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ABSTRACT

For the estimation of a finite dimensional parameter in a stochastic model
it has become increasingly clear that it is usually possible to replace like-
lihood based techniques by quasi-likelihood alternatives in which only as-
sumptions about means and covariances are made in order to obtain estima-
tors. If it is available, the likelihood does provide a basis for benchmarking
of alternative approaches but not more than that. The challenge is to see
whether everything that can be done via likelihoods has a corresponding
quasi-likelihood approach from which the likelihood based results can be
recovered, if they are available. It is conjectured that this is the case. In
this paper, various illustrations are sketched of avoiding the likelihood in
contexts where alternative approaches have not been obvious.
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1 Introduction

This paper is concerned with promoting the thesis that:

For parameter inference

(1) it is advantageous to make minimalist assumptions on models (ini-
tially concerning only means and covariance structure), and

(2) there is a sensible quasi-likelihood (QL) alternative/ generalization of
any likelihood based methodology, at least to the first order of asymptotics.

We have also come to rely on the full distribution theory as a basis for
a wide range of statistical procedures. Indeed, questions of appropriateness
of the model are often supressed in order to make use of easy analytical
methods (as with the Black-Scholes model in Finance). However, many os-
tensibly likelihood based methods do not actually require full distributional
assumptions. They can readily be extended to the estimating functions con-
text when there is a conservative quasi-score. That is, an estimating function
which is the gradient of a scalar objective function which plays the role of the
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likelihood if and when it exists. However, it is argued that a scalar objective
function for which the quasi-score is the gradient is inessential.

These pronouncements may be regarded as controversial. However, they
are motivated by a wish to promote serious consideration and debate and
not out of intrinsic dogmatism.

We shall give a smorgasbord of examples to elucidate the point of view
described above. After discussion the general QL framework (Section 2),
we shall describe some Projection-Solution (P-S) methods, namely in the
contexts of constrained parameter estimation, nuisance parameters and the
E-M algorithm (Section 3). Then we shall discuss bypassing the likelihood
through examples for diffusion processes and REML estimation (Section 4).
There are, of course, many other areas in which there is substantial progress
towards the use of estimating functions without direct recourse to likelihood
ideas. These include the areas of multiple roots (e.g. Heyde and Morton
(1996b)), likelihood ratio tests (e.g Li (1993)) and Bayesian analysis (e.g.

Godambe (1994)). A much broader perspective will soon be available in
Heyde (1997).

2 General QL Principles

Suppose we have a sample {X;,t € T} of vectors of dimension r, T' possi-
bly being discrete, continuous or lattice. The possible probability measures
{Pe} for {X;} are the union of families of models and the 8 = (61, ...,6p)’ to
be estimated is a vector of dimension p.

The approach is via the set of p dimensional vector estimating functions

G ={Gr(0) = Gr({X,t € T},0)}

which are functions of the data and # for which EGy = 0 for each Py and
the matrices

EGr(0) = (E8GT,(0)/09;)

and EG7(0)Gr(0) are nonsingular, the prime denoting transpose.

The QL theory focuses on suitably chosen subsets of G and involves
choice of an estimating function Gt to maximize, in the partial order of
non-negative definite (nnd) matrices, the information criterion:

£(Gr) = (EGr) (EGrGy)  (EGT)

which is a natural generalization of Fisher information. We have the follow-
ing definition.

Definition. Suppose that G € H C G. If
£(GT) — €(Gr)
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is nnd for all Gy € H we say that G7 is a quasi-score estimating function
(QSEF) within #.

The choice of the family H is completely open and should be tailored to
the particular application.

The estimator 6} obtained from G%(67) = 0 which is termed a quasi-
likelihood estimator has, under broad conditions, certain minimum size asymp-
totic confidence zone properties for 8, at least within 7{. Indeed, the basic
properties are those of the maximum likelihood estimator, but restricted to
the class H.

The theory does not require a parametric setting, let alone the existence
of a likelihood score function Ur(#). However, if Ur € H, as can ordinarily
be arranged in exponential family problems, then Ur is the QSEF within H
and can easily be calculated without using likelihoods.

It is not usually practicable to find a quasi-score estimating function
directly from the definition. However, the criterion given in the following
proposition is easy to use in practice.

Proposition 1. Let # € G. Then G} € H is a quasi-score estimating
function within H if

(EGr) 'EGrG%¥ = Cr (2.1)

for all G € H, where Cr is a fixed matrix. Conversely, if #{ is convex and
G7 is a quasi-score estimating function then (2.1) holds.

3 Projection Based Methods

Many problems for which the use of likelihood based ideas is standard,
and for which there is not an obvious quasi-likelihood analogue in the absence
of a conservative quasi-score, can be dealt with via projection based methods.
We give three illustrations in this section.

3.1 Constrained Parameter Estimation
Here we wish to estimate 6 subject to the constraint F' = d, F being a
g X p matrix which does not depend on the data or 6.

Suppose we have an unconstrained quasi-score Q(f) € H and, using a
minus to denote generalized inverse, define the projection matrix

P=FFVIF)~Fv!

for V= EQQ'.

In the case where a likelihood L(0) is available, the usual procedure is
to use the method of Lagrange multipliers and maximize L(6) + X' (F'0 — d)
where ) is determined by the constraint. Thus, we differentiate with respect
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to 0 and solve the equations
U@)+F)x=0,F'd=d

for X and 6, U being the score function.
The striking thing is that this procedure works in general for quasi-
likelihood, even in the non-conservative case. We solve the equations

QO)+FA=0,F'd=d
for )\ and 6, that is, ) 5
(I-P)QO)=0,F'6=d.
Optimality is preserved. For details see Heyde and Morton (1993).

3.2 Nuisance Parameters
Here we have §' = (¢,1') where ¢ is the parameter of interest and 1 is a
nuisance parameter. Then, supposing that we have a quasi-score Q(0) € H,
we use the partitioned forms
_( @
Q ( Qy

V. V.
v=r00 = | V4 Veu )
QQ ( Vos Vy

and write

The projection
Py = Fy(FyV™'Fy) F)V

identifies the information about ¢ for ¢ given and the estimating equation

(I-Py)Q=0

is optimal for the estimation of ¢ in the presence of the nuisance parameter
1. The sensitive dependence of @) on 7 has been removed in the sense that
B (I~ P)@) =0
oy VYT
This is a first order approach. In the language of McLeish and Small
(1988), (I — Py)Q is locally E-ancillary for 4 and P,Q is locally E-sufficient
for 9.
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3.3 E-M Algorithm Generalization

The E-M method is used for parameter estimation where there is missing
data. In the first (E) step, one takes the conditional expectation of the com-
plete data likelihood with respect to the available data. In the second (M)
step, one maximizes over possible distributions. However, it is possible to
avoid the likelihood completely by introducing a project-solve (P-S) method.

Suppose that the full data is denoted by z, the observed data by y and
0 is the parameter of interest. We seek to adapt a quasi-score Q(0;z) € H,
to obtain a quasi-score Q(6;y) € H,. In fact

EQ -Q)Q -Q)= Gig?i;y EG-Q)(G-Q)

and Q* is the element of H, with minimum dispersion distance from
Q€ H,. '

If the likelihood score U € H;, then Q = E(Ul|y) provided this belongs
to Hy as in the E-M case. However, Q* is given in general just as a least
squares predictor and mostly

Q*(6;y) # Es(Q(0,z)|y).

A detailed discussion of the method can be found in Heyde and Morton
(1996a).

There is an algorithm for solving Q*(6;y) = 0 along the lines of the E-M
algorithm. This usually gives a first order rate of convergence. However, the
equation can often be solved directly with a second order rate of convergence,
for example using Fisher’s method of scoring.

4 Bypassing the Likelihood

In this section we give examples of the derivations of score functions
without having first to find a likelihood to differentiate. In such cases there
is the added advantage of being useful under distinctly broader distributional
conditions than are imposed by the need to prescribe a likelihood.

4.1 Parameters in Diffusion Type Models
Here we have a model described by the stochastic differential equation

dX, = a(t, X;,0)dt + b (t, Xs)dW,

where a, b are known functions and W; is standard Brownian motion.

The usual approach to estimation of 8 is to obtain an appropriate Radon-
Nikodym derivative. This is tedious from first principles. Differentiation
with respect to 6 then gives the likelihood score.
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Alternatively, one may consider the family of martingale estimating func-
tions

T
H={ / ko(0)(dX, — a(t, X,, 8)dt), kipredictable}.
0

The quasi-score estimating function from this family can be written down
almost immediately using Proposition 1 as

[ (@t X0 0 (b0t X)X, ~ aft, X, )d),

and this is equivalent to the likelihood score.

The explanation is straightforward. Note that the elements of H are
(martingale) stochastic integrals with respect to W;. Also, a likelihood score
is a martingale under modest regularity conditions. Furthermore, all square
integrable martingales living on the same probability space as this process
can be described as stochastic integrals with respect to the Brownian motion.
Thus H contains the likelihood score and the QSEF will pick it out.

Now the quasi-likelihood method goes much further. One does not have
to perturb a diffusion type model much to destroy the likelihood. For ex-
ample, in the Cox-Ingersoll-Ross model used for interest rates in financial
modelling, '

1
dXt = Ol(ﬂ — Xt)dt + O'Xt2 th,

the Radon-Nikodym derivative will not exist if the volatility o is rate depen-
dent on a. However, the QSEF is unaffected. For more details see Heyde
(1994a).

4.2 Restricted (or Residual) Maximum Likelihood

Here the problem is of estimating dispersion in a linear model; the n x r
vector y has the multivariate normal distribution MV N(Xg,V (0)) with
mean X (3, covariance V' (6) and 0 is to be estimated.

Take the rank of X as r, the dimension of 3 and let A be any matrix with
n rows and rank n—r satisfying A’X = 0. Then A’y has the MV N(0, A'V A)
distribution.

The striking thing here is that the likelihood function does not depend
on A. Indeed, for all A,

A(A'VA)"A' =V7IQ

where Q = I — P, P being the projector onto the subspace R(X) (the range
space of X) with respect to the inner product a'Vb.
The likelihood function of 8 based on A’y is, omitting a constant multi-
plier,
n—r 1
(I1 li)zewp(—iy'V_le)

=1
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where the I; are the non-zero eigenvalues of V~!Q. This is not a straight-
forward calculation, nor is the differentiation with respect to € required to
obtain the REML estimating equations

1.0V 1.0V _ .
tr(V IQ%)=ZI'(V ngéfV 1Q)y,i = 1,2,...p,
1 1

tr denoting trace.

For the quasi-likelihood approach we no longer require multivariate nor-
mality but instead that y has mean vector X3, covariance matrix V' (), and
that each y; has kurtosis 3.

The crucial step is taken by noting that we ezpect to use quadratic func-
tions of the data to estimate covariances.

For fixed A, let z = A’y and take 6 as a scalar for clarity. Now introduce
the family of estimating functions

H = {G(S) = 2'Sz — EZ'Sz, Ssymmetric}.
Write W = A'VA. Then
EG(S)G(S*) = 2tr(WSW S*)
EZSz=tr(WS)
EG(S) = —tr(%—v;/S),
and we see via Proposition 1 that S* for the QSEF is given by

. OW
St =W W

The REML estimating equations then follow since
AW~-A' =Vv71Q.

For more details see Heyde(1994b).
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