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ABSTRACT

In this paper we present an iterative procedure for classifying pixels
on the basis of multivariate observations (reflectances) taken by satel-
lite. The method requires the availability of an initial classification.
The procedure is multistage, involving successive reclassification of
the pixels until the procedure stabilizes. The updating procedure is
predictive Bayesian, and contextual. We illustrate the procedure with
an example based upon simulated data, and we study the distribution
of the simulations.
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1. Introduction

In this paper we present an iterative procedure for classifying pixels on the basis
of p-variate observations (reflectances) taken by satellite. The method requires the
availability of an initial classification of the pixels in a scene of interest. The procedure
is multistage, involving successive reclassifications of the pixels in the scene of interest,
until the procedure stabilizes (the newly reclassified scene, or map, hardly differs from
the last stage of classification). The updating procedure is predictive Bayesian, and
contextual, in that it depends upon observations from the immediate neighbors of a pixel
to be classified, as well as upon the observation vector from that pixel. The method we
propose is also "predictive", in that the classification procedure is conditioned on the
observed data (the observation vectors, as well as any training data available). When
population parameters are known, one way to obtain an initial classification is to use
the classical (non-contextual) approach (using a linear discriminant rule, in the case of
normal data and equal covariance matrices; or a quadratic discriminant rule, in the case
of normal data and unequal covariance matrices). (In this case, frequentist and Bayesian
methods coincide). This approach generally yields poor results with spatially correlated
data. A superior way would be to use a predictive Bayesian contextual procedure (see
Klein k Press, 1989, 1990, 1990b).

Recent work most closely related to ours includes that of Besag, 1986; Fu and
Yu, 1980; Haslett, 1985; Hjort and Mohn, 1984; Kittler k Foglein, 1984; Kittler and
Pairman, 1985; Mardia, 1984; Owen, 1984; Saebo et al., 1985; Swain, Vardeman, and
Tilton, 1981; Switzer, 1980; Tilton, Vardeman, and Swain, 1982; Welch and Salter,
1971; and Yu and Fu 1983.

We describe the iterative classification procedure in Section 2. We show a simulated
example in Section 3, and in Section 4 we present some general conclusions.

2. Iterative classification

Z(s) : p x 1 denotes a realization of the covariance stationary, spatial stochastic
process {Z(s) : s G Λ2}, where s is a point on the ground measured in a two-dimensional
coordinate system. Denote the observation to be classified as ZQ = z = (so). *o is to
be classified into one of the populations π» = ΛΓ(0t ,Σ t ), i — l , . . . ,/ ί , where Σ* > 0,
which means that Σ is a square, positive definite, symmetric matrix. We assume, along
with Elphinstone et al., 1985, that the normality assumption is quite reasonable for
LANDSAT type data, and that the covariance matrices are generally unequal.

We consider the immediate neighbor configuration shown in Figure 2.1 (this is the
case used in our example in Section 3). In Figure 2.1, Zj denotes an observation vector
from the . th immediate neighbor, j = l , . . . , r , for an rneighbor configuration, where
we have taken r = 8. The population memberships of the r neighbors, relative to that
of ZQ is denoted by the conditional configuration probability

P{zιeπPι,...,zr β πPr \z0 G πk} .

Let Tjfe denote the posterior predictive classification probability for the event that
zo belongs to TΓ*. That is,
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Figure 2.1. 8-neighbor configuration.

where N denotes the observations from the immediate neighbors of zo, and D denotes
the training data observations. By Bayes theorem, using oc to denote proportionality,

Tk oc Pk(so)g (ZQIN, D\z0 G TΓ*) ,

where Pk(so) denotes the prior classification probability (which may depend upon the
location so)>

and g(-) denotes the joint probability density for (zo,N, D), given that z0 G πk. Condi-
tioning on D, and on the classifications of the neighbors, gives

K K

P{z\ G π P l , . . . ,z Γ G (2.1)

where /(•) denotes the joint probability density for ZQ and its neighbors, conditional
upon the training data, and upon the classifications of (zo,iV); the second term in the
sum is the conditional configuration probability discussed above.

We now assume that somehow, the map has been initially classified, and we want to
proceed to stage two for a reclassification. We will use egn. (2.1) to reclassify each pixel
in the map. A problem is that we don't actually know the conditional configuration
probability; so we approximate it using the initial classification. Call the approximation
P. P uses the proportions of pixels that estimate P in the initial classification. The
larger the scene, the more accurate will be the approximation. While we don't require
a Markov random field assumption, we do require a spatial ergodicity assumption to
hold, so that spatial averages tend to population averages.

If we fix the classifications of the immediate neighbors at their population mem-
berships established by the initial classification, the summations in eqn.(2.1) disappear,
and eqn.(2.1) is approximated by

rk ocpk(so)f(zo,N\D,z0 G τrk,zi G 7Γ P l , . . . , z Γ G πPr)

G πPr\z0 G (2.2)
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Next note that /(•) may be rewritten as

f(zo,N\D,zo € π * , z i , € π P l , . . . ,zr G πPr)

, D, z0 G πki zι G πPι,..., zr G π P r )

0 €π f c,*i G τrP l,...,zΓ G τrP r).

But the conditional density of TV, /2( )> depends only upon the classification of the
neighbors, and not upon the event {ZQ G TΓ*}, SO /2( ) does not depend upon k; so it
may be absorbed into the proportionality constant. Eqn.(2.2) then becomes:

TΓjfe oc Pk(so)fi(zo\N1 D, z0 G πki zx G πPl,..., zr G πPr)

•P{*i G π P ι > . . . , zr G π P r |z 0 G π*}. (2.3)

What should we use for Pk(so) at stage 2? Bayes theorem asserts that the best
information we have about z0 at stage 2 is what we learned from stage 1. Accordingly,
at stage 2 we replace Pk(so) by r* at stage 1, the stage 1 posterior probability for the
population membership of ZQ. Thus, if Tk(n) denotes rfc at stage n, as an updating
equation we use

rk(n) = τk(n- l)/i(zo|ΛM>,zo £*k,zι € π P l , . . . , * Γ G πP r)

-P{zχ G π P l > . . . , z Γ G πPr |*o G π*}. (2.4)

Note that /ι( ) and P( ) both may change at each stage of iteration. At any stage
we use eqn.(2.4) to reclassify every pixel in the map on the basis of the classification
on the previous stage. In the example in Section 3 we use an δneighbor configuration
for reclassification. The procedure is iterated until the new map classification has not
changed much from the last classification. In all examples we have tried, the iterative
procedure has stabilized at a final map classification in less than 15 iterations (for
one-dimensional data assumed to be independent; a longer period of iteration may be
required for correlated, high dimensional data). Various loss function criteria may be
used for actual classification of a pixel, but a simple criterion to use is: classify a pixel
into that πk for which T* is a maximum.

3. Example

In this section we present an example of the interactive classification procedure
described in Section 2. The example is based upon simulated data, so we know what the
correct map really is. The simulations we carried out differ from most other simulated
examples in this area in that instead of running our problem for one or several trials, we
have run it for 100 trials, and we have studied the distribution of the simulated results.
As a consequence, we can study the variability of the classification procedure, as well
as its mean or median percentage of correct classification, for each of the populations
present in the scene. We assume observations are one-dimensional, and are independent,
given the map. Our criterion for a good classification procedure is: percentage of correct
classification (PCC). We also evaluate the PCC for each population separately.

The example involves the 88 x 100 true map shown in Figure 3.1. It is taken from
Besag, 1986. The map involves only two populations, but the boundaries between the
populations are quite complex. There are 6,398 pixels in π\ = N(0,1) and 2,402 pixels
in 7r2 = N(δ, 1). We have taken training data from all of the pixels in columns 15, 40,
65, 90. We have used 8 neighbors for updating, as well as 8 neighbors to arrive at an
initial predictive Bayesian contextual classification (see Klein and Press, 1989).
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Figure 3.1. True Map.

Figure 3.2 shows a comparison of the iterative solution (vertical bars), and the
predictive Bayesian 8-neighbor contextual classification solution (blank bars). (Note
that the horizontal bar solution in Figure 3.2, arrived at by simulation is approximately
the theoretical probability of correct classification for the case of known parameters.)
It is seen that the mean PCC always improves with the iterative Bayesian classification
solution.

Figure 3.3 shows the combined effects of separation between the populations and
quality of initial solution.

Figure 3.4 shows Box-type plots of the simulation distributions.

Figures 3.5a, b, c show, for δ = 1, map classifications corresponding to the means
of the simulation distributions. Comparison of Figure 3.5c with the true map in Figure
3.1 shows that the iterative Bayesian classification procedure did an excellent job of
classifying the pixels in this complex scene, and of reconstructing the original image
(about 92% of the pixels were correctly classified).

Our final graph, Figure 3.6, shows Box-type plots for the case of πi = 7V(0,1), and
π 2 = iV(l, 1). The results are seen to be extremely stable with little variability about a
PCC in the vicinity of 90%.

4. Conclusions

(1) The Iterative Bayesian solution is better when it starts with an initial con-
textual solution with 8 neighbors than when it starts with a classical solution
(with no neighbors). The difference is about 5% for δ = 0.5, in the example.
The conclusion therefore is that, how good the initial classification is matters
greatly.

(2) The spread of the distribution of percentage of correct classifications decreases
with increasing size of the map, and with increasing separation of the popula-
tions.
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Figure 3.2. Comparison of percentage of correct classifications for iterative solution
with classical and 8-neighbor contextual solutions, δ = distance between means.
Bars with horizontal ruling: no neighbors (classical solution - no iteration). Blank
bars: 8 neighbors (no iteration). Bars with vertical ruling: iterative solution with
8 neighbors, initial solution 8 neighbors.
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Figure 3.3. Dependence of iterative solution on quality of initial classification, δ =
distance between means. PCC = percentage of correct classification. Continuous
line: initial solution (8 neighbors). Dashed line: initial solution (no neighbors).

(3) Improvement over the initial contextual solution with 8 neighbors increases
with decreasing separation of the populations. Improvement is about 6% for
δ = 0.5.
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Figure 3.4. Box-type plots for simulation distribution of total percentage of correct
classifications.

Figure 3.5a. Classical solution - (no neighbors) (PCC, PCC(l), PCC(2)) = (66.5,63.6,74.2).

(4) The solution improves over the initial classification and gives a "smoother"
map, m the sense of fewer boundary changes that are not required.

(5) The sampling distribution of PCC is approximately the same, regardless of
whether we are interested in πuπ2, or the overall classification.
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Figure 3.5b. Predictive Bayesian contextual solution - (8 neighbors) (PCC, PCC(l) PCCf 2))
(89.0,92.6,79.6). '

Figure 3.5c. Iterative solution - (with 8 neighbors for updating, and with initial
solution with 8 neighbors) (PCC,PCC(1),PCC(2)) = (92.8,93.2,91.7).
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Figure 3.6. Box-type plots for simulation distribution of percentage of correct
classification supposing equal variances. Qι = 1st quartile, Q3 = 3rd quartile.
Classical PCC = (69.1,69.1). PCC = |[PCC(τn) + PCC(τr2)]
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