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OPTIMUM EXPERIMENTAL DESIGNS FOR CHEMICAL KINETICS
AND CLINICAL TRIALS

By ANTHONY C. ATKINSON
London School of Economics

Optimum designs are found for estimating the order, as well as the rate, of chemical
reactions. Compound design criteria provide designs easily specified by experimenters.
A second application is to the design of sequential clinical trials when prognostic factors
need to be considered. Comparisons are given of several design strategies, including
some of “biased-coin” type.

1. Introduction. The paper describes two applications of the methods of opti-
mum experimental design. The general theory is described in Section 2 with an em-
phasis on compound D 4-optimality. Models arising in chemical kinetics are described
in Section 3: the emphasis is on designs for determining the orders, rather than just
the rates, of reactions. Compound criteria provide flexible families of designs easily
specified by experimenters. Section 4 briefly mentions design construction when the
kinetic differential equations do not have analytical solutions. The last section uses
a randomized form of D 4-optimality to provide “biased-coin” designs for treatment
allocation in sequential clinical trials with prognostic factors. Asymptotic comparisons
with other procedures are augmented by simulations for finite sample sizes.

2. Optimum design theory.

2.1. Ezperimental designs. The experiment consists of measuring the response y at
conditions specified by the values of k factors or explanatory variables represented by
the £ x 1 vector z. One experimental run yields one observation y; and the experimental
design is a list of the n sets of conditions z;,7 = 1,...,n, not necessarily distinct, at
which measurements are to be made. We assume that the response, y, for a multiple
regression model has mean E(Y) = FJ3 and dispersion matrix D(y) = 21,02 > 0 with
I the n x n identity matrix. The ith row of the n x p extended design matrix F' is
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the 1 x p vector fT(z;), a function, usually a low order polynomial, of the explanatory
variables.

We use a general definition of an experimental design in which £ is a continuous
design specifying a set of m distinct points in a design region X and the proportions,
w;, of observations taken at these points

Tlyeooy Ty,
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The z; are the points of support of ¢ and w; the design weights. In practice, when
only n observations can be taken, an exact design will be required. Often the optimum
exact design is approximated by a design with the number of trials at z; the integer
closest to nw;. The information matrix of a design £ for the p parameters § is thus
given by

(2.1) M(&) = FTWF,

where
W = diag{wy, ..., wn}

and now F'is m X p.

2.2. Compound D-optimality and Ds-optimality. D-optimum designs maximize the
logarithm of the determinant of the information matrix, log |M ()| or, equivalently,
minimize the asymptotic generalized variance of the parameter estimators. For the
various applications in this paper we need the extension to generalized D-optimality
in which the function to be minimized is

H
(2.2) > ojlog |[AT M (€) Ay.

=1

The criterion permits designs for H different models which may be fitted to the data,
for the jth of which the information matrix is M;(£). The matrix A; defines s; linear
combinations of the p; parameters in model j which are of experimental importance
and the non-negative weights «; express the relative importance of the different aspects
of the design. Examples of compound D-optimum designs for linear models are given
by Atkinson and Donev (1992, Chapter 21), and by Cook and Wong (1994). Here they
are used in Section 3.3 for nonlinear models.

The General Equivalence Theorem of Kiefer and Wolfowitz (1960) makes it possi-
ble to check the optimality of a candidate continuous D-optimum design. With the
standardized variance of the prediction at z from one model defined by

(2.3) d(z,€) = fT(@) M~ () f (),

the relevant part of the Equivalence Theorem states that, for the optimum design, £*,
the maximum value of d(z, £*) over the design region, X, is p, the number of parameters
in the model, and further that this maximum value is attained at the support points £*.
The theorem also provides a basis for algorithmic construction of D-optimum designs
[Wynn (1970)].
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For the compound criterion in (2.2) the equivalence theorem becomes
(24) d(z,§) = Jf(J) 7HENA{AT MFHE) A} AT MGTHE) fip) ()

<

an u[\/]m

If only an s subset of the parameters (3, is of interest, let the parameters be par-
titioned as BT = (67 pT) with the information matrix M (&) partitioned so that the
information for f; is M;1(§). Then the D,-optimum design for 3, minimizes the spe-
cial case of (2.2) with H =1 and AT = (0 ;). If M~1(£*) is partitioned so that the
covariance matrix for 3, is M?2(¢*), it follows that the design minimizes log|M22(£*)],
which is identical to maximizing log{|M(&)|/|M11(§)|}. The Equivalence Theorem for
D;-optimum designs states that, for the optimum measure &*

(2.5) d(z,¢) = fT(z)M (&) f (z) = f (@) MG () fy(2) < s

where f,(z) relates to the information matrix My, (€).

2.3. Nonlinear models. In the next section we are concerned with nonlinear exam-
ples in which the single explanatory variable is the time ¢ at which the measurement
is taken. The response for the nonlinear regression model has mean E(Y) = (¢, ),
with dispersion matrix as before. Here 7 is a function nonlinear in at least one of the
p parameters 1 and t is defined on the time interval 7. The information matrix of a
design £ for the parameters 1 is given by

M(¢,4) = FTWF,

where r
f (tla’l/))
F= : )
fT(tpa ,'7[))
and the vector f7(¢;,) has j-th element
fi(ti,¥) = M, for j=1,...,m

0;

The information matrix, although formally similar to that for the linear model, now
depends on the unknown parameter, 1. A natural way of accommodating the obvious
problems which follow from this dependence, is to adopt a best guess for the parameters,
say 1°, and to consider designs which maximize an appropriate function of M (&, )
evaluated at ¢ = ¢° [Chernoff (1953)]. Such designs are termed locally optimum. An
alternative, if prior information on the distribution of 1) is available, is to incorporate
the information into the design criterion.
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2.4. Bayesian designs. In Bayesian D-optimality, we find the maximum of the
expectation, with respect to the prior parameter distribution p(1)), of the logarithm of
the determinant of the information matrix, that is

(2:6) By log|M(,%)| = [ log|M(, 9)lp(y)dy,

is maximized. A discussion of this form of Bayesian experimental design is given by
Chaloner and Larntz (1989). Chaloner and Verdinelli (1995) give a full review. Several
examples are given by Atkinson and Donev (1992, Chapter 19).

The mathematical relationship between this Bayesian criterion and the criterion for
compound D-optimality (2.2) becomes clear if the integral in (2.6) is calculated numer-
ically, when the criterion reduces to a weighted sum of the logarithms of determinants
for the various values of 1.

An Equivalence Theorem also applies here. For the D-optimum design £* we must
have

(2.7) d(t,€) = [ T EOME VI YIpW)dY < p,

where p is still the number of parameters in the model. The maxima of (2.7) are once
more at the points of support of the design, a feature which is useful in constructing
and checking optimum designs.

The locally optimum designs of the previous subsection for nonlinear models almost
invariably put trials at p design points. A feature of Bayesian designs is that, as prior
uncertainty about 1 increases, the number of design points also increases.

3. A nonlinear model: general decay.

3.1. Models from chemical kinetics. Locally D-optimum designs for nonlinear mod-
els were introduced by Box and Lucas (1959). The models came from chemical kinetics.
Although the chemistry of the reactions was not stressed, it was assumed that the orders
of the reactions were known and that the rates of the reactions were the parameters of
interest. Atkinson and Bogacka (1997) extended this work to include the determination
of orders of reaction, using the compound optimum design criterion described in Sec-
tion 2.2 to provide methods for aiding experimenters in balancing different objectives
of the experiment. A summary of the problem follows.

Reviews of optimum experimental design for nonlinear models in general include
Ford, Titterington, and Kitsos (1989), Ford, Torsney, and Wu (1992) and Atkinson
and Haines (1996). For models arising specifically in chemical kinetics, both Box and
Lucas (1959) and Atkinson and Donev (1992) find locally D-optimum designs for the
nonlinear response model resulting from first-order decay

AL B
in which the concentration of chemical A at time ¢ is given by the nonlinear function
(3.1) [A] = n(t,0) = ™ 8, >0),

39



if it is assumed that the initial concentration of A is 1. The model comes from solution
of the differential equation ]
d[A
3.2 — = —0[4],
(3.2) g [4]
which assumes first-order kinetics. More generally, the order of the reaction may be
represented by the parameter A\, when the differential equation becomes
d[A]
3.3 — = —g[A]",
(33) 2 = o)
so that, for (3.1) and (3.2) A =1.
In a simple case such as (3.3) the more general differential equation can also be
integrated to yield a new model in which the expected value of concentration at time
tis

(3.4) [A] = n(t,9) = {1 = (L= N0 (X6, > 0,1 #1),

where 1 = [6,\]T. As A — 1, (3.4) reduces to (3.1). For A < 1,[A] = 0 for ¢ >
1/{(1 — X\)8}. However, for many kinetic models, it is only possible to obtain explicit
expressions like (3.4) for a few values of A\. The implications for experimental design
of the lack of analytical solutions are discussed in Section 4.

Calculation of locally D- or Ds-optimum designs for the general decay model (3.4)
requires values of the derivatives

filt, ) = on(t,y)/00 and

(3.5) fa(t,9) = 0On(t,¢)/0A,

which can be found analytically to be:

(36) At p) = —t{1 — (1 = 2o}V
and

(37)  falt, ) = {1/(1 = A)*Hlog{1 — (1 — N6t} + (1 — N)8t/{1 — (1 — X)6t}]
x{1— (1= N0t} for ¢t <1/{(1 - \)8}.

The case of exponential decay, A = 1, requires special attention. Differentiation of
the response (3.1) yields

(3.8) fi(t,9) = —texp(-6t),

which can also be found as the limit of (3.6) as A — 1. The same limiting operation
on (3.7) yields

(3:9) lim fat, ) = 5(61)” exp(~60).
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Although (3.8) is found directly with A = 1, calculation of the derivative (3.9) requires
the derivative (3.7) for general A. So, even to find designs for testing whether A = 1,
we need (3.7).

3.2. Some designs.

3.2.1. D-optimum designs for the rate . We partition the parameter as ¥ =
0  N)T, with My;(€,v9) = Mi1(&,6) the information for 6. If the order of reaction, A,
is known the locally D-optimum design for 8 puts all the trials where log |M; (&, 6°)] is
a maximum. In the case of one-point designs | My (€, 6°)| = | f2(£,60°)|, so the absolute
value |f1(&,6°)| is maximized. Differentiation of (3.6) with respect to ¢, followed by
equating the derivative to zero, shows that the optimum design concentrates all trials at
t = 1/6°, a result which is well known for the special case A = 1. Atkinson and Bogacka
(1997) provide plots of the variance (2.3) which demonstrate that the one-point designs
are optimum.

3.2.2. D-optimum designs for both parameters. If both parameters are of interest,
the D-optimum design is found which maximizes log |M (&, 1°)|. For the two-parameter
model the D-optimum design has two points of support, with weight 1/2 at each, the
times of the design points depending on the prior values of the parameters. For the D-
optimum design for 6 of the previous subsection, ¢ = 2 when 6° = 0.5. The D-optimum
design for both parameters has time points either side of this value. As \° increases
from 0.5, ¢t; remains sensibly unchanged, decreasing from 1.27 to 1.24 at \° = 2. Over
the same range t, increases rapidly from 3.09 reaching 11.03 for A\° = 2. This emphasis
on high values of ¢ when A° is large is in line with the increase in response at large ¢
as A increases.

3.2.3. Ds-optimum designs for the order of reaction A. If the main purpose of the
experimenter is to determine the order of the reaction, with the actual value of the
rate constant 6 of secondary importance, the D;-optimum design for )\ is appropriate.
The required design maximizes log(|M (&, )|/ Mi1(€,6)).

Like the D-optimum designs above, the D;-optimum designs have two points of
support. Unlike them, however, the design weights are not equal: w,, the weight for
the upper time point, ranges from 0.570 when \° = 0.5 to 0.693 when \° = 2. Over the
same set of values of A, ¢; decreases from 0.980 to 0.849 while ¢, increases from 3.33
to 17.38. These designs require more extreme values of time than do the D-optimum
designs.

3.3. Compound optimum designs. Three different designs were described in the pre-
vious subsection: the D-optimum design for # with A known, maximizing log | M, (€, 6°)],
the D-optimum design for § and A maximizing log |M(&,°)| and the Ds-optimum de-
sign for the order A maximizing log{|M (&, ¢°)|/|M11(£,6°)|}. We now find compound
optimum designs which provide a practically useful balance between the objectives of
these individual designs.

For determining the order of the general decay model, the most extreme designs
are the D-optimum design for 6 alone, which is completely uninformative about A, and
the D,-optimum design for A, which is most informative. Combining these two as in
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(2.2) yields the compound design criterion
(310) @(6, 1/1) = (1 - a) longl(é’ 0) + OllOg{lM(f, 1/))|/M11(§, 0)}

In (3.10) o, (0 < a < 1) expresses the experimenter’s relative interest in determination
of the order of the reaction, with a = 1 corresponding to interest solely in order
determination. When « = 0.5, the criterion reduces to a scalar multiple of that for
D-optimality. Since multiplication of the design criterion does not affect the optimum
design, we have a precise interpretation of D-optimality as intermediate between the
other two criteria.

Despite the precise meaning to be given to o = 0.5, it is unlikely that an exper-
imenter will be able to specify a numerical value of a. To obtain a suitable design
we find, by numerical optimization, the designs maximizing the compound criterion
(3.10) for a series of values of @. For each we calculate the efficiencies of the design
relative to the D-optimum design for the estimation of rate, the Dg-optimum design
for estimation of order and relative to the D-optimum design for both. A plot of these
efficiencies against o makes it possible to choose a design with a balance of efficiencies
for all aspects of the problem.

Plots of these efficiencies are given in Figure 1. The compound designs themselves
are not given. However for 0.5 < o < 1 the designs consist of experiments at two
values of time with unequal weights, both the weights and times being between those
for the D- and Dg-optimum designs of Sections 3.2.2 and 3.2.3. As o — 0, the design
problem approaches that of D-optimality for § when X is known, yielding the one-point
design at ¢ = 2 of Section 3.2.1. The compound design reflects this since t; — 2, as
a — 0, while wy decreases towards zero.

1 I

1
Lambda = 0.5

Efficiency

Alpha

Fi1G. 1. Efficiencies of compound optimum designs: D-optimum, Ep, continuous line; Ds-optimum
for A, Ey, dashed line; D-optimum for 6, Ey, dotted line.

The efficiencies are calculated using the optimum designs for the particular aspect
of interest. Let the optimum compound design be & and the D-optimum design for
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estimating € be &;. Then the percentage efficiency of the compound design if only € is
of interest is

(311) Ee = 100M11(§Z,60)/M11(§;,90).

Likewise, if the D-optimum design for estimating A is &3, the relevant efficiency is

|M (&, ¢°)| /M (&, 6°)

|M (&5, )| /M (&5, 6°)

However, if the D-optimum design for 6 and X is £}, the efficiency is

(3.13) Ep = 100{|M (&, v)|/|M (&, ¢°)[}1/2,

the square root being required as the determinant is for a model with two parameters.

As an example, suppose A = 2. The compound design for o = 0.5 has, of course,
Ep = 100%. The other efficiencies are Fy = 58.2% and E) = 79.0%. For o = 0.375
the values are Ep = 97.9%, Ey = 67.2% and E) = 65.5%, high efficiencies for any way
in which the data may be analyzed.

(3.12) Ey =100

4. Other kinetic models. Atkinson and Bogacka (1997) give fuller details of
the designs sketched above and also find Bayesian designs using the results of Section
2.4. An important extension of the general method is to models in which the kinetic
differential equations have to be solved numerically. Analytical expressions are then
not available for the derivatives of the function n with respect to the parameters 6 and
A. In the chemical literature these derivatives are known as first-order sensitivities.

The method used here for determining the order of a kinetic model depends on
embedding the kinetic equations in more general ones of unknown order. Unfortu-
nately introduction of the general order parameter A into kinetic equations renders an
analytical solution most unlikely. As an example, for the two successive reactions

(4.1) A% BSC,

in which the concentration of B is measured, if B is formed at rate 6;[A]™, given by
(3.3), and itself reacts with order \,, the concentration of B at time ¢ is governed by

the differential equation
d|B
(42) —E—l-t—]- = 01 [A]Al - 02[B]>\2.

Analytical expressions for [B] can only be found for a few values of \; and \,, the
case of both parameters equal to one being given by Box and Lucas (1959). Numerical
values of the sensitivities for such models can be found using what Valko and Vajda
(1984) call the “direct method” in which differentiation of the differential equation
defining the response, here (4.2), with respect to the parameters yields a set of simul-
taneous differential equations for the sensitivities. Solution of the equations provides a
grid of numerical values of the sensitivities, which have to be interpolated in the con-
struction of the design. Similar methods have been employed in the chemical literature
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to find designs for the rate constants in complicated models, for example Nathanson
and Saidel (1985), where the sets of equations to be solved are linear. Although the
theory of the construction and properties of these designs is similar to that for the
general decay model, which is the subject of the previous section, the computational
requirement is much heavier.

5. Clinical trials.

5.1. General design considerations. The second use of the theory of Section 2 is
in the sequential design of clinical trials. In order to achieve some balance as well as
randomness Atkinson (1982) suggested a randomized form of the sequential construc-
tion of D 4-optimum designs maximizing (2.2) with H = 1. The method, together with
related procedures, has been thoroughly investigated by Smith (1984a), Smith (1984b),
Wei, Smythe, and Smith (1986) and by Burman (1996). Here these comparisons are
summarized and extended.

Patients arrive sequentially and are to be given one of ¢ treatments. In order to
avoid the suspicion of conscious or unconscious bias, treatments should be allocated
at random. But, because it is not known when the trial will terminate, there needs to
be a balance of the number of patients receiving each treatment. If there are just two
treatments and no measurements of prognostic factors on the patients, one possibility
is the biased-coin design of Efron (1971) in which the under-represented treatment
is assigned with probability 2/3. To extend this idea to ¢ treatments and prognostic
factors requires modelling the response.

Let

(5.1) E(Y) =Gw = Ea+ Zv,

where E is the n x ¢t matrix of indicator variables for the treatments with one non-
zero entry per row, and Z is the n x (¢ — 1) matrix of prognostic factors, including
interactions and other terms if required. The 7 are nuisance parameters. However
interest is only in contrasts between the «, not in the mean level of response which
is an additional nuisance parameter, making ¢ in all. For example, if there are only
two treatments, experiments should be designed to estimate a; — ap with minimum
variance. With more than two treatments a set of ¢ — 1 contrasts orthogonal to the
mean is required, for example

1 -1 0 ... 0
52) ol 010
1 0 0 ... -1

If a D 4-optimum design is found using these contrasts, the exact form is unimportant,
provided the contrasts span the ¢t — 1 dimensional space orthogonal to the overall mean.
Since the v in (5.1) are nuisance parameters, the contrasts in (5.2) need augmenting
by a matrix of zeroes
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(5.3) AT = (LT 0)

to reflect the required interest in the parameters.

In the iterative construction of D 4-optimum designs the next trial would be added
where the variance (2.4) was a maximum over the design region. For clinical trials
the design region is the set of ¢ treatments which can be allocated. But the design
will depend not only on the previous allocations and the matrix Z, but also on 2,41,
the vector of prognostic factors for the new patient. To emphasize this dependence
the variances can be written da(4, &n, 2nt1), J = 1, ..., t. Asymptotically all treatments
will be allocated equally often and the variances will tend to equality. To provide
a randomized form of this iterative construction, Atkinson (1982) suggests allocating
treatment j with probability

da(d,éns Znt1)

5.4 |2n41) = ; '

In (5.4) the variances d4(.) could be replaced by any monotone function ¢{d4(.)}. We
do not explore this, but compare the performance of (5.4) with other suggestions in the
literature. The emphasis in the comparisons is on the variance of parameter estimates.

5.2. Two treatments. With two treatments the parameter of interest is A = a; — .
The model (5.1) can be written

(5.5) E(Y)=aA+18,+ Zy=aA + Ff,

where a is the n x 1 vector of allocations with elements +1 and -1, and the constant
term and covariates are included in the n X ¢ matrix F. Then

(5.6) var(A) = 0?{a’a — T F(FTF) ' FTa}~".

In (5.6) it is meaningful to let b = FTa, a “balance” vector which is identically zero
when all covariates are balanced across all treatments. Also a”a = n, so that (5.6) can
be written in the revealing form

o? o2

(5.7) var(A) = TR~ o L

where L, is the loss after n trials. This important measure expresses the loss of
information due to imbalance. If the design is exactly balanced, £, is zero. Otherwise
the loss of information is expressed in terms of number of patients. For the randomized
designs studied here £,, is a random variable. The results of Smith (1984a) and of Smith
(1984b) provide asymptotic values L. As in Burman (1996), simulation is used here
to study the progress of the loss towards its asymptotic value. In the initial stages of
the trial imbalance may be relatively high and the loss £,, may be far from L.
With one exception, all allocation rules considered here depend on the quantity

(5.8) Rop = f14(FTF)™,
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with fI,, = (1 2zI,,) and b the balance vector after n trials. The rules are expressed
in terms of probabilities

7(1) = prob(ant1 = 1|Rp41 < 0).

DETERMINISTIC (SEQUENTIAL DESIGN CONSTRUCTION).

7I'D(1) =1.

The treatment with larger variance da(j,&n, znt1) is always selected. Asymptotically
there is no loss, Lo, = 0.

COMPLETELY RANDOMIZED.

mr(1) = 0.5,

with L, = ¢, the number of nuisance parameters, including the constant.
These two rules represent the extremes. The loss of any other rule will be bounded
by these values.

EFRON’S BIASED-COIN.

7TE(1) = 2/3,

with again Lo, = 0. Other values than 2/3 will give a different rate of convergence to
Ly and a different probability that the clinician can guess correctly which treatment
will be allocated next.

ATKINSON’S D p-OPTIMALITY.

Results from the inverse of partitioned matrices show that allocation according to (5.4)
can be rewritten as

7TA(1) =0.5- Rn+l/(1 + Ri+1),
with Lo, = ¢q/5.

BALANCED COVARIATES.

This rule does not depend on R, ;. The values of the ¢ — 1 covariates are dichotomised
about their individual medians, giving 297! possible cells in which the value of z,,,
could lie. The under-represented treatment in the cell is then allocated, the probability
being 0.5 if the numbers of the two treatments are equal. A randomized version could
have a biased coin within each cell. If ¢ is not small, the large number of cells may be
sparsely filled, leading to lack of balance over the margins of the table.
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5.3. Simulations. Figure 2 shows the average results of one thousand simulations of
sequential designs for n up to 200. There are four prognostic factors (¢ = 5) simulated
independently from the standard normal distribution. The results support the theo-
retical conclusions above. For the deterministic allocation, D, the loss rapidly declines
to almost zero, whereas for the completely random allocation, R, the value is near
5. The randomized D 4-optimum design, A, quickly achieves a loss close to ¢/5 = 1.
Efron’s rule, E, has a loss less than that of A for n greater than about 100, a loss which
continues to decline as n increases. At 200 trials £ for the covariate balanced strategy
is about 1.63, the second largest value.

The designs for ¢ = 10 in Figure 3 show similar features for rules R, A and D.
Efron’s biased-coin strategy, E, now does not become comparable in loss with A until
n is near 200 - for small n and large ¢ the probabilities given by (5.4) can be much
greater than 2/3, reflecting large values of the variance d4(j,&n, 2n+1) for one of the
treatments. However, the most striking difference between ¢ = 5 and ¢ = 10 is in the
behaviour of the covariate balancing designs C. With 2° = 512 cells to be filled, a large
amount of imbalance is possible, reflected in the slow decline of the loss.

Loss when q =5

loss

number of patients

Fic. 2. Loss L, for five strategies for sequential allocation of treatments with q = 5: A, Dy-
optimality; C, Covariate Balance; D, Deterministic; E, Efron’s Biased Coin and R, Random. Means
of 1,000 simulations.

Loss when q =10

loss

number of patients

Fic. 3. Loss L, for five strategies for sequential allocation of treatments with ¢ = 10: A, Dj-
optimality; C, Covariate Balance; D, Deterministic; E, Efron’s Biased Coin and R, Random. Means
of 1,000 simulations.
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A general point about the simulations is that smoothed average values have been
plotted. The curves, especially those for R and C, show evidence of random fluctuation.
It would be interesting to study the change of the distribution of L, with n , not just
the expected value. A second point is that (5.6) shows that var(A) does not depend
on the scaling of the prognostic factors z. A small simulation suggests that replacing
normally distributed variables with those from a ¢ distribution has little effect. The

effect of correlation among the prognostic factors remains to be investigated.

5.4. Three or more treatments. With more than two treatments it is not possible
to rewrite the model in a form such as (5.5) and so to define the loss in terms of the
variance of the estimator of a single parameter. But an expression can still be found
for the loss L.

The D 4-optimum design for the model (5.1) requires minimization of

(5.9) |AT(GTG)*A| = |[L"{ETE - ET2(Z"Z)"'Z"E}'L|,

similar in form to (5.6). For the optimum design, in which an equal number of patients
is allocated to each treatment, and ETZ = 0, so that there is balance over all prognostic
factors,

|AT(GTG) A = t/(n*7Y).
The efficiency of any other design is then

so that the effective number of trials is n€,. The generalization of (5.7) is
L, =n(l-¢,).

The theoretical results referenced above cover designs for more than two treatments.
The small sample properties of £,, can again be found by simulation.

5.5. Discussion. The focus in this section has been on the variance of parameter
estimates. It is clear that the smaller the amount of randomization the smaller the loss
Ly, but the larger the chance of bias. However, if patients are algorithmically allocated
a treatment in order of arrival, the opportunities for biasing the trial would seem to
be extremely limited. If this is so, the reduction of variance is an appropriate design
criterion.
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