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THE COALESCENT WITH PARTIAL SELFING AND
BALANCING SELECTION: AN APPLICATION OF

STRUCTURED COALESCENT PROCESSES

B Y MAGNUS NORDBORG

Lund University

As a demonstration of a generally applicable technique, a theorem based on
separation of time scales in the structured coalescent is used to extend results
for the coalescent process with balancing selection to allow partial selfing. The
resulting model behaves like the random-mating one, but with different rates
of coalescence and recombination. This result has important implications for
attempts to locate selectively maintained polymorphisms. Such polymorphisms
can in principle be detected through their effect on the pattern of polymorphism
in the genomic region surrounding the site under selection, however this is not
practically feasible unless the effected region is sufficiently large. An implication
of the present results is that the region is expected to be much larger in partially
selfing organisms than in outcrossing ones, suggesting that studies attempting
to locate selectively maintained polymorphisms should utilize selfing organisms.

1. Introduction. If natural selection has maintained polymorphism at a
certain site or locus for a long period of time, the evolutionary dynamics in
closely linked regions of the chromosome will be effected. In particular, the ex-
pected pattern of neutral polymorphism will be altered in a manner that allows
inference about the action of selection directly from molecular polymorphism
data, without phenotypic observation [Hudson and Kaplan (1988)]. This phe-
nomenon has been observed in a few cases [Kreitman and Akashi (1995), Hud-
son (1996)]: MHC (immune system) loci in human; the S (self-incompatibility)
locus in plants; and Adh (alcohol dehydrogenase) in Drosophila melanogaster.
Although these loci were already known to harbor selectively maintained poly-
morphisms, the same phenomenon could, in principle, be used to locate such
polymorphisms without prior information. For this to be practical, however, the
region of the chromosome in which the effects of selection are noticeable must be
large enough. One of the aims of this paper is to prove earlier claims [Nordborg
et al. (1996), Nordborg (1997), Charlesworth et al. (1997)] that the effected
regions will be much wider in partially selfing organisms than in outcrossing
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ones.
The main result is a generalization of a previous treatment of the coalescent

with selection [Kaplan et al. (1988), Hudson and Kaplan (1988)] to allow par-
tial selfing. It is based on an argument about separation of time scales in the
structured coalescent [Nordborg and Donnelly (1997), Nordborg (1997)], and
utilizes a convergence theorem developed for this purpose by Mόhle (1998). A
second aim of this paper is to demonstrate the power of this approach to greatly
simplify the analysis of quite complicated coalescent models. Connections with
other approaches are discussed in Section 5.1.

2. The model. The model described in this section is effectively equivalent
to previously used models [Kaplan et al. (1988), Hudson and Kaplan (1988),
Hey (1991)], except for allowing partial selfing. We assume a population of N
(assumed to be large and constant) diploid individuals that are hermaphroditic
(i. e., each individual produces gametes of both types, e. #., pollen and ovules)
and partially selfing (individuals can fertilize themselves; a more precise defi-
nition will be given below). The population has discrete generations. In each
generation, all individuals produce infinitely many gametes which unite to form
infinitely many zygotes. Mutation and recombination occur during gamete for-
mation. The zygotes are then subject to selection, after which N of them are
chosen to form the next generation of adults.

2.1. Forward dynamics at the selected locus. Consider a locus with two alleles
Λι and A2. The mutation probability (per gamete per generation) from A{ to Aj
is Uij. There are three possible genotypes A\A\, A\A2 > and A2A2. Let Nij(t) be
the (random) number of individuals in the adult population of genotype AiAj
in generation t: because Σ,Nij(t) = TV, the N{j(t) are not independent. Define
the genotype frequencies as Xij(t) = Ni3(t)/N, and the allele frequencies as
Yi(t) = Xn(t) + Xn(t)/2 and Y2(t) = X22(t) + Xn(t)/2.

Let j/i(<), i G {1,2} be the allele frequencies among the gametes produced
by the adults in generation t (i. e., t/t (<) is the proportion of gametes carrying
Ai). Because infinitely many gametes are produced, these are functions of the
Yi(t). From standard population genetics theory, we have

(2.1) yι(t) = (1 - u12)Y1(t)

(2.2) y2(t) = (1 - u2l)Y2(t) + u12Yi(t).

Similarly, let Xij(t) be the zygotic frequencies. If mating were random, these
frequencies could be found by simply multiplying the gamete frequencies. For a
partially selfing population, however, it is assumed that only a fraction 1 — s of
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the available female gametes are fertilized through random mating (outcrossed),
and that the remaining fraction are fertilized by male gametes from the same
individual. In other words, a fraction 1 — s of the zygotes are produced by
random union of gametes within the population, where the gamete frequencies
are y\(t) and 2/2̂ )} and a fraction s are produced by random union of gametes
within individuals, so that

u() = (1 - a)yl(t)

[(l- u12)
2Xu(t) + (1 - un + u21)

2X12(t)/4 + u2

21X22(t)],

xi2(t) = 2(1 - s)y1(t)y2(t) + s[(l - ul2 + «21)(1 - «2i + u12)X12(t)/2

+ 2(1 - ul2)u12Xn(t) + 2(1 -

22W = (1 - s)y2

2(t)

4 ( 1 - u21)
2X22{t) + (1 - u2l + u12)

2X12(<)/4

The viability (relative chance of surviving to adulthood) of a zygote with
genotype ΛiΛj is 1 — tιγ,(<), where we do not exclude the possibility that Wij(t)
is a function of the Xij(t) (as in frequency-dependent selection). Let x*j(t) denote
the genotype frequencies after selection. Then

(2.6, 4« = ^

where w{t) = 1 — Σwij(t)xij(t).
Generation t + 1 is formed by drawing JV individuals from the surviving

zygotes. Conditional on the ΛΓjj(tf), the N{j(t + 1) are thus multinomially dis-
tributed with parameters iV and x*Λt).

2.2. Genealogy at a linked neutral locus. Our aim is to describe the gene
genealogy at a locus linked to the selected site with recombination rate r. The
locus is assumed to be neutral, i. e., the only selection in the model is that
on the locus described in Section 2.1. Recombination is only allowed between
the loci. From a biological point of view, this requires that the length of the
DNA sequences defined as "loci" be small relative to the distance between them.
As is usual when tracing genealogies, time will be run backwards (the reverse
direction from that in the previous section), so that generation ancestral to t is
ί + 1.

Consider a single chromosome, sampled from the adult population. With
respect to the genotype of this adult, the sampled instance of the neutral gene
is in one of three genotypic states. It is of course also characterized by being
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linked to either an Λ\ or an Λ2 allele, which we will refer to as its haplotypic
state. With respect to both classifications jointly, there are four possible states.
Given this joint state in the present generation, what was the state of its ancestor
in the previous generation? It should be clear that the transition probabilities
with respect to the genotype of the ancestral individual can be calculated exactly
from equations (2.3)-(2.5). To account for the haplotypic state in the previous
generation we also need that if the current haplotypic state is i £ {1,2}, then

1. if the ancestral individual was an A% homozygote, the haplotypic state cannot
have changed;

2. if the ancestral individual was a Λj homozygote (j φ z), the haplotypic state
must have changed (because a mutation occurred at the selected locus);

3. if the ancestral individual was a heterozygote, then the haplotypic state
changed if there was either a mutation or a recombination event, but not
both.

From this, the exact transition probabilities can be calculated.
Next, consider a sample of size n such instances. Each occupies one of the

four states just described. In addition, they may or may not occupy the same
individual as another instance. The possible genotypes for any individuals that
harbor two instances is determined by the joint genotypic and haplotypic clas-
sification: for example, it is not possible for two instances to occupy the same
heterozygote unless the sample contains two instances in heterozygotes, one
linked to an Λ\ allele and the other linked to an Λ2 allele. The total number of
states for a sample of size n is

What about the transition probabilities from such a state in the current
generation t to the possible states in the previous generation t + 1? Under the
assumptions of the model, any instance that occurs singly in an individual will
"pick" its ancestral state independently of all other instances. If j , 2 < j < n
instances pick the same genotype A%Aj in the generation ί + 1, then, by standard
arguments, the probability that two of them pick the same parental individual
is

the probability that more than two pick the same individual is 0 (l/JV? (< + 1)),
and the probability that they all pick different individuals is simply one minus
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expression (2.7). Whenever two instances pick the same individual, one of two
things happen. They either pick distinct haplotypes and thus their ancestors
occupy the same individual in generation t + 1 , or they pick the same haplotype,
in which case they coalesce, and the number of distinct ancestors of the sample
decreases permanently by one.

Two instances that currently occupy the same individual also pick their
ancestral states independently of each other and all other ancestors, if we con-
dition on that individual having resulted from outcrossing, which by definition
is equivalent to random mating. If, on the other hand, an individual in the cur-
rent generation that harbors two instances was the product of selfing, the two
instances will behave precisely as if they had chosen a common parental indi-
vidual through random mating, and they will thus either coalesce or continue
to occupy the same individual as just described.

We will return to the transition probabilities below, however, two important
remarks should be made in this context. The first is that, if s — 0, all individuals
will always have resulted from random mating, and there is therefore no need
to keep track of whether instances occupy the the same individual or not. The
second is that, going backwards in time, the ancestors of two instances that
currently occupy the same individual will not continue doing so very long. For
homozygotes this is so because if they result from selfing, then with probability
one half the ancestors coalesce, and if they result from outcrossing, then the
ancestors no longer occupy the same individual. For heterozygotes coalescence
is considerably less likely, because it necessitates a recombination or mutation
event, but it will become clear that heterozygotes are almost always the result
of recent outcrossing.

2.3. Approximate model. Conditional on {A^j(ί)}t€{o,i,...}, the genealogy of
the n sampled copies can clearly be described by a discrete-time Markov chain
with finite state space Sn of size

fc=l i=0

How to describe the genealogy without conditioning on the allele frequencies is
considerably less clear, and I refer to Section 5.1 for further discussion of this.

The issue can be avoided by assuming that selection and/or mutation are/is
strong enough relative to drift (i. e., relative to 1/N) and of the correct form
(i. e., allowing a stable point equilibrium) for the allele frequencies to be treated
as constant. In this paper, I will assume that it is selection alone that maintains
constant frequencies. I will furthermore be assuming that selection is balancing,
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by which I simply mean that the equilibrium is polymorphic. More precisely
then, the model I will investigate is the discrete-time Markov chain that results
from assuming that Yi(t) = Y{ > 0, Vi,ί. Define its transition matrix Ujy =
(^ij)ijeSn' The state space Sn will be described in Section 3.2.

The model may be characterized as a generalized structured n-coalescent
with discrete generations [Notohara (1990), Herbots (1994), Nordborg (1997)].
Selection has "disappeared", and only enters the model indirectly by determin-
ing the size of the "subpopulations" and the rates of "migration" between them.
Although simple in principle, the model is difficult to work with because of the
size and complexity of the state space. For example, for n = 1,2,3,4,5, and
6, we have \Sn\ = 4,17,49,120,260, and 519. The remainder of this paper will
be devoted to demonstrating that, through the use of a time-scales approxima-
tion, the model can be reduced to a much simpler, continuous-time structured
n-coalescent with a state space of size

(2.9) £ ( m + l) * ( n + 3),
m=l Z

which for the sample sizes just given equals 2, 5, 9,14,20 and 27. Furthermore,
the new process will be shown to be identical to the one previously obtained
for random mating [Kaplan et al. (1988), Hudson and Kaplan (1988)], except
that the coalescent rate is increased by a constant factor, and the rate of ex-
change between the haplotypic states (through recombination and mutation), is
decreased by another constant factor, where both factors have useful intuitive
interpretations.

After obtaining these results (in Sections 3 and 4), I will argue (Section 5.1)
that the results from the analysis will also hold to a good approximation for
the original model, where the allele frequencies are random variables, if only
selection is of the appropriate strength and kind.

3. Continuous time. The analysis will proceed in two steps. In this sec-
tion, I will switch to a continuous time scale with time measured in units of N
generations, as in the standard coalescent approximation [Kingman (1982)]. To
do so, I will utilize a convergence theorem that was developed by Mόhle (1998)
for coalescent models with transitions on several time scales, in particular for
the neutral coalescent with selfing [Nordborg and Donnelly (1997)]. The result-
ing process is considerably simpler, however, I will show how it can be simplified
further in Section 4, where I describe the final model.

3.1. Scaling the parameters. The rationale behind the main results of this
paper is that some transitions, namely those that involve two ancestors picking
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the same individual in the previous generation, always have probability 0(l/iV),
whereas others, e. #., those that simply involve a transition to a new genotypic
configuration, always have probability 0(1). As we shall see, the states can be
grouped into sets in a manner so that transitions within sets occur on time
scale that is 0(N) faster than transitions between sets. Exactly how the state
space is partitioned depends on what assumptions we place on the parameters
of the model, and this, in turn, depends on the selective scenario we are inter-
ested in [Nordborg (1997)]. For the case of balancing selection, it is appropriate
to assume that recombination and mutation are weak forces, and scale these
parameters with N. We thus assume that the finite limits

(3.10) R = lim Nr
ΛΓ-»oo

and

(3.11) Uij = lim Nuij
N—ϊoo

exist. We choose not to scale the selection parameters in the same manner, cf.
Sections 4.3 and 5.1.

With these assumptions, any transition that implies a recombination or mu-
tation event, or two instances independently picking the same parental indi-
vidual has probability 0(l/iV), and transitions that necessitate more than one
such event have probability 0(1/N2) or smaller.

3.2. Partitioning the state space. We now turn to the state space Sn. It
is convenient to partition and arrange the states as follows. First, group the
states in n sets by the number of ancestors that remain of the original sample.
Arrange the sets in increasing order by the number of ancestors. For example,
the first four states will correspond to the four possible configurations for a single
instance described in Section 2.2. Since the number of ancestors in the genealogy
can only decrease, this arrangement ensures that Πyv is lower block-diagonal.

Second, consider each set with a given number of ancestors, m say, in turn.
The m ancestors can be arranged into m + 1 sets with respect to haplotypic
configuration. Arrange the sets in increasing order by the number of ancestors
linked to Λ2 (the order here is arbitrary).

Third, consider the set with i ancestors linked to Λι and j = m — i ancestors
linked to *A2 This set can be divided into subsets by the number of individuals
that harbor two ancestors. Write α Z J for the set of states with all ancestors in
distinct individuals, βki,i,j for the set of states with a single ΛkΛi individual
that harbors two ancestors, and 7 ^ for the remaining states (that have two
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or more individuals harboring two ancestors). We have |α, j | = (i + l)(j + 1),

\βi2,ij\ = U,

0, otherwise,

, _ ( )(i ), J ,
22'idl ~\ 0, otherwise,

and a potentially very large number of states in 7^. Arrange these five sets in

order α ^ , β22}i,j, βi2,i,j, βn,i,j, and 7^.
We now turn to the transition probabilities within and between these sets.

All transitions within otij have probability 0(1) because they do not necessitate
recombination, mutation, or two ancestors choosing the same parental individ-
ual, but simply a transition to another genotypic configuration. A transition
to any state outside this set, however, has probability 0(1/N) or smaller. The
following sets can be reached with probability 0(1/N) (i. e., there is at least
one transition to the set with that probability):

• whenever i > 1, transitions to βn,i}j or Oίi-ij m a y occur because two ancestors
linked to Λ\ pick a common parental individual;

• whenever j > 1, transitions to /?22,«,j ° r ai,j-ι may occur because two ancestors
linked to Λ2 pick a common parental individual;

• whenever z > 0 and j > 0, transitions to βi2,i,j may occur because two ances-
tors, one linked to Ai, one linked to >42, pick a common parental individual;

• whenever i > 0, transitions to α -ij+i may occur through recombination or
mutation;

• whenever j > 0, transitions to α t +ifj_i may occur through recombination or
mutation.

All other sets can only be reached through multiple independent events with
probability 0(1/N), and therefore have probability 0(1/N2) or smaller.

All transitions within βn,ij have probability 0(1), and so do transitions
"back to" QίiyJ (these occur when the individual harboring two ancestors is the
product of random mating), and to α, _ifj (which occur with probability one
half when the individual harboring two ancestors is the product of selfing). All
other transitions have probability 0(1/N) or smaller. Exactly the same is true
for β22,i,j> except that a coalescence of course leads to α ί ? J_i instead of α - i j .

All transitions within βn,ij have probability 0(1), and so do transitions
back to ctij. All other transitions have probability 0(1 /N) or smaller.

We let the transitions from 7 ^ remain unspecified because they will be
shown to be unimportant.
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3.3. Applying Mόhle's theorem. Rewrite the transition matrix ΠTV = A +
B/N + O(l/N2), where A = l im^oo Π v and B = l im^oo N(UN - A). From
Mόhle's (1998) results, it follows that if P = limm_>oo A m exists, then the finite-
dimensional distributions of the process converge to those of a continuous-time
Markov process with time measured in units of N generations, and infinitesimal
generator G = P B P .

3.3.1. Finding A and P . From Section 3.2, it follows that A has the form
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where At j contains all transitions within α ^ , and the A' denote the transitions
involving states with one or more individuals harboring two ancestors, with the
dependence on i and j suppressed to save space. Thus A'kl contains all transitions
within βkl,i,j-> where i and j should be understood to be the ones of the of first
Aij encountered when following the diagonal towards the upper left corner, and
analogously for A^. The meaning of the off-diagonal elements is evident from
their position. The dots represent blocks that may contain non-zero elements.
It is clear that A is stochastic because it can be interpreted as Π̂ v conditional
on no events with probability 0(1/N) or lower taking place.

It is easy to show through induction that all blocks of zeros in A remain
blocks of zeros in A m . Furthermore, the diagonal blocks of A m are simply the
diagonal blocks of A raised to the power m. Since A{j is a positive stochastic
matrix containing the transition probabilities within α ί } J conditional on not
leaving that set, Pi}J = limm_).oo AJ^ is a matrix with all rows identical and
equal to the stationary distribution within at-j. The diagonal blocks for states
involving one or more individuals harboring two ancestors are even easier: these
blocks are all non-negative matrices with modulus less than one and thus vanish
as m —> oo.



BALANCING SELECTION AND SELFING 65

A m also contains two types of sub-diagonal blocks, namely those that corre-
spond to transitions from states with a single individual harboring two ancestors
to states with all ancestors in different individuals, and those that correspond to
transitions from states with more than one individual harboring two ancestors
to states with a single such ancestor. Both types of blocks have the general form

m - l

(3.12) Σ, Q22Q21QΓ1- l - f c

k=o

where Q n stands for the diagonal block containing transitions within the set
with the lower number of individuals harboring two ancestors, Q22 stands for
the diagonal block containing transitions within the set with the higher number
of such individuals, and Q2i contains the transitions from higher to lower. It
can be shown that

(3.13)
m - l

Thus, when Q π stands for a diagonal block of transitions within a set with all
ancestors in distinct individuals, Q ^ is a matrix with identical rows containing
the stationary distribution, as described in the previous paragraph, whereas
when Q11 stands for a diagonal block of transitions within a set with a single
individual containing two ancestors, we have Q ^ = 0 so that the right hand
side of equation (3.13) vanishes.

We thus have
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where the blocks are labeled as in A, and the off-diagonal elements are obtained
through equation (3.13).



66 M. NORDBORG

3.3.2. Finding B and G. The matrix B contains the coefficients of the terms
0(11N) from a series expansion of ΠJV in N~ι. It is neither stochastic nor non-
negative. From Section 3.2, it follows that it has the structure
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where the diagonal blocks are denoted as before, and the meaning of the off-
diagonal blocks can be inferred from their position in the matrix. Again, the
dependence of these blocks on i and j has been suppressed to save space.

Turning to G = P B P , we first note that the diagonal blocks for all sets that
contain one or more individuals harboring two ancestors are zero, as are the
blocks containing transitions into such sets from sets with all ancestors in dis-
tinct individuals. Since G is the infinitesimal generator for the continuous-time
version of the Markov process describing the genealogy of the sample, this means
that, as one would intuitively expect, all such states are instantaneous on a
time-scale measured in units of O(N). These states can therefore be eliminated,
leaving us with a process involving only the sets {ai,j}i}je{i}...,m},i+j=m,me{i,...,n}-
The blocks of G that correspond to transitions within and between these sets
are as follows.

In general, the rows of G corresponding to transitions from α Z J has five
non-zero blocks. Two of these correspond to a single recombination or mutation
event, namely:

(3.14)

(3.15)
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two correspond to single coalescence events, namely:

(3.16) GaiJiQiJ__ι = P 1 J-(Bo,-iP,-,j-i + B 2 2 P22,Λ);

(3.17) G α ι . i ι α i _ 1 ( . = P. ̂ B - i ^ P . - i j + B n P ;

l l ϊ Λ ) ,

and the final one is the diagonal block

(3.18) GQij}aij = Pij(BijPij + B22P22,v + Bi2P'i2,v + B n p i i , v )

4. The collapsed process. We have demonstrated that all states with one
or more individuals harboring two ancestors are instantaneous and can be elimi-
nated. The same result is obtained for the neutral coalescent with selfing [Nord-
borg and Donnelly (1997), Mόhle (1998)], and it greatly simplifies the process.
However, it turns out that further simplifications can be made to the present
model, because all transitions within the remaining sets {αi,j}t,je{i,...lm},«+j=m
(ra G {1,.. . , n}) have probability 0(1), whereas transitions between these sets
have probability 0(1/N) or smaller. Loosely speaking, the individual states
within these sets are instantaneous, but the sets themselves are not, and we
would expect the processes governing transitions within the sets to be at sta-
tionarity on the time scale on which transitions between the sets occur.

It is evident from G that this intuition is correct. Notice that each of the
blocks given by equations (3.14)—(3.18) is multiplied from the left by P t J , which,
as we have seen, consists of identical rows, each equal to the stationary distri-
bution for Aij. Thus all blocks of G also have all rows equal, so that each state
within aij behaves identically, and the starting condition with respect to these
states is irrelevant.

We can therefore simplify the process further by collapsing each α ^ into a
single state. This is done by summing over the rows and columns in the ap-
propriate manner, so that in the generator for the collapsed process each block
G α . ά)ak ι is replaced by a corresponding element gaiJ^kίr Let p ί ? J be the station-
ary distribution for Aij. The elements corresponding to the blocks (3.14)—(3.18)
are

rp

(4.19) fiία j ,«<+!,,_! = PijB+i.-iPi+ij-il ,

(4.20) gai,j,a{-iιj+1 =p< l iB_ 1,+ iP,-_i l i + 1 lT,

(4.21) S o y Λ j . , = P ij(Bo,-iP,j-i + B 2 2 P 2 2 i Λ ) l τ ,

(4.22) gai^MJ = Pi,i(B-i,oPi-ιj + BnP^Jl7",

(4.23) gaiιj,aiιj = PiABijPij + B 2 2P' 2 2 > V + B 1 2P' 1 2,V + B u P ' ^ J l 1 ,

where 1 is a unit vector of appropriate length.
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We thus have a new, "collapsed" continuous-time Markov process with states
consisting of the number of ancestors and their haplotypic configuration. The
size of the state space is that given by expression (2.9). The new process is
equivalent to the one previously obtained for random mating [Kaplan et al.
(1988), Hudson and Kaplan (1988)], except for the precise values of the non-zero
transitions rates [and the possible initial coalescence events for chromosomes
sampled from the same individual [Nordborg and Donnelly (1997)]. We now turn
to these rates, noting that because the row sums of the generator matrix must be
zero, and because of symmetry, it suffices to find flfαi ι<; lαl +iιJ-_i and gaij,ai^1}j^ i» e.,
the rate of recombination/mutation and the rate of coalescence, respectively.

4.1. The rate of recombination/mutation. Equation (4.19) turns out to have
a simple interpretation. We have

Each element in the column vector B+^-ilT is the sum, over all states in
αj+ij-i, of the transition rates from a particular state in α^j to the states in
αj+ij-i. To put it another way, it is the transition rate from α 2 j to α, +iii? _i
conditional on the process currently being in a particular state in o ^ r Multipli-
cation with the stationary distribution over α t j J gives the total transition rate
from ctij to αj+i^-i. Thus, transitions between these sets due to recombina-
tion or mutation occur according to the stationary distribution within them, as
predicted.

The resulting rate can be found as follows. Consider the set α t ̂ . The states
within this set can be described by (fc, /), where k G {0,... , i} (I G {0,... , j})
is the number of ancestors linked to Λ\ (Λ2) in heterozygotes. The transition
probabilities between these states are those found in Aij. As explained in Sec-
tion 2.2, ancestors pick their state in the previous generation independently of
one another. In particular, the probability of the transition (kojo) to (A;,/) can
be written φkOίkWιOtι Furthermore, we see from equation (2.1) that the prob-
ability that a given ancestor, currently linked to Λ\ was linked to Λ2 in the
previous generation but switched because of mutation is

Ϋ2U21 _Ϋ2U2i n ( 1

Similarly, the probability that a given ancestor switched because of recombina-
tion is
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conditional on the ancestor picking a heterozygous parent (the probability is
zero otherwise). The total probability of a transition from (fc0, /o) £ otij to some
state in α t +i f J _i is therefore

^ 4 Ϋ " -j R

and the element of B + i f _ i l τ that corresponds to a transition from (/co,/o) is

Σ Σ ψMv + w ^ w = ψ

/=0

= ψ[U2lj + RΈ(l\l0)},

where E(/|/o) is the expectation, over the transitions in A j , of the number of
ancestors linked to Λ2 occupying heterozygotes in the previous generation, given
that the number is /0 in the present generation. By multiplying B+^-i lT with
the stationary distribution p t J , we are in effect calculating the unconditional
expectation

where / is binomially distributed with parameters j and #2? the probability
that, in the absence of recombination and mutation, an ancestor linked to an
Λ2 in the present generation occupied a heterozygote in the previous generation
(this probability can be calculated exactly from the equations in Section 2.1, but
does not have a simple form). Using this, the sought rate becomes

(4-24) g ^

By symmetry,

(4.25) 9aijW

where H\ is defined analogously to H2
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4.2. The rate of coalescence. From (4.22), and utilizing (3.13), we have

= p i j - ( B _ l l 0 P i . l l i + B U ( I - A /

1 1 )- 1 A /

l l i Λ P. l, ) l Γ

= pijB-lfll
T + p 4 J B u (I - A'n)-1A'lltAi

r.

Consider first Pe tjB_i?olτ. Using the arguments and notation of the previous
section, and referring to equation (2.7) and the discussion following it, we note
that the total probability of a single-generation transition from (fc0, /o) £ ai,j to
some state in α?t-i,j can be shown to be

ί ίk

(4.26)
i 3

ΣΣ
k=0 1=0

i-k\ \
2 1

NX 12 NX-11

\

The corresponding element of B_i fol τ is thus

i 3

ΣΣ
k=0 1=0

ί ίk i-k\ \
2 h

X 12 X 11
Φko,k

ωh,ι =
Xl2

\

2

X 12

\

i-k\\

2

2X11

i — k

2X11

By the arguments of the previous section, multiplication from the left by the
stationary distribution p j is equivalent to calculating the unconditional expec-
tation

IE

/ ίk
2

X 12

i-k\\
2

~ΪX11

where k is binomially distributed with parameters i and Hi. The sought rate is
thus

(4.27)
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It remains to deal with p l ιJ-Bn(I — A /

1 1)~1A /

1 1 | Λ1T. Consider the set /?n,.-,,.
This set contains all states with i ancestors linked to Λ\ and j ancestors linked to
Λ2 such that that two of the ancestors linked to Λ\ jointly occupy a homozygote.
The remaining ancestors belong to a set of the form α, _2,j For each transition
on this set, and independently of that transition, one of three things may happen
to the v4i*4i homozygote harboring two ancestors:

1. it may have resulted from outcrossing;
2. it may have resulted from the selfing of a heterozygote;
3. it may have resulted from the selfing of a homozygote.

Ignoring probabilities of 0(1/N) and smaller, the following then applies for
these alternatives, respectively:

1. we have a transition to a state in α j ;
2. we have a transition to αi-i j because the ancestors coalesce;
3. with probability one half, we have a transition to a^ij because the ancestors

coalesce, and with probability one half the process remains in βntij>

Now consider A'UA1
T. Each element of this vector is the total probability

that a transition from fc0 G βn,i,j is a transition to oti-\,j. As we have just seen,
this is simply the probability that the Λ\Λι homozygote was the product of a
selfed heterozygote plus one half times the probability that it was the product
of a selfed homozygote. Denote the former quantity qu and the latter qrn. We
thus have

A ' 1 1 ) Λ 1 T = 1 T ( * 1 2 + \L 11,Λ J

Next consider the matrix A'ιv By the above, we must have

, _ 1

and using this it is easy to show that

so that

An) AU i Λ l - l 2 _ q n
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It follows from equation (2.3) that

Xn
xn

<?i2 =
4x 11

Using this, and repeating the arguments leading to equation (4.27), we finally
obtain

2Xn 2xn-sXn

Combining this with equation (4.27) leads to

(4.28) gaijm . = * 4ίL + v- - ^ +

By symmetry,

(4 29) 0 - ί J 1 I —— -
^ ^ - ^ U i / 2X22

 + 2X22 2 x 2 2 j

4.3. Weak selection. The purpose of this section is to show that the rates
calculated in Sections 4.1 and 4.2 have very simple and intuitive forms if we
assume that selection is weak enough for terms of the order of the selection
coefficients to be ignored. Note that this is a statement about the absolute
magnitude of the selection coefficients: they are still assumed to be large relative
to l/N.

Under this approximation, then, we have from equation (2.6) that Xij = Xij.
Furthermore, it is a classical result that

Xn = Ϋ? + Ϋ1Ϋ2F,

X12 = 2Ϋ1Ϋ2(1-F),
A Λ O A A

-̂ 22 =Y2 + Y1Y2F,

where F = s/(2 — s). Using this, it can be shown that

Hx = Ϋ2(l - F ) ,
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so that the recombination/mutation rates (4.24)-(4.25) become

(4.30) Λ.««

(4.31) S α ^

and the coalescent rates (4.28)-(4.29) become

(4-32)

(4-33)

Thus, under this additional approximation, the coalescent with balancing selec-
tion and partial selfing looks almost identical to the coalescent with balancing
selection and random mating [Kaplan et al. (1988), Hudsonand Kaplan (1988)],
the only difference being that the rate of coalescence within each allelic class
is sped up by a factor 1 + F, and the rate of exchange between allelic classes
due to recombination is decreased by a factor 1 — F. The former factor can be
interpreted as the decrease in variance effective population size, and the latter
as the decrease in heterozygosity.

5. Discussion. I have demonstrated that essentially all the extra complex-
ity caused by allowing partial selfing in a coalescent model with balancing se-
lection can be removed through a time-scales approximation. The results are
interesting from a theoretical as well as from a biological point of view.

5.1. Theoretical issues. The results of this paper demonstrate the utility of
combining the structured coalescent with time-scales approximations to model
complex situations. Further examples are given, albeit with much less detail, in
Nordborg (1997).

A few issues related to selection in the coalescent should be commented
on. As described in Section 2.3, I have assumed that selection is strong enough
for the allele frequencies to be treated as deterministic, so that the coalescent
with selection becomes a structured coalescent. Although I have not supplied
a formal proof of convergence, this approach seems justified by the fact that
the calculations can be carried out with constant selection coefficients even as
we let N —> oo. In their original analysis of this problem, Kaplan et al. (1988)
derived the coalescent conditional on the allele frequencies in all generations,
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and assumed that these obeyed a limiting diffusion. However, most results were
then obtained assuming that the allele frequencies were "tightly controlled",
which is similar to the assumption used in this paper.

Recently, theory has been developed for sample genealogies with "true" selec-
tion [Neuhauser and Krone (1997), Krone and Neuhauser (1997)], i. e., without
conditioning on the allele frequencies in all generations. It would be very inter-
esting to investigate the limiting behavior of such models as selection becomes
stronger. It seems clear that they will converge to structured coalescent models,
however, knowing more about the conditions under which they converge could
be quite important, because the exact models are considerably more difficult to
analyze than the type of model analyzed here. Furthermore, although the exact
models yield convenient computational algorithms for simulating samples with
selection, the computational time depends exponentially on the strength of se-
lection, whereas simulations using the structured-coalescent approach of course
are independent of the strength of selection.

It is thus the view of the present author that the results in this paper, and
similar results, should be seen as a "strong-selection limit" for the coalescent
with selection. In this context, it is illuminating to consider the simplifications
in Section 4.3. Compare equations (4.28) and (4.32). The main reason for the
difference in complexity between these two expressions is that when selection is
sufficiently weak, the stationary probability that an ancestor occupies a certain
state is proportional to the "population size" of that state, and thus inversely
proportional to the coalescent rate. As shown in Nordborg (1997), this con-
dition is a generalized version of Nagylaki's (1980) "conservative migration"
criterion (by which migration is conservative if it does not effect subpopula-
tion sizes). Nagylaki showed that, in the strong-migration limit, a subdivided
population behaves as an unstructured one if and only if migration is conser-
vative, whereas if migration is not conservative, the population will behave as
an unstructured population with a lowered variance effective population size.
In the present case, we have "strong migration" between the genotypic classes
within haplotypic classes, and this is clearly not conservative in general. Under
some forms of balancing selection, for instance, we expect heterozygotes to be
fitter than homozygotes. If we think of the genotypes as demes, then, forward in
time, heterozygotes are net sources of "migrant" gametes, whereas backwards
in time, "migrating" ancestors will spend a disproportional amount of time in
heterozygotes. This leads to a decreased variance effective population size, and,
unfortunately, to rather messy expressions.

Taking the analogy wih population structure and demography further, per-
haps some forms of selection will result in a non-linear change of time-scale,
just like some forms of variation in population size does? Clearly much work
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remains to be done in this area of population genetics theory.

5.2. Biological issues. The main biological implication of the work presented
here is simply stated: the dynamics of linkage disequilibrium and other forms of
allelic associations in partially selfing organisms are governed (to a reasonable
approximation) by Nr(l — F) rather than Nr. This is perhaps not surprising,
but may be under-appreciated. Perhaps the most exciting consequence of this
result is that the traces of some form of balancing selection may be detectable
at a much greater distance from the actual site of selection than in a comparable
out crossing species. This suggests that studies aiming to detect selection in this
way should consider using partially selfing organisms: indeed, it may even be
possible to scan the genome directly for regions that show traces of balancing
selection [Nordborg et al. (1996), Nordborg (1997)].
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