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1. Introduction

The problems of competing risks and complementary risks arise quite

naturally in a number of contexts, particularly in problems of survival analysis

and reliability theory. The problems, in their simplest form, may be described

as follows. Let X. be a random variable with cumulative distribution function

(C.D.F.) F.(x), (i =1,2,...,p). We assume that the X.'s are not observable but

U = min(X , ...,X ) or V =max(X
1
, . . . ,X ) is. We would like to determine uniquely

the marginal C.D.F.
f
s, F.'s, from that of U in the competing risks problem or

from that of V in the complementary risks problem. We would also consider re-

lated inference problems.

As examples of the concepts consider the following:

(a) Let X. be the time to death (failure) from cause C. (of component C.).

Here X.
f
s are not observable but we observe a death time U (or time to

series system failure) or a time V at which the last remaining duplicated

organ fails (time to failure of a parallel system).

(b) In survival analysis randomly censored data correspond to the situation

when p = 2, X.. is the variable of interest and X~ the censoring variable.
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In this report we present results in three areas of competing risks analy-

sis. In Section 2 the problem of identifiability is discussed. In Section 3

we look at dependent competing risks and at techniques for converting dependent

models to independent models which preserve the models
1
 properties, in a sense

to be discussed later. In Section 4 accelerated life tests in a competing

risks framework are considered.

2. Identifiability

2.1 Introduction

Before we can consider the inference problems, we need to resolve the

question of identifiability. Basu (1981a,b) has given a survey of the identi-

fiability problem in the parametric case. Consider the following definition of

identifiability.

DEFINITION 1: Let U be an observable random variable with C.D.F. F
Q
 and let
Ό

F«εf = {F
fi
: θ ε Ω}, a family of distribution functions indexed by a parameter

θ. Here θ could be sealer or vector valued, θ is said to be nonidentifiable

by U if there is at least one pair (θ,θ
f
), θ^θ

1
, where θ and θ

f
 both are in Ω,

such that F
Q
(u) =F

Q I
(u) for all u. In the contrary case we shall say θ is

identifiable.

In many cases, where θ is not identifiable, there exists a non-constant

function γ(θ) which is identifiable. That is, for any θ,θ* εΩ, F
f t
(u)=F

β l
(u)

for all u implies γ(θ) =7(0'). In this case θ is said to he partially

identifiable.

In case θ is not identifiable by U, it may be possible to introduce an

additional random variable I so that θ is identifiable by the augmented random

variable (U,I). In this case the original identifiability problem is called

rectifiable.
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EXAMPLE 1: Let X. be independent random variables with density functions f.(x)=

λ
±
 exp(-λ

±
x), (±=1,2). Let θ= (λ ,λ ). Here θ is not identifiable by U. How-

ever, θ is partially identifiable since γ(θ)=λ
1
 + λ is identifiable. The

problem is also rectifiable since θ is identifiable by (U,I) where I=i if

U = X
±
, (1 = 1,2).

Complementary risks is the dual of competing risks since max(X , ...,X ) =

-min(-X.. ,. . . ,-X ). Usually it is sufficient to consider the results in terms

of U. However, there are situations when V is analytically simpler to study.

2.2 Independent Random Variables

Assume X ,...,X are independent but not identically distributed ran-

dom variables . Let I = k if U = min(X
1
,...,X ) = 2L. Let S.(x) =P(X

i
>x) and

S (x)=P(U>x, I = i) (i = l,...,p). Then Berman (1963) has proved the identi-

fiability of the F.
f
s in the following theorem.

THEOREM 1: (Berman (1963))

S*(x) = - ( [ Π S.(t)] dS
k
(t)

•'x j=l -*

and

rx P
 Λ

 -1 *
S (x) = exp[ ( I S.(t)) " dS (t) ]
k J

o
 J=i

 J

Theorem 1 justifies the estimation of parameters in the regression problem

of Miller (1976). For p = 2, Peterson (1977) extends the result to the case

where S.. and S« have no common jump points.

THEOREM 2: (Peterson (1977))

S
±
(t) =exp

dS*(x)

"k k L>

S-(x)+S (x) s:Jump point of S.( )

s < t
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Theorem 2 gives an alternate representation for the survival function and

the Kaplan-Meier (1958) estimator. It also helps proving the strong consistency

of the Kaplan-Meier estimator.

Next, consider the case of the non-identified minimum. Basu and Ghosh

(1980) prove the following result.

THEOREM 3: (Basu and Ghosh (1980))

Let F be a family of probability density functions (p.d.f.) on R with

support on (a,b) which are continuous and are positive to the left of some

point A and such that if f and g are any two distinct members of F then

limίf (x)/g(x)} is either 0 or °°. Let X. be independent with p.d.f. f. in F
x+a

 x x

(i*=l,2,...,ρ) and Y be independent with-p.d.f. g.εf (j = 1, . . . ,q)_. If

min(X-,...,X ) and min(Y-,...,Y ) have identical distributions then p = q and

there exists a permutation (k
Ί
,...,k ) of (l,...,p) such that q. = f,

1 p l K..

2.3 Dependent Random Variables

In the case of dependent competing risks Peterson (1976) has obtained

bounds on the unobservable marginal survival probabilities S.( ) in terms of

observable crude survival probabilities S.( )> in the case p = 2 . He also

obtains a bound on the joint survival function F(χ ,x ) = P(X- > x , X >x ) in

the following theorem.

THEOREM 4: (Peterson (1976))

Let S
i
(x) =P(X

±
>x), S^(x) =P(X

i
>x,

P
2
=P(X

2
 <X

1
) then

F(x
1
,x

2
) = S* s*(x

2
) -

Xj , , and

if

if
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Also

S*[max(x
1
,x

2
)]

and

2 '

S*(.x
2
) P

2 "

Basu and Ghosh (1978) prove the following result which can be used in the

identifiability problem.

THEOREM 5: (Basu and Ghosh (1978))

Let F
i
(x

1
,x

2
) = -^~ F ( x

r
x

2
) , (i = l,2) and let f(x

χ
,x

2
) be the joint p.d.f.

of (X ,X ). Assume that f(x ,x ) > 0 for all (x ,x ) and

oo

I - 7 (z,
J _ oo

z) (Fίz.z))"
1
 dz=oo, (1 = 1,2).

Define

_

G
i
(x) = exp{

Γ
x
 _

- - F
±
(z,

* ̂  00

z) (F(z,z)) dz}

- G
i
(x) ,

then G.( ) is a C.D.F. Let Y. be independent and follow the distribution G.( ) ,

so that G(x-,x ) = G (x-) G (x ), then (U,I) has the same distribution whether

(X
χ
,X

2
) follow F ( x

r
x

2
) or (X

1
,X

2
) follow G(

X ] L
,x

2
).

In the case of dependence the identifiability problem makes sense for

specified parametric distributions. Basu and Ghosh (1978 and 1980) have results

for the bivariate normal distribution and multivariate exponential distributions

(c.f. Block and Basu (1974), Marshall and Olkin (1967), Gumbel (I960)). Results

for a general p follow readily for the exponential case.
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3. Converting Dependent Models to Independent Ones

3.1 Basic Theorems

Implications of the result in Theorem 5 have also been considered by

Miller (1977), Tsiatis (1975), Langberg, Proschan and Quinzi (1977,1981), and

others. We state some of these results along with their implications.

As in the previous section let X
=
 (X,> *X ) be a vector of positive ran-

dom variables and let U =min(X-,...,X ) be the observable system life. Let I

1 P

denote the collection of nonempty subsets of {l,...,P}. Let H be the vector

p

of component life lengths in a series system of (2; -l) components with system

life T where the coordinates of H are indexed lexiographically by Iεl. Define

the failure patterns by

I if U = X . for each i ε l and U^X. for each ±tl

ξ(X) =

0 otherwise

and

. I if H
T
< H

T
 for each J φ I

ξ (H) =

otherwise

LP
We say X_ and E are equivalent in life length and failure pattern (X= H) if

P(T> t, ξ*(H) = 1) = P(X> t, ξ(X) = 1 ) , t _>0, Iεl. When X
L
=? H then the two

system lifetimes are identically distributed and corresponding failure patterns

have the same chance of occurring.

Langberg et al (1978) give necessary and sufficient conditions for replacing

a set of dependent life lengths X by a set of independent life lengths _H such

LP
that X= H in the following theorem.

THEOREM 6: (Langberg et al (1978))

Let U =min(X
1
,...,X ) denote the life length of a p-component series system^

where X. represents the life length of the i*-" component, i = l,...,p. Define

F
I
(u) = P(U>u, ξ(X) = 1 ) , F

τ
(u) =P(U£u, ξ(X) = 1 ) , F(u) =P(U>u) and α(F) =

suρ{u:F(u) >0}. Then the following statements hold:



222

(i) A necessary and sufficient condition for the existence of a set of in-

LP
dependent random variables (H , I ε I) which satisfy 11= X is that the

set of discontinuities of F be pairwise disjoint on the interval

(ii) The distribution of {H , Iεl} in (i) are uniquely determined on the

interval [0,α(F)) as follows:

(1) G (t) = P(H >t) = exp[- I dF^/F]
L L

 h

f

0£t<α(F), where F!~ is the continuous part of F , {a(I,j)} is the set of dis-

continuities of F and f (a(I,j)) is the size of the jump of F at a(I,j).

Langberg et al (1981) show how the marginal survival functions of the

dependent system can be recovered from the equivalent in LP independent system.

Let S_( ) denote the marginal survival function of X = (X., iεl} .

THEOREM 7: (Langberg et al (1981))

Let X-,...,X be non-negative random variables such that the functions

F( , ξ(X) =1) have no common discontinuities. Let Iεl. Then for each

tε[0,α(F)], "S (t) = Π G" (t) if and only if the following two conditions hold:
1
 Jεl

 J

F(a)/F(a-) for a discontinuity point of F( ,ξ(X)=I)

1 otherwise

and

(C2) P(Xji 1 t|x =t) = PζXj, > t|x >t), where I
τ
 is the complement

of I in I and G is defined by (1).
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EXAMPLE 2: Let X = (X ,X ) have the bivariate Weibull distribution described by

Lee and Thompson (1974) with joint survival function

Applying Theorem 6 it follows that X
L
=? (H ,H ,H ) where the H.

f
s are in-

-
 α

i

dependent Weibull random variables with survival functions G. (t) =exρ(-λ.t ),

i = 1,2,12. The conditions of Theorem 7 are met so that X. =min(H.,H ), i = l,2.

3.2 Constant Sum Models

Let X- and X be positive random variables representing the failure

time and censoring time of an individual under study. In the random censorship

model we observe U = min(X ,X ) and I = 1 if U = X (a death) or 1 = 2 if U = X

(a loss). Williams and Lagakos (1977) have examined conditions on the joint

distribution of X and X under which the likelihood based on n observations on

(U,I) is independent of the censoring distribution of X_. Let a(t) =P(I = l|

t£X <t + dt) and dB(t) =P(t£U < t +dt, I = 2|u_>t). A model (X , X ) is said

to be a constant sum model if and only if

ft
a(t) + dB(y)

j
0

Kalbfleisch and McKay (1979) give an equivalent characterization of the

constant sum condition in the following theorem.

THEOREM 8:

A model (X-,X») is constant sum if and only if

P(t <X < t + dtlu > t) = P(t <X < t + dt|x > t) .
— 2 — — 1 1

We prove a sufficient condition for the constant sum model using the results

of Langberg et al (1981).
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THEROEM 9: A model (X ,X ) is constant sum if the set of discontinuities of

F (•) are pairwise disjoint for all Iεl, and ,

^x|X2=x) = P(X1>x|X2>x) .

PROOF:

LP
By Theorems 6 and 7, (X..X

0
) = (H-,H ,H ) where the H.

?
 are independent and

-L Z 1 Z 1Z IS

U = min(H
1
,H

2
,H

1 2
) and X

χ
 = minCH^H^) . Now

P(t£min(H1,H12) <t + dt, minOi^H^H^) >_t)

<t + dt,

= P(t£X <t + dt, X-j^^t) /P(X
1
^t)

= P(t <_X < t + dt|x > t) .

The result now follows by Theorem 8.

3.3 Inference When There is a Dependent Censoring Mechanism

The above result suggests using Theorem 6 to justify standard nonparametric

techniques developed for censored data, under the assumption of an independent

censoring mechanism, when the censoring mechanism is dependent but satisfies

the conditions of Theorem 7. As an example consider the two sample problem.

Let (X-,X«) and (Y-,Y ) be bivariate positive random variables. Suppose the

marginal survival function of X is S-(t) and the marginal survival function of

Y- is R-(t) and X and Y« are possibly dependent censoring variables. Obser-

vations on (X-,X«) consist of observing min(X_,X«) and the failure pattern

ξ ( X 1 , X 2 ) . S i m i l a r l y , for (Y-^Y^, we observe m i n ^ Y p and ζ C Y ^ Y ^ . The

problem i s to t e s t H^rS ( t ) = R ( t ) , t > 0 based on n.. observat ions on (X ,X ) and

n observat ions on (Y_,Y«). Suppose the condi t ions of Theorem 7 hold for both
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X and Y. Then ( X ^ X ^
1
^ ( H ^ H ^ H ^ ) and ( Y ^ Y ^ ί (K-^K^K^) where the H.'s

and K.'s are independent with survival functions G. and M. (i= 1,2,12), re-

spectively. Also S^t) =G (t) cL(t) and R (t)=M
χ
(t) M (t). Hence, testing

S
1
(t)=R

1
(t) is equivalent to testing H ^ M ^ t ) ϊϊ^t) =G

±
(t) G

χ 2
(t). Obser-

vations with ξ(X ,X ) ={1} or {1,2} give complete information about S (t).

Similarly for R..(t). Those with ζ(X ,X ) ={2} are censored for testing H :

S-(t) =R-(t) but now from independent censoring distributions. Thus standard

nonparametric techniques for independent censoring variables such as Gehan

(1965) or Efron (1966) may be used to test this hypothesis.

3.4 Estimating Joint Survival

Theorem 7 can be used to obtain a consistent estimator of the joint

survival function, F(x ,x ) , of a bivariate random variable (X ,X ). Suppose

the conditions of Theorem 7 hold, then ( X ^ X ^ ί (H
 1
»

H

2
»

H
i2^

 a n d X
1
 =

H
 2

) , X =min(H ,H
χ 2
) with H ,H ,H independent. Now

P(min(H
1
,H

12
)

x
2
) P(H

1 2
>max(x

1
,x

2
)

Let G.(t) be a consistent estimator of G.(t) for i= 1,2,12. A consistent esti-

mator of F(x ,x ) is given by

F(
X;L
,x

2
)
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4. Accelerated Life Testing and Safe Dose Estimation Under Competing Causes

of Failure

Accelerated life testing of a product under more severe than normal

conditions is commonly used to reduce test time and costs. Data collected at

such accelerated conditions are used to obtain estimates of the parameters of

a stress translation function. This function is then used to make inference

about product life under normal operating conditions.

Klein and Basu (1981a,b,c) have considered the problem of accelerated life

tests when the product of interest is a p component series system. Each of the

components is assumed to have either exponential distributions or Weibull dis-

tributions with different or the same shape parameter.

Klein and Basu considered the following model. Let X-,...,X denote the

1 P

component life lengths in a p component series system. At a constant appli-

cation of a stress V.(i=1,...,s) assume that the j
t n
 component has hazard rate

given by

h.(x,v.; α., 3.) = g.(χ, α.) λ.(V., 3.),
3 ! —3 —3 3 —J J i —J

as introduced in Klein and Basu (1981d). The α.'s may vary from component to

component to allow for different component reliabilities. For λ.(V, 3.) assume

a model of the form

(2)

where Θ.
n
(V) = 1 and Θ (V),...,Θ., (V) are non-decreasing functions of V. The

3
U
 3*- J^.

Θ.( )
τ
s may differ from one component to another.

This model includes the standard models, namely, the power rule with

βjl
λ. (V, J3.) = 3.QV , the Arrhenius reaction rate model with λ.(V, _3.) =

exp(3.Q - 3. -, /V), and the Eyring model for a single stress with
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λ.(V, J3.) = V J
1
 exp(3.

Q
-(3.

2
/V), as special cases.

The model can be derived from the interpretation of the effects of a

carcinogen on a cell as proposed by Armitage and Doll (1961). For details see

Klein and Basu (1981d). To produce cancer in a single cell k independent events

must occur. The effects of an increased dose of a carcinogen is to increase

the rate at which these k events occur. If, for the j*-*
1
 disease, this increase

is of the form exp(3.
0
Θ. (V)), (£ = l,...,k.) the model (2) is obtained. If this

3 3 3

increase is linear in V the model of Hartley and Sielkin (1977) is obtained.

Thus their model is a first order Taylor series approximation to (2). Klein

and Basu (1981c) have extended the results of Hartley and Sielkin (1977) to the

competing risks model.
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