domain of h in (1) is restricted to N°(g). The theorem remains
true if the domain of h is all of N(g). We leave this generalization as an
exercise.

The sign-change-preserving properties (2), (3) are equivalent to
"Total Positivity of {pe} of order =." Karlin (1968) is a very useful,
standard reference on this topic. See also Brown, Johnstone, and MacGibbon
(1981).
Proof. Let

a(e) = feexg(x)dx = ew(e)h(e)

It suffices to prove § has the properties of h in (2), (3). The proof is by
induction on n = S"(g). Assume without lToss of generality that IS (g) = +1.
When n = 0 the result is trivial since then g > 0 and
v({x : g(x) > 0}) > 0 so that §(6) >0 for all 8 € N(h), as claimed in (2).

Assume the theorem is true for n < N. Suppose n = N + 1. Let

g, = inf{x : g(x) < 0}. £ > -= since IS (g) = +1. Let

ue) = G (ei5(0)) = s(x - £g(x)ev(dx)

Now, S ((x - E])g(x)).g N =n -1, as can easily be checked from the definition
of £ Hence S+(u) < N by the induction hypothesis. Integration yields that

S+(U)_§ N + 1 where

~

(4) ue) = Purt)dt = 518 g(e)

(2) follows from (4). (3) may be verified by concentrating the above argument

on the case where S+(u) = N and S+(U) = N+ 1, and using the induction hypothesis
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to keep track of IS+(u) and consequently of IS+(U). [

The above property for n = 1 is equivalent to the strict monotone

likelihood ratio property. The following is an important consequence of this.

2.22 Corollary

Let {pe} be a standard one parameter exponential family. Suppose
g : R > R is non-decreasing and not essentially a constant (v). Then Ee(g)

is strictly increasing on N°(g).

(Remark. Again, the result is true on the full domain, N(g), but we leave

verification of this as an exercise.)

Proof. Let ess inf g(+) < c < ess sup g(+); then g(+) - c satisfies the
hypotheses of Theorem 2.21 with S (g-c) = 1. Hence Ee(g) -¢c>0 (or < 0)
for 8 € N°(g) whenever 6 > el(c) (whenever 6 < el(c)). It follows thatg is

strictly increasing on N°(g). [

It is possible to derive from the above some results concerning
sign changes for multidimensional families. In general, these results appear
very weak by comparison with their univariate cousins. Here is an example of

such a result which will be useful later.

2.23 Corollary

Let {pe} be a standard k parameter exponential family. Let

eo € Nand v € Rk. Let ep =0y * ov. Suppose ¢ : Rk -+ R satisfies

In
o
<

.
>
A
Q

g(x)
(1)

for some o € R. Let

h(p) = E, (a(X))

Then s*(h) < 1. 1f s*(h) = 1 then 1s(h) = -1.
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Proof. Apply Theorem 2.22 to the one parameter exponential family {pe }
o)
of densities of veX. Observe that
Eg (g(x)|vex =t) = g*(t)
p

is independent of p by Theorem 1.7, and (1) guarantees that S (g*) < 1.

These observations enable the desired application of the theorem. |

PARTIAL ORDER PROPERTIES

The preceding multidimensional result is not very satisfactory; the
hypotheses on h are too restrictive. Better results may be obtained by
considering partial orderings and imposing suitable restrictions on the
exponential family. We give one simple result as an appetizer for what may
be obtained.

For this result define the partial ordering, « , on Rk by x =y if
X; < ¥y i=1,...,k. A function h : Rk -+ R is non-decreasing relative to this
ordering if x « y implies h(x) < h(y). The following preparatory lemma is

also of independent interest.

2.24 Lemma
Let X have coordinates Xl""’xk which are independent random
variables with distributions Fl”“’Fk’ respectively. Suppose hl’ h2 are non-

decreasing relative to the partial ordering «. Then
(1) E(hy (X)h,(X)) > E(hy (X))E(h,(X))

Proof. The proof is by induction on k. Note that for k = 1 the result is
well known. This observation enables one to rewrite and reduce the left side

of (1) as
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k
fo..0 hl(x)hz(x) iElFi(dxi)
k-1
= f...0 (S hl(x)hz(x)Fk(dxk)) 121 Fi(dxi)
k-1
> [o.S [fhl(x)Fk(dxk)][f h2(x)Fk(dxk)] hit Fi(dxi)
i=1

Each function in square brackets is clearly non-decreasing in (Xl""’xk-l)'

Hence, by induction, (1) is valid. [
Here is the application to exponential families.

2.25 Theorem

Consider a minimal standard exponential family for which the
canonical coordinate variables Xl""’xk are independent. Let h be non-
decreasing relative to the partial ordering «. Then Ee(h) is a non-decreasing

function of 6 on N°(h). (This result may be extended to all of N(h).)
Proof. Write

d =
) - 1l - 6 )

Note that both Xy - gj(e) and h(x) are non-decreasing functions of x. Hence
9

aej

plh) = E (X5 - £,(0))Es(h(X)) = 0
by Lemma 2.24. It follows that Ee(h) is non-decreasing in each coordinate of 6
and hence (equivalently) is non-decreasing relative to «=. ||

The preceding theorem is merely a sample of the available results.
Other assumptions may replace the independence assumption, above. Notably,
the conclusion of Lemma 2.24 remains valid if the joint distribution, F, of
X has a density f with respect to Lebesgue measure which is monotone likeli-
hood ratio in each pair of coordinates when the others are held fixed.
(Exercise.) (There is also a lattice variable version of this fact.) Such
densities are called multivariate totally positive of order 2 (= MTPZ).
Suppose {pe} is a minimal standard exponential family whose dominating measure,

v, is MTP It follows by the proof of the theorem above that then h non-

2"
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decreasing implies Ee(h) non-decreasing in 6.
Under suitable conditions it is also possible to derive analogous
"order preserving" results for other partial orderings. For example, one may
consider the partial ordering induced by a convex cone C < Rk, under which
X« oy ify-xe€c.
A rather different but very fruitful partial ordering is that Teading
k k

E X; = .Z Y; and if

the notion of Schur convexity. Define x « g Y if
1 i=1

k' k' 1
121 X[ 5'i§1 L 1 < k' < k, where x[i],i=1,...,k, denote the coordinates
of x written in decreasing order, etc. Then h is called Schur convex if it is
non-decreasing relative to the ordering g (Obviously any such function
must be a symmetric function of xl,...,xk.)

For further information about these and other partial orderings,
consult Marshq]] and Olkin (1979), Karlin and Rinott (1981), Eaton (1982),

and references cited in these works.
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EXERCISES
2.2.1 Generalize 2.1(2) to

X 0 <X I bie
(1) ||x||£ e " -eo0” 5 eiX

= o+l .
16 - oyl i=1
Thus
jL.
. 9. eX 0 X b.ex
(I[x.l)(ee X _ %X _ (g -8, xe% i

(2) 1 0 S‘ZKR"']. ze

Ile '90”

Use this to prove 2.2(1) by induction on &.

2.3.1 Consider a one-dimensional standard exponential family with

K = [0, »). Show that

(1) (Eo0(1 - )N sE(1-20"1, 0<ca<u |
and VarOX < o imply
(2) Eg(X) > VarOX

0

[Let e = (1 - a) and show by differentiating at 6 = 0~ that (1)
implies ¢*'(07) 3_w"(0-). The finiteness of VarOX guarantees that
p"(07) = VarOX < o, etc., S. Zamir (personal communication).] (It is not known

if (1) implies (2) without the assumption that VarbX < o,)

2.4.1 Canonical one-parameter exponential families for which Var, (X) is

0
a quadratic function of Ee(X) are called quadratic variance function families
(= QVF). See Morris (1982, 1983). Verify that the following six families
have the QVF property:

(1) N(u, 0%) u known

(2) P(y)

(3)  r(as o) o known

(4) Bin (r, p) r known

(5) Neg. Bin. (r, p) r known

(6) v has density f(x) = (2 cosh(%%))'], o < X <o

relative to Lebesgue measure. (X = n_l 1og(Y/(1 - Y)) where Y ~ Beta (%, %).)
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[In (6) y(6) = - Tog(cos 6). This is called the hyperbolic secant
distribution. The generalized hyperbolic secant distributions are produced

from these by infinite divisibility and convolution. These families are the

only QVF families (Morris, 1982). See also Bar-Lev and Enis (1985).]

2.5.1 Let {pe} be a canonical one-dimensional exponential family.
Then N° = (61, ez), E(N°) = (51, 52) for some - < 6; < 6, <« and
< g <Ey < If K = [xl,w) then £ = Xqg- (Theorem 3.6 is a multivariate

generalization of this result.)

2.10.1 Let {pe} be a two-dimensional canonical exponential family. Find
a convex subset of N such that h bounded and Ee(h) =0 for all 6 € 3N

jmplies h = 0 a.e.(v). (Hence, the family {pe : 6 € 3N} is "boundedly

61

complete".) Conclude that every test of 90 versus 61 =N - 0, is "admissible".

0

(i.e. Let n¢(e) = Ee(¢). Then m, (8) <= (8), 8 € 09> and

g1 %2 41
o (e) = T (6) .) [3N contains an infinite number of line
1 2
segments. See Farrell (1968).1]

(6) 27, (0),
6 € 01> implies

Similar Tests and Unbiased Tests

2.12.0 Let 6, < O, i=0,1. A critical test function ¢, 0 < ¢ < 1, is
called level o umbiased if E9(¢) <a, 6 €80y and Ee(¢) >a, 6 €0,. It is
called similar (level a) if Ee(¢) Za, 6E€ éo n él N N. The following

problems consider the common case where OO v Ol = N so that 8@0 nN =
éO n él n N. Exercises 2.21.3, 2.21.4 and 2.21.5 contain further applications

of these concepts. See also 7.12.1.

2.12.1 Let {pe} be a regular canonical family and let 8' = (9&1), ezz)),
X' = (le), XEZ)) be partitioned vectors. (Regularity is convenient but not
essential here.) Let L = {6 : e(l) =0} . Assume L N N° # 6.

(i) Show that a critical function ¢ is similar on L if and only if
(1) o = f¢(x)v(dx(l)|x(2)) a.e.(v)

(Tests with property (1) are said to have Neyman structure. Note that the
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right side of (1) is Ee(¢|x(2)) for 6 € L.)

(ii) Show that ¢ is similar on L and satisfies
() veVE() = 0 vV vel = {yviv-8=0 Vv oe€l)
if and only if ¢ satisfies (1) and

(3) s x(1)¢(x)v(dx(1)|x(2)) =0 a.e. (v) .

(Note that (2) is a necessary condition for a test of Hy: © € L versus

Hl: ® £ L to be unbiased. (3) expresses the fact that v -« VEG(¢|x(2)) =0
for all 6 €L, v E€ Ll, x(z). See Lehmann (1959) for many applications of
(1) and (3) to the construction of U.M.P.U. tests.)

2.12.2 (i) Let X ~ N(@, I) in Rk, k > 2. Show there does not exist a

non-constant level o similar test of 9y = {6 : 6; < 0 for some i}.
[Use Example 2.10.]
(ii) Show there exists a non-constant similar test of
0p = {6 : 8; = 0 for some i}, but there does not exist a non-constant
unbiased test of this hypothesis.

2.12.3 Let X € Rk, X; ~ P(Ai), independent. Show there exists a non-
trivial similar test of {) : Ay <lv i} but there does not exist a non-trivial

unbiased test of this hypothesis.

2.13.1

Let X = (Xij) be a matrix I'(a, I) variable. (See Exercise 1.14.4.)
m
Observe that log |X| has the same Laplace transform as I log Y. where Y,
i=1
are independent I'(a - (i-1)/2, 1) variables. Hence [X| has the same distri-

m

bution as I Yi‘ Reinterpret this result to show equality of the distribution
i=1

of the determinant of a Wishart (n, I) matrix and a product of independent

x? -variables.

2.13.2
- k 4.

i= E( 1 X.9) and
1200 'k J'._.lJ

Let F, G be two distributions on Rk. Let UE
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similarly for uG. Suppose

F G R .
1 . . = 3 . . =0,1,... =1,...,K ,
(1) Hy seeen iy lJ1l,...,1k 15 0,1 J=1 k
and
. 1 Ln .
(2) Tim sup = m? < o J=1,...,k
oo n j,2n
_ 2n _ -
where LI E([le ). (Note s on = Mo, .2n,....0 .) Then F = G.

(Condition (2) is slightly weaker than the necessary and sufficient condition,

S =(n) .
(3) nil mj’zn = ®, J = 19---;k s

for (1) to imply equality of F and G. See Feller (1966, Sections XV4 and
VII3) and references cited therein.)
[Use Stirling's formula to show that ij ne"/n! converges absolutely

for |8] < €, j=1,...,k, and hence that Ap = Ag On an open set in Rk.]

2.14.1 (Bar-Lev (1983).)

Let X ~ Expf (8) with 0° # ¢. Let 2 (X(2)|x(1)) denote the indicated
conditional covariance matrix. Show that Ze(X(2)|x(l)) depends only on 6 if
and only if X(l) 1 (X(z) - h(X(l))) for some (measurable) function h.

[Integrate ze(X(Z)Ix(l)) on 6 starting at 0 € 0° to find that the

conditional cumulant generating function of X(2) under P0 is
= + . i
(2) w(elx(l)) p(e(z)) 6(2) h(x(l)) for some functions p , h

Show that (2) implies X(2) - h(X(l)) 1 X(l) under P,.]

0
2.14.2
Suppose X ~ Expf (6) with ©° # ¢. Then the following are
equivalent:
(1) X(l) 1 X(z) for some 8° € 0, or for all 6 € 0,
(2) w(e(l), 6(2)) = wl(e(l)) + wz(e(z)) for some functions y, and y, »
(3) X(i) ~ Expf (e(i)) for i =1and 2,

(4) cove(X(l), X(Z)) =0 vOED
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[For (1) - (3) apply Theorem 2.14 with h = 0 and check ¥ = 05 i=1,2.
For (4) = (2) use 2.3(2) and integrate.]
2.14.3 (Patil (1965), Barndorff-Nielsen and Blaesild (1983).)

Let P = {P6 : 0 € 0} be a family of distributions on ¥, B. Let
X:Vo- Rk (measurable), 0 = Rk with 0° # ¢. Suppose
Tn Egexp((B - 8) + X(Y)) = o(B) - p(6), B,0 €0

for some function p(+). Then X ~ Expf (8). [Use Corollary 2.13.]

2.14.4

Let X have a k-dimensional multinomial (N, w) distribution.
Write X(l) = (Xl""’xkl) , X(2) = (Xkl+1""’xk) . Show that the marginal
distributions of both X(l) and X(Z) form an exponential family, but X(l)
is not independent of X(2) as one might expect from Theorem 2.14(2). Why not?
[The fact that X is not a minimal family is irrelevant; for k > 3, k1 < k-2

the same phenomenon occurs in the minimal model defined as in 1.2(7).]

2.15.1

Let the independent symmetric mxm matrices, Xi’ i=1,...,n, have
matrix F(ai, t) distributions. (See Exercise 1.14.4). Show that

z=1 X171 2

n
xi| is independent of I Lo Show that the

..sL with Z,
n J 1 i=1

e

i
distributions of I1n Z = {In Zj : j=1,...,n} form an exponential family, and
identify the canonical statistic and parameter for this distribution. (This
generalizes Example 2.15(i1). The distributions of Z form the so-called
multivariate beta distribution. See, e.g., Muirhead (1982). Whenm =1

the Xi have ordinary T distributions and the distribution of Z is a Dirichlet

distribution. See Exercise 5.6.2.

2.16.1

Suppose v > v with v(Rk) < », Then
. k k
(1) 1im sup vn(R ) < v(RY)

if and only if the sequence {v } is tight. [Let c(x) =i if r, < X 2 ri
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and choose r, 3 sup v ({||x|| > r, }) < 1/1 s i=1,2,... .1 Hence a convergent
sequence of probab1]1ty measures has a probability measure as its limit if

and only if it is tight.

2.17.1

Verify 2.17(4),(5). [From Lemma 2.1(1)

(1)

bex b.ex
b xe
s %P v (ax)]] < z Al I{ J.x}eJ v, (dx)] |

and the quantity in braces in (1) is 0(1/(1 + 1IxIl)). Now use 2.16(1).]

2.17.2
Let S Rk and B = conhull S. Let Vi be a bounded sequence of
measures on Rk (vn(Rk) < K1 < ) with Ay (b) <=, b €S, n=1,... . Suppose
n
0 € B°. Define Pn,b by
dPn b
(1) do " exp(b-x - w\,n(b))

Suppose for each b € S there is a K = K(b) such that
(2) 1im sup P b({llxII <K}) > 0
Nn-o s
Then there is a subsequence {n'} = {n} and a non-zero 1imiting measure v such

that for all b € B°®

(3) el X vy (dx) - e X y(dx) , A (b) - 2, (b)

[As in the proof of Theorem 2.17 it suffices to consider the case

where S is finite. Then K = max{K(b) : b € S} <=, Ifb €S, Ilbll <K
eb-x

0

then0 <e< J

\ .(dx)/Av (b) <K 1 Ko /A (b). Hence 2.17(1)
PRESS n' Vn'

is satisfied on S n {b : IIbll <Ky} . v # 0 since 0 €B° ]

2.18.1

Let {Van :a €A}, n=1,2,... be a family of sequences of measures

on X = {0,1,... }. Show that Ven 7 Va uniformly in a if and only if
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van({x}) - va({x}) uniformly in a for each x € X.

2.19.1

Let {pe} be an exponential family with supp v = {0,1,...} and

v(0) > 0, v(1) > 0. Let Xl""’Xn be a random sample and, as usual, let

w
"
I ™Mm>s

X;. Define en(k) by

i=1

(1) g(6 (x)) = A/n

n

Let Fl,n denote the distribution of Sn under the parameter en(x). Show that
Fx,n - P(A) and the convergence is uniform in X over X € [a,b] for
0<a<b<w (A slight elaboration of the argument yields uniformity over
[0, bl.) Generalize this result to the case where Pg is a k-dimensional
exponential family. [Show w"(en(x)) -+ 0 as n - = since en(A) - -0, uniformly
for A € [a, b]. Hence log Een()\)eBSn = A(eB - 1) + 0o(1) as n » « uniformly
for A € [a, b]l. Then apply Theorem 2.19. In the non-degenerate k-dimensional
case the Timit distribution is the product of independent Poisson variables.]
(A special case of the above is the well known result Bin (n, A/n) - P(}).

The general form of the above statement was pointed out to me by I. Johnstone.)

2.21.1

Let X be non-central x? with m degrees of freedom and non-
centrality parameter 6 . Show that the distributions of X have the sign-change
preserving properties 2.21(2), (3). [Use Exercise 1.12.1(1). Write
Eg(h(X)) = Eg(E(h(X)[K)) .1

2.21.2

Let X be a one-dimensional exponential family and 6 € Ne.

(i) Show that the (essentially unique) level a test of the form

(1)

©
—~
x
-
n
O <
l
x
o
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is the U.M.P. level a test of HO: 6 < 6y versus Hy: 8> 8o

(ii) Similarly, show that the (essentially unique) level a test of the form

1 X > X, or Xx < Xq
(2) o(x) = v, X = x
0 Xq < X< Xy
satisfying
(3) Eg (x6(x)) = 0
0
is the U.M.P.U. Tevel test of HO: 6 = eo versus Hl: 0 # 60 .

[(i) Let ¢' be any different level o test. Then S (¢ - ¢') = 1.
Eeo(¢ - ¢') = 0 by definition. Now use Theorem 2.18. (ii) Condition (3) is
the one-dimensional version of 2.12.1(3). Again use Theorem 2.18.]1 (It is
also possible to show by a continuity argument that level o tests of the form

(1) and (2), (3) always exist.)

2.21.3

Consider a 2x2 contingency table. (See Exercise 1.8.1.) Describe
the general form of the U.M.P.U. level o tests of the following null hypothe-
ses. In each case the alternative is the complement of HO’

1

IA

(1) Hyt P11P2p/P1oPoy
(1) Hy: Py1Poa/P1oPyy

(i) Ho: P17 < Ppo

(iv) HO: P12

P21
(This corresponds to the exact form of McNemar's test. See, e.g. Fleiss
(1981).) [Use Exercise 2.21.2 and, for (i), (ii), Exercise 1.15.1. See

Lehmann (1959).]

2.21.4

Consider a 2x2 contingency table. Let ¢ >0, c # 1. Show there

exist non-trivial similar tests of the null hypothesis
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HO: plll(p11 + p12) = cp21/(p21 + p22) of conditional probabilities in a
given proportion, even though this is not a log-linear hypothesis. [ Use
randomized tests. Consider the conditional distribution given Yi+’ i=1,2
under which Y11 and Y21 are independent binomials. (This case is of interest

on its own merits.) Consider the special case Y 1= Y2+ for which the

1+
condition for similarity reduces to four linear equations in the four
variables ¢(y) for the four conditionally possible outcomes, y. This test is
unbiased for the one-sided version of HO’ but not for H0 as defined above.

Is there, in general, an unbiased test of Ho? Is there, in general, a U.M.P.U.
test of either the one- or two-sided hypothesis in either the original

model or the conditional (independent binomial) model? The somewhat
analogous question of the existence of similar and of unbiased tests for the

Behrens-Fisher problem of equality of means for two normal samples with

unknown variances is solved in Wijsman (1958) and in Linnik (1968).]

2.21.5

Let X "’Xn be a sequence of independent failure times,

1
assumed to have a I'(a, o) distribution. Describe the U.M.P.U. tests of
HO: o =1 versus H1: o> 1 and Hi: o # 1. [Use Exercise 2.21.2 and Example

2.15.]

2.25.1

Suppose v has density f with respect to Lebesgue measure on Rk
and f is MTP2 (i.e. has monotone likelihood ratio) in each pair of coordinates.
Prove the conclusions of Lemma 2.24 and Theorem 2.25. Prove these also for
the case where f, as above, is a density with respect to counting measure on
the lattice of points with integer coordinates. [If h(xl,...,xk) is non-
decreasing then, under v, E(h(xl""’xk-l’ Xk)l X = xk) is also non-

decreasing.]

2.25.2

Let {pe} be a canonical k-parameter exponential family with
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by € N°. Let Ho: ] < 8 and H1: 6 > 6g- (i) Show that any Bayes or
generalized Bayes test, a, of H0 versus H1 has the strong monotonocity

property

1"
—

¢(x) >0 y>x =dy)
(1)

[}
o

d(x) <1 y<x =d¢y)

Assume 60 = 0 and consider pre(x)[Gl(de) - Go(de)] where Gi denotes the
(generalized) prior measure restricted to Hi'] (ii) Suppose the dominating
measure v is MTPZ. Show that any (generalized) Bayes test is unbiased.

[Use the above and Exercise 2.25.1.]

2.25.3 (Slepian's Inequality)
Let X, Y be k-dimensional normal variables with mean 0 and non-
singular covariance matrices A, B, respectively. Suppose

a;; = by iy 2 bij 1<i,j<k

Then, for any C € Rk,

(1) Pr{X < C} > Pr{Y < C}

[If Z(p) ~ N(O, A + p(B - A)) then

3 (o) - 3 (p)
(2) = P(2 <C) = I o;:=—P(Z < C)
where each aij > 0. Note that for i # j
(3) Ao g exp(-In|z]/2) = 6. A
aeij 1J 1]

by 2.4(2). Hence

apg(2) sze(l)
(4) 30, 8;5 Po(Z) = 32, 9L,

from Corollary 2.13. Combine (2) and (4) to yield (1).]1 (For an alternate
proof of Slepian's inequality see Saw (1977). For generalizations see Joag-

Dev, Perlman, and Pitt (1983) and Brown and Rinott (1986).)





