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INFERENCE IN LINEAR MODELS
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Stanford University

A general linear model can be written as Y = XB1 + U, where Ŷ  is

an N X p matrix of observable dependent variables, X is an N X q matrix of

independent variables, B1 is a q X p matrix of parameters, and U is an N X p

matrix of unobservable random variables. The elements of X may be observ-

able or alternatively unobservable (that is, latent); they may be nonstochastic or

stochastic. The model includes regression, linear functional and structural rela-

tions, multivariate analysis of variance, factor analysis, and some simultaneous

equations models. This paper considers the relationships between various mod-

els and presents methods of estimating the parameters under various conditions.

Testing hypotheses about the rank of XB1 (the dimensionality of the latent

variables when X is not observed) are also treated.

1. A Linear Model . In this paper we consider a general linear model

in multivariate analysis that includes regression models, multivariate analysis

of variance (MANOVA) models, and factor analysis models. Some of these

models go by names of linear functional relationships, linear structural rela-

tionships, and canonical correlations. An attempt will be made to use a unified

approach to these models.

Suppose we observe the pxl vectors y\, , yjγ. A linear model is given

by
ya = Bxa + ua, α = l , . . ,JV, (1.1)

where τii, ,tfcΛΓ are unobservable random pxl vectors; we suppose them

to be independently identically distributed (iid) with

Sua = 0, Suau'a = Έu. (1.2)

The px q matrix B consists of parameters, and xi, , XN are q X 1 vectors.

We shall consider these vectors as observed or alternatively as unobserved (or

latent); they may be fixed (that is, nonstochastic) or alternatively random (or

stochastic). The model can also be written

Y = XB1 + [/, (1.3)
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where
2/ί χ\

Y = X = U = (1.4)

u N t

This paper is primarily expository. An important objective is to compare

the models obtained by assigning different properties to X and to show the

interrelationships among the models. In each case the maximum likelihood

estimators of B and Σ u under normality will be given as examples of estima-

tion procedures. Also, likelihood ratio criteria for testing hypotheses about B

are given. A particular question is the rank of J3, which is the dimensionality

of the space of Bxa. The estimators and criteria in the different models will

be compared. We shall not discuss alternative estimation and testing meth-

ods although they are important; we shall not develop the distributions or

asymptotic distributions of the estimators and criteria. This paper updates

(and abbreviates) the author's Wald lectures to the IMS in 1982 [Anderson

(1984a)]. More details and references can be found in Chapters 8 and 12 of

Anderson (1984b).

2. A Regression Model: X Observed and Nonstochastic.

2.1. Estimators

For convenience we assume that the rank of X is q. Then the least squares

estimator of B in the model of Section 1 is given by

Bf = (X'X)~1X'Y. (2.1)

We shall use the notation

vecA = vec(αi, , α m ) =

LαmJ

(2.2)

where A is an n X m matrix, and for the Kronecker product

A®B =
a22B "- a2mB

an2B ••• anmB]

(2.3)

The estimator B is unbiased:

The covariances of the elements are given by

cov (vecβ) = (X'X)-1 ® Σu.

(2.4)

(2.5)
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If U is normally distributed, then 5 , which is the maximum likelihood esti-
mator of JB, is normally distributed. Under quite general conditions

0, ( Urn -^X' (2.6)

Of course, it is assumed that (1/N)X'X converges to a nonsingular limit.
An unbiased estimator of Σu is

5 =
1

N-q
(Y - XB')'(Y - XB'). (2.7)

If U is normal, (N — q)S has the Wishart distribution with covariance matrix
Σu and N — q degrees of freedom [denoted by W(ΣU, N-q) ]. Under normality
the maximum likelihood estimator is Έu = [(N - q)/N]S. Quite generally,

2.2. MANOVA I (fixed effects)
A special case of the regression model is the analysis of variance with

fixed effects. The balanced model is

itocj — HΌi T " Ό ^ ? α = (2.8)

The number of observations is N = kn. (We have modified the original index-
ing of the observations.) Let

where

Y -

y'n

2/21

, 1)' with k components, then

X =

εk 0
0 εk

0 0

0 "
0

εjfeJ

M =

(2-9)

(2.10)

(2.11)
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The matrix M takes the place of B'. The least squares estimator of M is

M = (X'X)-1X'Y

= (fcJn)-1

w'
(2.12)

where

Va~ k *
(2.13)

The rows of Λf are independent, and ya ~ N[μa^ (l/k)Σu] when U is normal.
The estimator M is unbiased: EM = M and cov (vec M ) = (1/A?)ΣU ® In.
Consider testing the null hypothesis that the fixed effects are identical, that
is, H : μi = = μn or

H : (μ1 - μ, •• ,μ n - μ) = 0,

where

(2.14)

(2.15)

Write the matrix of means as

M-
μ'x-μ1'

μ' -μ'
+ enA' (2.16)

The hypothesis is that the rank of the first matrix on the right-hand side of
(2.16) is 0. The "effect sum of squares" is

(2.17)

where y = (I/ft) Σ™=i Voή ̂ e "error sum of squares" is

n k

(2.18)
cr=l j = l

The likelihood ratio criterion λ for testing H is defined by

(2.19)
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We reject H if λ2/n < λ0 , where λo is a constant such that

Pr{λ < λ o } = α (2.20)

under H and α is a specified significance level. [The probability (2.20) does
not depend on Έu or μ when H is true.]

2.3. Regression matrices of specified rank
The null hypothesis that the effect means are equal is that in the p-

dimensional space of yα the mean vectors represent a point, that is, the di-
mension of the space of effect means is 0. We now consider the general case
of

rank = m, (2.21)

where m is a specified integer between 0 and p — 1. That m — 1, for example,
is that the means μα lie on a line; in that case the classes or populations can
be ordered. That m = 2 is that the effect means lien a plane. We now consider
estimating the matrix (μi - μ, • , μ n - μ) under the condition (2.21). Let

H = -H,
n

G =
n(k - 1)

G,

and let the roots of

be

\H-dG\ =

> dp.

Define the vectors w, as satisfying

Define

= 1,

= (toi, ,wm),

* = i. ,p

DΛ =

dι 0 ••• 0
0 d2 ••• 0

Lθ 0 ••• dm\

m+2

... o

... o

••• dj

D =

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

,(2.28)

(2.29)

z = (2.30)
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where the matrices are conformable; note that

I = WZ1 = (WXZ[ + W2Z'2). (2.31)

The maximum likelihood estimator (under normality) of (μi — μ, , μn - μ)1

of rank m is
y'ι-y'

WXZ[. (2.32)

Note that the columns of W\ are the characteristic vectors of G λ H as-
sociated with the m largest characteristic roots. These maximum likelihood
estimators were derived by Anderson (1951); Fisher (1938) considered a re-
lated problem in discriminant analysis.

To test the null hypothesis H : m = mo, where m is given by (2.21) and
mo is specified, the likelihood ratio criterion λ is given by

We reject H if λ < λo, where λo is a suitable constant. Equivalently

-2logλ = nk Σ losί1 + π ) ( 2 3 4 )

We reject H if -2 log λ > -2 log λo As k —> oo, under the null hypothesis

Note that the hypothesis is rejected if the p-rrio smallest roots are too large.
If (2.21) holds, then there exists a ( p - m ) x p matrix Γ such that

Γ ( μ i - μ , . , μ n - μ ) = O (2.36)

or
α = l,. ,n. (2.37)

Note that Γ is not unique; (2.36) or (2.37) can be multiplied on the left by an
arbitrary nonsingular matrix. The set of equations (2.36) or (2.37) is known
as a set of iinear functional relationships. A maximum likelihood estimator of
Γ (under normality) is

f = Wl (2.38)

Note that the rows of Γ (the columns of W2) are the characteristic vectors of
G"1!! associated with the p — mo smallest characteristic roots.
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For later comparison we shall want a canonical form for MANOVA I. For

an integer / let

fl/VT 11VI ••• l M l
#21 922 "•• ?2/

(2.39)Qι =

9/2 9// -I

be a / x I orthogonal matrix. Define

y'ak-

a2
= Qk

<2

• k-

Thus

y*al -

(2.40)

(2.41)jQ = Vkμa + VkuQ rsj N(Vkμa, Σ t t ),

where i t α = (1/fc) Σ j = i ^αj? and

y*a. = u*aj - ΛΓ(O, Σ α ) , j = 2,- ,k. (2.42)

The vectors t/*^, α = 1, , n, j = 1, , fc, are independent. Further let

(2.43)

(2.44)

= Qn

~u**

= Qn

Then

where yi = (1/n) Σα=i Vaii a n ( ^

3/ίΐ = N{V^k μ,

where j a depends on α, Q n , and

are independent. Then

), α = 2, - . , n . (2.45)

, μ n . The vectors τ/*^, α = 1, , n,

ii - »ϊ)' = Σ »srtί.
α = 2

G =

( 2 4 6 )

( 2 4 7 )
α=l j=2

Here it is clear that i f and G have independent Wishart distributions with

n — 1 and n(fc - 1) degrees of freedom, respectively; the distribution of H may

be noncentral.
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Now we consider estimation and hypothesis testing of B for the general

regression model. Note that

Pr {rankβ = min(p,g)} = 1. (2.48)

We may want to estimate B of which a submatrix has lower rank. Let

B = (BUB2), (2.49)

where B\ and B<ι have q\ and q<ι columns, respectively; we want to estimate

B<ι of rank m [0 < m < min(p, 52)]? where m is specified. Let X be partitioned

into submatrices of q\ and q<ι columns

(2.50)

The model is

= XλB[ + X2B
f

2 + U. (2.51)

Let

An Au

A22.1 = A22 - A2i Aΐi A12

= (X2 - X1A£A12)

= X2.i*2.i, (2.53)

where X2.1 — X2 — X\A^A\2. Let

qΐί = H = (X2ΛB'2)'(X2ΛB'2)

= B2A22.iB'2. (2.54)

(N-q)G = G = (N- q)Έu

= (Y - XB')'{Y - XB'). (2.55)

The maximum likelihood estimator of B2 of rank m (under normality) is

B'2{m) = B'2WXZ[. (2.56)
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Since

W2'B2(ro) = O,

an estimator for Γ satisfying TB2 = 0 is W^

(2.57)

2.4. An example from econometrics

Simultaneous equation models are used extensively for macro-economics.

Estimation of the coefficients of the relationships involves — at least implicitly

— the estimation of regression matrices of specified rank. We illustrate by the

simple example of a pair of demand and supply functions.

Let yit be the quantity of a good consumed in period t, y^t be the price of

the good produced, xχt be the aggregate income of consumers in the market,

X2t be the cost of one raw material for producing the good, and x$t be the

cost of a second raw material. The demand relation is

yit = 7o + ay2t
(2.58)

where v\t is an unobserved random term. The quantity of the good desired by

the consumers depends on the price at which the good is offered and on the

income of the consumers. It is a stochastic relationship. The supply relation

may be

yit = Φo + δy2t + Φ2%2t + ΦzX3t + v2u (2.59)

where v2t is an unobservable random term. Here yu represents the quantity

that producers would supply at the price y2t> In the market the price is

adjusted so that the quantity desired by the consumers equals the quantity

the producers are willing to supply. This price and quantity form the solution

to (2.58) and (2.59) for yu and y2t- We write the solution as the regression

Vit

yit 7Γ2O 7Γ21 ^23

Γ 1 Ί

(2.60)

where u\t and U2t are linear combinations of v\t and V2t It will be convenient

to re-write (2.58) as

&iyιt + <*2ί/2ί = 7ol + i/i^it + vit. (2.61)

If we write a\y\t + ot2y2t in terms of the regression form, we obtain

Γ 1 Λ

L , « 2 )

1/2*
7Γ22

(2.62)
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This is

if

7Γ22 7Γ23

(2.63)

(2.64)

Then (2.63) agrees with the demand function (2.61) if 70 = αiπio + 0:2̂ 20 and
+ α27Γ2i For (2.64) to hold, one needs

rank
7Γ22 7Γ23

= 1. (2.65)

To estimate the coefficients of (2.61) the matrix of regression coefficients is
estimated under the rank condition (2.65). Then an estimator of (aι,a2) is a
solution to (2.64) with the π's replaced by their estimators; the nonuniqueness
in the solution may be eliminated by requiring αi to be 1. This estimation
method is known as the Limited Information Maximum Likelihood procedure
[Anderson and Rubin (1949)].

3. A Regression Model: X Observed and Stochastic. We shall
now use our basic model (1.1) to develop the model that is usually associated
with canonical correlations and canonical variates. Suppose xa has the form

(3.1)

, xN be independent random vectors with q2 = q — 1 components

a ' — μx, £(xa "" βx)(xa ~ Px)' = ^xi (3-2)

. If we write Bι = μ y -B2μx, the model (1.1)

Let a?
and

and independent of Uι,
is

ya = μy + B2(a42 ) - μ^) + ti β , α = 1, • , N. (3.3)

Here £t/α = μy and, since a?α ̂  and ua are uncorrelated, the covariance matrix

cov

Va

ΈXB2

Σ y Σ i

(3.4)

say.
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The canonical correlations between ya and Xa are defined by

0 =
-pΣx

(3.5)

If we multiply (3.5) on the right by a determinant of value 1 (for p φ 0), we
obtain

0 =
B2ΈX I 0

\B>2 I

0 ~/>Σ

2 "" V^w "T •^2^Jx ^2)P •&22Jx

o - Σ X

PI V I I R V R' fV _L R T1
 D ; \ Λ21

"I - Σx\ • \B2ΣXB2(1 - p2) - Σup
2\.

If we replace p2/(I — p2) by λ, the equation (3.6) is equivalent to

- p<l2-p

(3.6)

(3.7)

Note that the number of canonical correlations different from 0 is the rank of

In (2.50) let X1 = eN and X2 = (x{*\* . , x™)'. Then

N N

A22Λ =
a=l

2.15

α = l

wherê i/ = (l/^EίLiWα a n d

use H and G defined by

qH = H =

= G =

(3.8)

(3.9)

^= 1x
(α2 ). Then in (2.23) we

(3.10)
JV

α - y)' -
(3.11)

which is a form of (2.55). If cĉ  is normally distributed, then (yf

aJXa )' is
normally distributed, the maximum likelihood estimator of Σ^ is

(3.12)
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and the maximum likelihood estimator of Σy is

N1
Έy = Έu + B2ΈXB2 = - Σ(ya - y){ya - y)'. (3.13)

The maximum likelihood estimators of the canonical correlations are the roots

of (3.6) with Σ u , Έ»x and B^ replaced by their maximum likelihood estimators.

Under normality the likelihood function of μy,μx,Έu,B2 and Σ^ (or

alternatively Bι,μx,Έu,B2 and Σ^) given the observations factors into the

likelihood function of i?i,jE?2, and Έu given the observations times the like-

lihood function of μx and Σ^ given x\ ,••• ,xN . Hence, likelihood ratio

criteria concerning the rank of B2 (or alternatively Σ ^ ) are the criteria of

Section 2, and the maximum likelihood estimator of B^ is given by (2.56) with

H and G defined by (3.10) and (3.11). (Note that Wx and Zλ can be defined

in terms of H and G.)

4. A Latent Variable Model: X Unobserved and Nonstochas-
tic. When X is unobserved, EY = XB' is an N X p matrix of rank at most

q (since X has q columns and Bf has q rows); EY is a matrix of parameters.

If p < g, there are more entries in X than in Y and hence X and B are

unidentified.

We shall restrict attention to the case of q < p and rank X = q. Then

the columns of X define a q-dimensional subspace in the AΓ-dimensional space

of the columns of Y and the columns of ίY — XB' lie in that subspace.

Indeterminacy, We see that for any nonsingular matrix A

XB1 = XAA-ΎB' = (XA^A^B'). (4.1)

Thus we can make the transformation

X -> XA, B' -> A~ΎB! (4.2)

without affecting EY = XB1. We can eliminate this indeterminacy by requir-

ing

If we also partition ya and ua as (yy

a ,t/a )' and (uκ

a',«» )', we can write

(1.1) as

yW = B*xa + uW,

(4.4)
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This is sometimes known as the "errors in variables" model. The unknown

parameters are JB*,05I, , ccn, and Έu. Another way of eliminating the in-

determinacy is to require

jξX'X = I (4-5)

and some conditions on B.

Even if the indeterminacy of transformations (4.2) is eliminated, all of the

parameters may not be identified; restrictions on Έu may also be necessary.

In Section 6 the case of Έu diagonal (factor analysis) is discussed.

Linear functional relationships. Let Γ be a (p — q) x p matrix such that

TB = 0, (4.6)

where 0 is (p — q) x q. Then

= X B ' Γ ' = 0. (4.7)

The components of (4.7) are called linear functional relationships.

There is an indeterminacy in (4.6) or in (4.7) because (4.6), for instance,

can be multiplied on the left by an arbitrary nonsingular (p — q) x (p — q)

matrix C; then

CTB = 0. (4.8)

Thus we can make the transformation

Γ - > C Γ (4.9)

without affecting (4.7). To eliminate this indeterminacy we can require

Γ = (J p - g ,Γ ). (4.10)

Then if (4.3) holds

0 = TB = ( V , , Γ * ) ( * * ) = S* + Γ*; (4.11)

that is,

Γ* = -B\ (4.12)

where each matrix is (p — q) X q. Thus the two ways of writing the model are

equivalent, and an estimator of B* is an estimator of — Γ* as well.

The elements of X are called latent variables or factor scores or incidental

parameters; the elements of B are structural parameters; and the elements of

U are errors. Increasing the sample size (increasing N) increases the number

of values of the latent variables (the number of rows of X), but does not

increase the number of structural parameters. Usually it is desirable to have
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a small value of q (number of factors). A model with such a small value is
called parsimonious.

Even if q is small, however, the normal likelihood does not have a maxi-
mum [Anderson and Rubin (1956)]. Hence, a maximum likelihood estimator
of XB (and/or X and B) and Έu does not exist. It is possible, however, to
estimate the parameters by other means if they are identified. One method is
to use the maximum likelihood estimators of B (or JB*) and Έu derived under
the assumption that X is random; see Section 5.

We turn to the case where there is an independent estimator of Σ u . Sup-
pose xf

a = (1, xKa ) and B = (JBi, #2)5 where xκ

a

 } has q<ι = q — 1 components
and B<ι has q<ι columns; then we can write

u a , (4.13)

is a vector of parameters.

(4.14)

The first matrix on the right-hand side is of rank 1; the second matrix is of
rank #2 &nd its columns are orthogonal to ê v. We shall write this N Xp matrix
of rank q<ι as

where x^ = (l/N) Σ ^ = 1

 x^ and φ - B\
Display (4.13) indicates that

N = (4.15)

with ΣίLi va = 0.
Let G be a matrix having the distribution VF(Σn, M); then G = (1/M)G

is an estimator of Σ t t . Define

N

H=NH (4.16)

Then y is an estimator of φ, and if and G are to be used to estimate (4.15).
Define d\ > • > dp as the roots of (2.23), t»i, ,wp satisfying (2.25) and
(2.26), and W1,W2,D1,D2,D,W,Z,ZU and Z2 by (2.27), (2.28), (2.29)
and (2.30), with m replaced by q2. Then (4.15) of rank q2 is estimated by

N =

y'x-y1

y'N-y1.

WXZ[. (4.17)

Note that W\ has q<ι columns and Z\ has q<χ columns corresponding to the
q<ι largest characteristic roots of G " 1 £Γ. The estimator has the same form as
(2.32).
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If the indeterminacy in (X2 - εjyx' )B^ is resolved by requiring B

(B2 ,Iq2), then the estimators of the two factors are obtained by solving

(NUN2) = [ ( X 2 - eNx" )B*2 ,(X2 - εNxy" ) | , (4.18)

where N2 has q2 columns. Then

B;' = (iV^ΛΓ2) N^NL (4.19)

5. A Latent Variable Model : X Unobserved and Stochastic.
Now we suppose the form and properties of the model in Section 3 hold except

that X is not observed, only Y. Then the vectors j / , ,J/JV are independent

with mean Sya = μy and covariance matrix

cov(τ/α) = B2ΈxB
f

2 + ΈU = Σ y , (5.1)

where i?2 is pXft = Pχ(tf~1) We assume rank Σ n = p and rank Σ^ = q2 < p.

As in the case of X nonstochastic the model has the indeterminacy of

multiplication of xκ

a by an arbitrary nonsingular matrix A (and hence Έx by

A on the left and A1 on the right) and B2 by A " 1 on the right; this indeter-

minacy can be eliminated by restricting B2 , for example, as in (4.3). There is

a further indeterminacy due to the fact that cov (ya) is the sum of a positive

definite matrix Σ n and a positive semi-definite matrix of rank q2. If x and y

are normal, B2ΈXB2 and Σu are unidentified. For identification we can (a)

restrict Έu and q2 or in some situations (b) obtain an independent estimator

of Σ w . An example of (a) is to require Σ u to be diagonal (components of ua

to be uncorrelated) and q2 small relative to p\ this model is used for factor

analysis, which is discussed in Section 6.

The model can alternatively be characterized by linear restrictions on

B2(x^-μx)' If Γ is a {p-q2)xp matrix such that TB2 = 0, then TB2x^ =

0,α = 1, , iV. These relations are called linear structural relationships. The

distinction between functional and structural was made by Kendall and Stuart

(1979).

Now suppose we have an independent estimator of Έu. Specifically let G

have the distribution W(ΈU9M) independent of H defined in (4.16). Define

d\ > - - > dp as the roots of (2.23) and w\, ,tϋ p as the vectors satisfying

(2.25) and (2.26). Since H estimates Έy = ΈU + B2ΈXB^ and G [= (1/M)G]

estimates Σ u , the difference H - G estimates B2ΈXB2. However, this esti-

mator is unsatisfactory because B2ΣXB2 is positive semidefinite, but H — G

is not necessarily. In fact, H = ZDZ*\G — ZZ1, and

H - G = ZDZ1 - ZZ1 = Z(D - IP)Z\ (5.2)
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where

D =

di 0
0 d2

. 0 0

0
0

dv.

= (tDi, ,Wp), (5-3)

and Z = (Wr) ι . The diagonal matrix D - Iv is positive semidefinite only if
^i > 1, i. = 1, p. With positive probability this is not the case.

To obtain a maximum likelihood estimator of B2ΈιxB2 that ιs positive
semidefinite we define p* as the number of di > 1; that is

(5-4)dp < • • < dp*+ι < 1< dp. < < d\.

Let q* = mm(q2,p*); q2 is the rank of B2ΈXB2. Let

d-ί 0 ••• 0 1

0 d2 ••• 0

L 0 0 da

W =

(wr1 = z =
where Wf and Z\ have q* columns. The maximum likelihood estimator of
B2 ΈXB'2 is

0

. 0

(z z

0
dq*+2 •

0

o -
0

dp.

, (5.5)

(5.6)

(5.7)

The rank of this estimator is

= q* = (5.9)

Note that this rank is random; it depends on H and G. If B1 = (J3| ,Iq2)>
then Έx and S | c a n ^e found from B2^xB

f

2.
Linear structural relationships. When the rank of B2ΈxB

f

2 is q2, there
exists a (p — q2) x p matrix Γ such that

'2 = 0 ,

or

Equivalently
ΓJ32ίc

(2) = Tμx with probability 1.

An estimator of Γ is

f = w2*',

(5.10)

(5.11)

(5.12)

(5.13)
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which is (p — q*) X p. The number of estimated linear relations is random.
To test the null hypothesis

H : rank B 2 ΣXB'2 = g0, (5.14)

where qo is specified, the likelihood ratio criterion λ is given by

ι=qo+l

if that is, p* > qo, and λ = 1 if p* < go- The hypothesis is rejected if λ < λo,
where λo is a suitable constant. The criterion leads to rejection if the p — qo
smallest roots are large enough; in particular, some of them must be larger
than 1.

An example of a situation having an independent estimator of Σ n is the
balanced one-way components of variance (MANOVA II). Suppose

= μy + va + uaj, j = l, ••-,*, α = l, ,π, (5.16)

where va ~ iV(O,Σv) independent of uaj and rank Σ v = q < p. In (2.8) the
nonstochastic μa has been replaced by the sum of μy and the random factor
va. Then yai ~ N(μy,Έυ + Έu) and cov (yaiyVaj) = Σ v , i ^ j . When we
make the transformation (2.40), then

OL - Vk μy + Vk va + Vkΰa, a = 1, , n, (5.17)

has the distribution N(y/kμy,Έu + kΈv). Further 2/*j,j = 2, ,n, has
the distribution iV(0,Σu). To summarize: y/kya,a = 1, ,n, here has the
distribution of ya, a = 1, , JV, in the first paragraph of this section with μ
replaced by λ/k μy and B^^xB^ replaced by kΈυ. (Note B^xB^ is a way
of writing a p x p positive semidefinite matrix of rank q<ι.)

Now H and G defined by (2.46) and (2.47) have Wishart distributions
W(Σlu + kΈυ,n - 1) and W[Σu,n(k - 1)], respectively. The matrix H =
(1/n) H estimates Έu + kΈv and G = {l/[n(fc - 1)]}G estimates Σ u . Define
£), W, and Z by (2.23) to (2.29) and D{ and Z\ by (5.5) and (5.7) with
q* = min(n - l,p*). Then

jfe Σ = Zi(JDJ - Iq+)Zi. (5.18)

Klotz and Putter (1969) derived this estimator when g2 = P- Anderson, An-
derson, and Olkin (1986) obtained the general result. See, also, Schott and
Saw (1984) and Amemiya (1985).
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6. Factor Analysis. The customary factor analysis model is that of

Section 4 or 5 with Έu diagonal. We write the model in traditional notation

as

+ μ + υ>a, α = l, ,JV, (6.1)

where Λ is p X q(q < p). The matrix Λ consists of factor loadings, and the

vector fa consists of factor scores [Thurstone (1947), for example]. We have

Eua = 0, Euaua = Φ diagonal. (6.2)

When the factor scores are random, we assume

εf« = o, εufa = *. (6.3)

Then

cov (ya) = Έy = ΛΦΛ' + Φ. (6.4)

The rank of ΛΦΛ' is q. Note that the off-diagonal elements of Έy are functions

of Λ and Φ; they do not involve Φ.

For identification we may require

Φ = I . (6.5)

This model is known as the orthogonal factor analysis model. Then ΛΦΛ' =

ΛΛ;, which leaves the indeterminacy of multiplication of Λ on the right by an

arbitrary orthogonal matrix. To eliminate this indeterminacy we may require

Λ'Φ^Λ = Δ diagonal. (6.6)

Here the diagonal entries 6{ are the roots of |ΛΛ; — tfΦ| — 0.

If

\[(p-q)2-(p + q)] (6.7)

is positive and #i > > #p, the parameters will usually be uniquely deter-

mined by μ and Έy that is, the model is identified. A sufficient condition for

identification up to multiplication of Λ on the right by an orthogonal matrix

is that if any row of Λ is deleted there remain two disjoint submatrices of rank

q. [See Anderson and Rubin (1956).]

Let

1 N

The maximum likelihood estimators of Λ, Δ, and Φ are a solution to

diagonal Φ = diagonal (C - ΛΛ;), (6.9)

( C - Φ ) Φ " 1 A = AΔ, (6.10)

Λ'Φ - 1Λ = Δ diagonal. (6.11)
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The diagonal elements of Δ are q largest roots of

\(C-Ψ)$-1-δI\ = 0 (6.12)

or

|C-Φ-?Φ| = 0. (6.13)

The columns of Λ are the characteristic vectors of (C — Φ ) Φ - 1 , and the i-th

column of φ-^Λ satisfies

(6.14)

the normalization is

x'Φx = δi (6.15)

[in keeping with (6.11)]. Note that C - Φ, Φ, and Φ" α Λ replace H,G and

W\ in the former analysis, but here Φ is not observed; it is an estimator

satisfying (6.9), (6.10), and (6.11). These likelihood equations can be solved

iteratively. [ If Λ is identified by the requirement that Λ' = (Λ*',/g), and Φ

is unrestricted, the maximum likelihood estimators of Λ* and Σ/ are Λ ^ Λ i

and Λ2Λ2, where Λ' = (Λ^Λ^) and Λ2 has q rows.] Lawley (1940), (1941)

obtained these estimators.

An investigator may ask about how many factors there are, that is, the

dimensionality of fa or the rank of ΛΦΛ. Consider testing the hypothesis

H : rank ΛΦΛ' = q0 (6.16)

given (6.7) against the alternative that Έy is positive definite (otherwise ar-
bitrary). The likelihood ratio criterion λ is given by

\VN= f[ (l+l), (6.17)
i=qo + l

where tfgo+i, jδp are the p - q0 smallest roots of (6.13). The hypothesis is
rejected if λ < λo for λo a suitable constant.
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