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ABSTRACT

The problems of estimating certain infinite-dimensional unknown pa-
rameters (such as interaction potentials, local characteristics, etc.) for
Gibbs states are considered in this paper. We describe the construc-
tion of consistent estimators for one-dimensional Gibbs states and
discuss the possibility of extending these results to multi-dimensional
Gibbs states.
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1. Introduction

Gibbs states have played an important role in recent developments of spatial statis-
tics and image processing (cf. Besag (1986), Geman & Geman (1984), Ripley (1988)).
For instance, a two-dimensional picture may be described as a continuous region being
partitioned into a fine rectangular array of sites or picture elements (“pixels”), each
having a particular color, lying in a prescribed finite set. Most researchers assume there
is a probability distribution on the set of pictures, and choose Gibbs states as models
for this distribution.

Gibbs states were originally introduced as models in statistical mechanics. A par-
ticle on each site of a two-dimensional integer lattice may represent the “spins” of a
magnet, and there usually are interactions between particles at different sites. A con-
figuration consists of particles on all sites. Gibbs states are probability distributions on
the set of all configurations. In image processing, particles are interpreted as colorings
(pixel variables). Other intrinsic properties of Gibbs states are preserved.

In statistical context, Gibbs states are parametrized by certain unknown parameters
which affect the interactions between pixels. One wants to estimate those parameters
based on collected data. For our interest, the data are finite samples which are larger and
larger pieces of an infinite configuration on a two-dimensional lattice from an infinite-
volume Gibbs state (see Ruelle (1978) for its general definition).

The current state of art of parameter estimation for Gibbs states is reflected by
a series of papers of Gidas (cf. Gidas (1986), (1987), (1988a), (1988b)). Assuming
the Gibbs states are parametrized by elements in a finite-dimensional Euclidean space,
Gidas constructed the maximum likelihood estimators and showed that they are (i)
consistent even at points of phase transitions; (ii) asymptotically normal and asymp-
totically efficient under appropriate conditions. He also investigated the asymptotic
bias and variance, and studied the estimation problem based on partially observed data
(degraded images).

As Gidas pointed out in his papers, one interesting open problem is to estimate
certain infinite-dimensional unknown parameters which parametrize Gibbs states. In
this case, consistency of maximum likelihood estimators fails in general. Therefore new
ideas and methods need to be brought in. In Section 3 of this paper, we state a new
result in estimating some infinite-dimensional unknown parameters for one-dimensional
Gibbs states. We also give some heuristic arguments and make a few comments on the
case of multi-dimensional Gibbs states in Section 4.

From the point of view of picture restoration, people prefer simple models such
as Markov random fields with the nearest neighbor interactions, because the models
with many parameters may be computationally too complicated. Nevertheless, it is still
worthwhile considering models with infinite-dimensional parameters as the first step
when we do not have much information about the true model. The estimators proposed
in this paper may be more robust and easier to compute than estimators of maximum
likelihood type. Further discussion in this respect will be in Section 4.

2. Basic model and notation

We adopt the following general (binary) Ising model to illustrate the estimation
problems under investigation. The general framework of multi-dimensional Gibbs states
is given in Ruelle (1978).



132 Chuanshu Ji - X

Let Z? be the two-dimensional integer lattice. With each pixel i € Z%, we associate
a random variable X; taking values in the set {—1,1}, i.e. X; represents the coloring of
the pixel 7. —1 and 1 may stand for “black” and “white” respectively.

A sequence of non-negative numbers J = {J(k), k € Z2} specifies the pair interac-
tions so that J(i — j) represents the interaction between the pixel ¢ and pixel j. We
assume that

(A1) J(k) >0,V k € 2%
(A2) J(i—j) = J(j — i),V i,j € Z% (symmetry)

(A3) ¥ J(k) < oo. (summability)
kez?

Apparently, the interaction function J so defined is also translation-invariant. An
interaction J is said to have finite range if J(k) = 0 for all ¥ with sufficiently large
Euclidean norm ||k||. For our interest, J should have infinite range.

For each configuration z = (z;,i € Z2) and each particular pixel £, define the energy

Hy(z) = hzy + B '?l J(i — O)zizy, (2.1)

where h € R is called the external field coefficient and 8 > 0 is called the inverse
temperature. H,(z) can be interpreted as the contribution of the pixel £ to the total
(pair interaction) energy associated with the configuration z.

The local characteristic at pixel £ is given by

P th(x) 9.9
[(z) - Z ) ( . )
where Z = Z(£; z;,i # £) is the normalization such that
T P(z) = 1. (2.3)
zy

The two-dimensional Gibbs state p is a probability measure on the space Q =
{=1,1}*" such that if X = (X;,i € Z2) has the probability distribution y, then for
every €22 and z € Q

p(Xe=zelXj =25, j #£) = Pe(2). (2.4)
So P(z) is the conditional probability (under u) that the coloring at pixel £ is z,

given that the colorings at pixels other than £ are z;, j # £. Note that the local

characteristic Pé{Pt(:v),f € 2%,z € Q} need not uniquely determine p (possibility of
phase transition).

For each finite subset S of Z2, let zs = (z;,j € S) be the sub-configuration of
restricted to S. And for each i € Z2, let z54; = (2;4i,j € S) denote zs translated by
i. p is said to be stationary if for every finite S C 2%, i € Z% and zg

W Xsti = zs) = p(Xs = zs). (2.5)
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In this case the local characteristic P is also translation invariant in the sense that
w(Xe=zo|Xe4j =2j,j #0) = Po(z), VL€Z? and z€Q. (2.6)
Note that the translation invariance of P does not imply the stationarity of 1 (possibility

of symmetry breakdown).

The Gibbs state u is parametrized by h, 8 and J. If h,3 are unknown and J is
known, that would be a special case of the model Gidas considered. In this paper, we
assume h, 3 are both known and J is unknown, which is an infinite-dimensional param-
eter. Let A, be an n x n symmetric square in Z2, then X4, contains n? observations.
We consider the following estimation problems:

(I) Estimate the local characteristic P = P(J);

(II) Estimate the interaction function J.

Since (2.5) implies (2.6), by assuming the true Gibbs state u is stationary we only
need to estimate the function Py(-) in (I). It is observed that under our assumptions,
for every finite A C Z? the conditional probabilities p(Xa = zA[Xac = z4¢), £ € Q can
be derived from Py(-).

A random function 7;, on § constructed from Xy, is called a (strongly) consistent

estimator of Py(-) if for every J

sup |Tn(y) — Po(y)] — 0, a.s. under p as n — oo. 2.7)
yeN

Such an estimator 7, was constructed in Ji (1988) for one-dimensional Gibbs states
when J satisfies certain conditions. The results will be sketched in Section 3.

The problem (II) is more subtle than (I) because J does not have a clear proba-
bilistic interpretation as P has. In Section 4 we will give some ideas how to estimate J
based on the estimator T}, for Py(-).

3. Estimating local characteristics for one-dimensional Gibbs states

One-dimensional Gibbs states themselves are important in topological dynamics
(cf. Bowen (1975)). They may also be used as models in categorical time series. In this
section some results for the problem (I) are stated in the context of one-dimensional
Gibbs states. Hopefully, they could shed light on the multi-dimensional cases. All proofs
are omitted. Further details can be found in Ji (1988).

For convenience we let the configuration space be
vt = {z = (zo,21,...):zi=—1o0r 1,i =0,1,...}.
The results in this section can also be extended to other cases:
(i) = = {~1,1}%, the set of all two-sided sequences;

(i) =% (resp. £4), the set of all one-sided (resp. two-sided) sequences in which tran-
sitions between certain states of their coordinates are not allowed.
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Let X = (Xo, X1,...) be a stationary sequence with the probability distribution p.
Assume that the interaction J satisfies

J(n)<Cp*, YVneN andsome C >0, pe(0,1). (3.1)

Then for every h,3,J there uniquely exists a Gibbs state p. Moreover, the following
“uniform mixing” condition holds.

Lemma 3.1. Let A,,_ be the o-field generated by (Xo,...,Xm-1); Amtn,c0 be the
o-field generated by (X;,i > m + n). Then there exist constants C > 0 and a € (0,1)

such that
uANB)

l——5—%%
p(A)-p(B)
uniformly for all A € Apm—1,B € Am4n,c0o and all m,n € N.

1] < Co™ (3.2)

The local characteristics at 0 now are written as

Po(z) = p(Xo = zo|Xi = zi,t €N) ép(zolzl,xz,...),x ext. (3.3)

Py(+) is a unknown function when J is unknown. Given observations Xo, ..., Xn-1,
we want to construct T}, such that

sup |T,(y) — Po(y)| — 0, a.s. under p as n — oo. (3.4)
yes+

This is just the one-dimensional version of (2.7). In (3.3) Py(-) may be regarded as an

infinite-step backward transition function, which suggests the following plan to construct
Tn.

We first approximate Po(-) by a sequence of finite-step (backward) transition func-
tions {u(zolz1,...,2m-1), m € N,z € T*¥}. Then at each stage m we estimate
u(zolz1,...,2m-1) by “sample transition function” which is a ratio of two empirical
measures. Based on convergence rate of estimators, we argue that the “step-length” m
should grow like ¢ log n, where the constant ¢ is determined by certain bounds for the
sequence J and its tail parts.

Define the forward shift operator ¢ : £+ — £+ by (02), = 2p41,n = 0,1,. .., for
z € &1, Then we have

Construction of T,

Given Xo,...,Xn—1, we define n periodic sequences ¢/ X(n),j = 0,1,...,n — 1,
where
X(n) = (XQ, .o -,Xn—l;XO) .. ')Xn—I; .. )

For each y € £t and m < n let
-1 .
NE() ="S H(@ X () = ye, b =0,1,...,m — 1},
i=

n—1 .
M) = 8 H@ X (e =y k=1, om =1},
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where (7 X (n))y represents the k-th coordinate of the sequence o7 X (n). Finally, define

N (y) (n)
=B, if N2 (y) >
Ta(y) = { Nata®) - (3.5)

0 , otherwise

(")(y)/ (n) 1(1})

n
appearing in the slot 0 given that yl, .<yYm—1 appear in the slots 1,...,m — 1. The
next two theorems show that under certain conditions T, satisfies (3.4).

Ta(y), also written as , is the “sample conditional frequency” of yo

Theorem 3.2. Suppose there are two known constants K > 0 and p € (0, 1) satisfying

sup J(n) <K. (3.6)
neN p"

Then there exits ¢ € (0,1) which only depends on K and p such that T, satisfies (3.4)
if we choose
= [c log n]( the integer part of ¢ log n). 3.7)

Theorem 3.3. If we drop the assumption (3.6) and choose a sequence of constants
{cn,n € N} such that ¢, | 0 as n — oo with an arbitrarily slow rate (e.g. ¢, satisfies
cnlogn — 0o asn — o0). Set m = [¢, log n]. Then T, also satisfies (3.4).

Note that (3.2) is a very strong mixing condition, under which X can be decomposed
into two nearly iid sequences by the standard “blocking” and “splitting” technique.
Hence some classical large deviation results hold. However, (3.2) need not be necessary
for constructing consistent estimators. Future improvement is possible.

4. Comments on the two-dimensional case
For the problem (I), we may just imitate the construction of 7, given in Section 3.

Without loss of generality, assume that the origin 0 is either at the center of the
square A, (when n is odd), or near the center of A,, (when n is even). Let B, be an
m X m symmetric square where

m = the greatest odd integer less than or equal to \/c log n, (4.1)

c € (0,1) is a constant. We let 0 also be the center of By,. A, can be partitioned into k
sub-squares B ... B(®*) plus some remainders near the edge of A,. Each BU) is of
sizemxm, j=1,...,kand B() = B,,. Accordingly X, consists of sub-configurations
Xpu,ij=1,...,k plus the remainders.

For every y € Q, let

N™(yg, )= I{XBm =YB.};

II M?r' II M?r'

N™(yp,.\{0}) I{XB(J)\{t } = YB.\{0} }>
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where ¢; is the center of BY), j = 1,..., k. Define

N™(ys,) if N(n) >0
Ta(y) = { YO Wam(0))’ ! Wsn\(0}) > 0, (4.2)
0 , otherwise.

We conjecture that T, would satisfy (2.7) if J satisfies certain conditions. What kind
of conditions should it be? Unlike the one-dimensional case, here it is not enough to
Jjust specify the tail behavior of J. For example, if h = 0 and 8 > B, (8. = inverse of
critical temperature), then phase transition occurs even when J is the nearest neighbor
interaction (i.e. J(k) = 0 for all k satisfying ||k|| > 1). In this case, the consistency of T,
would fail because p is not unique and all mixing properties break down. Actually, the
Gibbs random fields have long range dependence. The similar construction might still
provide consistent estimators if we assume that h,3 and J correspond to an extremal
Gibbs state and adjust the “grid size” m from [/c log n] to something smaller (e.g.
m = [¢( log n)*], A > 0 is small). However, all these speculations seem to be premature
for the time being. Some work related to those open problems is in the process of
development.

So far we have not discussed how to solve the problem (II). One way to do it is to

derive the estimator f(k) of J(k)(k € Z2,k # 0) from the estimator T, of Py(-). Notice
that J can be determined by Py(-) in the following way.

For every z € Q, let 2’ = (z;,i € Z2,i # 0) and

a(zy=h+p8 £ J(k)z. (4.3)
k#£0
eToa(z’)
Then Po(:l!) = m.
Set g = —1 and denote the corresponding z by z’_;. We obtain
a(2') = * logl— — 1]. (4.4)
2 Po(l:l_l)

Furthermore, let y,z € Qsuch that yo = -1, yi =1,i #0;and 2z, = 1, z; = -1, i # k.

By setting 2/_; = y and z’_; = z respectively in (4.4) we have for every k € Z?,

(AN YEY W ST O ST | I B

If we have the estimates of Py(y) and Po(z), then (4.5) will produce the estimate of
J(k).

There could be a more direct way to estimate J based on Grenander’s sieves method
(cf. Grenander (1981), Geman & Huang (1982)). If each sieve is generated by only
finite number of parameters J(k), then on each sieve we may try to find the maximum
likelihood estimators and see if their limit yields a consistent estimator of J when the
sequence of sieves tends to the whole parameter space. A drawback of this approach
is that usually the maximum likelihood estimators are computationally intractable if
there are many parameters. While our previous method based on counting frequencies
looks simpler. Actually, that is also one way of choosing sieves.
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