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Abstract: We describe a general approach to finding Least Absolute Devi-
ation estimates of two-way and three-way overlapping clustering models
called ADCLUS and INDCLUS. The suggested approach utilizes a com-
binatorial optimization approach that takes advantage of a separability
property of this loss function for fitting these models. Our approach
helps in robustifying the solutions in the presence of extreme outliers in
the data.
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1 Introduction
Shepard and Arabie (1979) first introduced an overlapping clustering model
for classification based on similarity data called ADCLUS (for additive
clustering). Subsequently, Arabie and Carroll (1980), provided a mathe-
matical programming approach for fitting this model. Carroll and Ara-
bie (1983), proposed an individual differences generalization of this model,
which they called INDCLUS (for individual differences clustering), and also
devised a procedure for fitting this three-way generalization, thus provid-
ing a methodology for three-way overlapping clustering. These algorithms
optimize a least squares, or L2-norm based, loss function. The theoreti-
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cal significance and conceptual elegance of overlapping clustering can be
seen in applications in many different substantive domains, as illustrated,
for example, in Arabie, Carroll, DeSarbo, and Wind (1981) and Srivas-
tava, Alpert, and Shocker (1984). In this paper, we present a procedure
for fitting these models via an Lχ-norm, which we call LADCLUS (for
Least Absolute Deviation clustering). This procedure is a special case of a
general approach (Carroll and Chaturvedi, 1995) for fitting a general mul-
tilinear model including both discrete and continuous parameters via L\-
or ί/2-norms, or other Lp-norms. Our procedure is computationally signif-
icantly faster and can handle much larger data sets than Lakshmi-Ratan's
(1985) Li-norm based approach for fitting the two-way overlapping cluster-
ing problem. It is computationally as simple and tractable as a procedure
proposed by Chaturvedi and Carroll (1994), which provides a more efficient
algorithm than the earlier algorithms for fitting these models via an L2-
norm. The principal benefit of fitting these overlapping clustering models
via an Li-norm would be to robustify the estimation of model parameters
vis-a-vis extreme outliers in the data. Fitting models via an Li-norm tends
to reduce the effects of extreme outliers, as compared to fitting via an L2
(OLS)-norm (Hampel, Ronchetti, Rousseeuw and Stahel, 1986; Kaufman
and Rousseeuw, 1990). The increased robustness of the Li-norm procedure
to the Z/2-norm procedure is analogous to the illustration in Rousseeuw
and Leroy (1987, pp. 10-11) in the context of linear regression, wherein the
Li-norm estimate is shown to be more robust to extreme values of the de-
pendent variable. The derived solutions would be more robust to extreme
values in the data (analogous to the dependent variable in the regression
case).

2 The INDCLUS model
Assume that N objects are being clustered into R overlapping clusters.
Then, the INDCLUS model (Carroll, 1975; Carroll and Arabie, 1983) is
written as:

Sfc = PWfcP'+ C* + error, (1)

where:

Sfc is an (N x N) similarity matrix for the fcth subject (or other source
of data); k = 1, ...,if,

Wfc is an (R x R) diagonal matrix of weights for the fcth subject (or
other source of data); k = 1,..., if,

P is an (N x R) binary indicator matrix defining the possibly overlapping
clusters, and
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Cfc is an (N x N) matrix, all of whose entries are c ,̂ which can be
thought of as the weight for a universal cluster denoted by an N x 1 unit
vector 1, all of whose components are 1.

The diagonal entries in the (N x N) matrix Sk are usually not defined.
The estimation problem is to determine the ordinary least squares (OLS)
estimates of parameters P, Wk and Ck. The diagonal elements of the
weight matrices Wk must be non-negative and elements of P must be con-
strained to be either 0 or 1. The ADCLUS model is the special case of the
INDCLUS model in which K = 1. The ADCLUS procedure proposed by
Shepard and Arabie (1979) combines a combinatorial algorithm with iter-
ative estimation of the weights. The MAPCLUS procedure proposed by
Arabie and Carroll (1980) fits the ADCLUS model via a penalty function
based mathematical programming technique embedded in an overall alter-
nating least squares procedure. The INDCLUS method proposed by Carroll
and Arabie (1983) generalizes the MAPCLUS approach to the three-way
INDCLUS model. These are all OLS procedures (using an L2-norm based
fit measure). Various other techniques have been developed for fitting these
models, such as the Maximum Likelihood approach of Hiroshi Hojo (1983),
the Qualitative Factor Analysis (QFA) procedure of Mirkin (1987), and the
OLS procedure called SINDCLUS, of Chaturvedi and Carroll (1992, 1994).
We now describe the LADCLUS algorithm for fitting these models via an
Li-norm.

3 The LADCLUS algorithm
The LADCLUS procedure uses a separability property of the LAD loss
function for fitting the INDCLUS model defined in (1) via an alternating
estimation procedure discussed below. This separability property has also
been used in the SINDCLUS procedure (Chaturvedi and Carroll, 1994).
While Mirkin (1990) also uses a one-cluster-at-a-time approach to esti-
mating a bilinear model, his approach utilizes a different algorithm for
estimating the parameters for a cluster. The two main differences of the
approach presented in this paper with Mirkin's (1990) approach are: (a)
Mirkin does not use the separability property, but a different approach to
estimating the parameters for any given cluster, and (b) his approach does
not yield overall Li-norm based estimates for the model parameters, since
he does not iterate over clusters (as we do) in order to obtain a globally op-
timal solution. This separability property can best be stated in the form of
two procedures - the elementary discrete and elementary continuous LAD
procedures. These are illustrated below.
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A. The elementary discrete LAD procedure

Consider the following illustrative problem. Let
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The estimation problem is to find the least absolute deviation (LAD) esti-
mate of x, where L = xr'+ error and x is constrained to be binary (0 or
1). That is

If we let
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+ error

/1 = I 7 - lxi I + I 5 - 4xi II 3 - 9xi I + I 9 - 3xi I,

f2 = I 8 - l x 2 I + I 6 - 4x2 I + I 5 - 9x2 I + I 1 - 3x2 I,
/3 = I 9 - l x 3 I + I 4 - 4x 3 I + I 2 - 9x3 I + I 7 - 3x 3 I, and
U = I 5 - l x 4 I + I 3 - 4x 4 I + I 4 - 9x4 I + I 6 - 3x4 I,

then the sum of absolute errors is given by

h

Note that f\ is a function only of x\\ f2 is a function only of X2; fs is a
function only of X3; and f^ is a function only of X4. Thus, F is separable in
xi, X2, X3, and X4. To minimize F, one can separately minimize f\ w.r.t xi,
f2 w.r.t X2, /3 w.r.t X3, and, f^ w.r.t. X4. To minimize, say, /1 w.r.t. xi, one
can easily evaluate f\ at xi = 1 and xi = 0. The xi yielding a minimum
of these two possible values is then chosen. Thus, for / (0-1) variables,
only 2/ function evaluations and comparisons are needed, as compared to
21 evaluations and comparisons for explicit enumeration.

B. The elementary continuous LAD procedure

Again, consider the illustrative problem given in the Elementary discrete
LAD procedure of determining x, where x is real. As in the case of the
Elementary discrete LAD procedure, it can be shown that F is separable
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in xi, Z2, #3, and X4. Thus, to minimize F, one can separately minimize
/1 w.r.t xι, /2 w.r.t z2, h w r t ^3, and, /4 w.r.t. x4. The minimization of,
say, /1 w.r.t. #1, is equivalent to performing simple L\ regression with a
single independent variable. While the general multivariate Zα-regression
problem can be formulated and solved as a constrained linear programming
problem (Rousseeuw and Leroy 1987 pp 146), in our case since there is only
one independent variable, the simplex solutions can easily be determined
by evaluating the functions f\ — /4 at the respective corner points. To
illustrate, in order to minimize, say, f\ w.r.t. #i, simply evaluate /1 at the
four corner points given by x\ — 7/1, 5/4, 3/9 and 9/3. The value of x\
yielding the minimum is chosen as the optimum LAD estimate of x\. In
this specific case, f\ is a minimum at x\ = 3/9. More generally, to minimize
the LAD criterion as a function of a single variable Xi, for the component
fi of the overall loss function

J
where fi = Σ \ kj — x%rj \ is a function only of α ,̂ we simply evaluate fi at

3=1

the J values

Ji') - hL
rr

and then choose the Xi to be the xf minimizing

This can easily be shown to provide the Xi minimizing fi, thus completing
the Elementary Continuous LAD procedure.

The LADCLUS procedure utilizes an alternating least absolute devia-
tion (Li-norm) procedure in fitting the ADCLUS/INDCLUS models. The
algorithm converges to at least a local optimum, as the objective function
value decreases (or does not increase) at each stage of the algorithm, and
there is a lower bound to the objective function.

The estimation problem in LADCLUS is to find LAD estimates of P,

Wfc, and Cfc, (fc = 1, ...,#) in t h e equation:

Sk = PWfcP' + Ck + error, (2)
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where P, W&, and Cfc, are as defined in equation (1). If S& were considered
to be a nonsymmetric (N x N) matrix, then the above equation can be
generalized to

Cfc + error, (3)

where Q is an (AT x R) matrix, not necessarily the same as P. In the
symmetric case of INDCLUS, P = Q.

We use (3) to estimate the parameters for the symmetric case without
imposing the constraint P — Q. Thus, we will first define the estimation
problem for the nonsymmetric case, and then specialize it to the symmet-
ric case. This is the same overall strategy as followed by Chaturvedi and
Carroll (1994) in their SINDCLUS approach to OLS estimation of AD-
CLUS/INDCLUS. Defining the following symbols :

p r = (JV x 1) binary vector for the rth cluster,
w r = (K x 1) vector of the weights for the rth cluster,
qr = (N x 1) binary vector for the rth cluster (not necessarily = p r),
P(-r) = (N x R) binary matrix including the universal cluster 1 but

excluding the rth cluster,
W(_r) = (R x R) weight matrix for the fcth subject or other source of

data, including the weight for the universal cluster but excluding the weight
for the rth cluster, and

Q(-r) = (N x R) matrix including the universal cluster 1 but excluding
the rth cluster,

we can rewrite (3) as

Sfc = vrwkrc{ + P(_7,)WA;(_r)Q
/
(_r) + error,

If we have estimates of all but the rth cluster, then we can define S^ as

Sfc = S,-P (_ r )W f c (_ r )Q' (_ r ) (4)

to get

Sfc = prwkrc{r + error, (5)

that is,

Sfc = / (parameters for cluster r) + error (6)

If we have K matrices S^ of order (NxN), we can use a procedure similar
to the CANDECOMP based algorithm called the INDSCAL method for
fitting the INDSCAL model formulated by Carroll and Chang (1970). We
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call this general procedure CANDCLUS (Carroll and Chaturvedi, 1995),
which stands for CANonical Decomposition CLUStering. Let us assume
that we have the parameter estimates for all clusters, except the ith cluster.
Let Ti be a (K x N2) matrix where the fcth row has all the N2 terms of
the N x N matrix Sfc, and T 2 and T 3 be (N x KN matrices). Ti has all
N2 elements of S& in its fcth row. T2 is the supermatrix that has the jth
row of matrices Si,..., SK in the jth row. Thus:

T 2 = [^Si I S 2 I ... Sfc I ... I S

Similarly,

τ 3 =[s ' 1 | s ' 2 | . . . s ' f e | . . . | sy .
Assuming that estimates of p r and q r are known, the parameters for the
rth cluster are estimated by iterating the following 3 Steps until at least a
local optimum is reached.

• Step 1. Estimating wr conditionally

Given current estimates, pr and q r, of p r and q r, let g r be a vector of iV2

elements such that

gr = Pr®qr,

where ® is the Kronecker product. Then, using the elementary continuous
LAD procedure outlined earlier, one can find the LAD estimate w r in the
Equation

Ti = wrg£. + error.

Non-negativity constraints are imposed easily by simply setting all negative
weights to zero as in Carroll, DeSoete, and Pruzansky (1989).

• Step 2. Estimating p r conditionally

Given current estimates, w r and q r, of w r and q r, let h r be a vector of
KN elements such that

h r = w r ®q r .

Then, by using the elementary discrete LAD procedure in the equation

T 2 = PrK + error,

one can find p r , the LAD estimates of p r .
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• Step 3. Estimating qr conditionally

Given current estimates, w r and p r , of w r and p r , let j r be a vector of KN
elements such that

jr = Wr<g>Pr.

Then, by using the elementary discrete LAD procedure in the equation

T 3 = qrjr + error,

one can find q r, the LAD estimates of q r.

The LADCLUS algorithm starts off with random binary starting values
for the matrices P and Q, and random continuous values in the diago-
nal matrices W&. The LADCLUS procedure iterates up to a prespeciίied
maximum number of major iterations or until the percentage reduction in
the fit value is less than a prespecified criterion. The current default is
0.0001. The current fit value (M2) and the previous fit value (Ml) are up-
dated after each major iteration. Each major iteration of the LADCLUS
algorithm involves determining at least locally optimal conditional Li-norm
estimates of the parameters for the r+\ clusters, using the one-cluster-at-a-
time strategy. Thus, each major iteration comprises r + 1 minor iterations,
corresponding to the r + 1 clusters.

The minor iteration of the LADCLUS procedure corresponding to the
rth cluster involves sequentially finding conditionally optimal parameter
estimates w r, p r , and q r. This is achieved by first forming supermatrices
Ti,T2 and T3. The matrix gr is then formed and w r is estimated as de-
scribed in Step 1 using the elementary continuous LAD procedure. This
is followed by Steps 2 and 3 of estimating p r and q r respectively, using
the elementary discrete procedure. The fit value is then computed (F2),
and compared to the previous fit value (Fl). This process is repeated until
there is no improvement in fit (i.e. F2 = Fl). At this point an (at least
locally) optimal set of parameter estimates have been obtained for the rth

cluster, conditional on the fixed values of the R — l other clusters (and the
universal cluster).

It should be noted that in Steps 2 and 3 above, the p and q vectors
cannot be all zero. Thus, each cluster must have at least one object in
it. Since the matrices S^ usually do not have diagonals in the case of the
INDCLUS model, Steps 1, 2 and 3 above need to be modified. In the case
of undefined diagonals, we simply drop the corresponding columns from the
Ti matrix and g vector in Step 1. Similarly, we don't consider the diagonal
elements in Steps 2 and 3 for fitting the INDCLUS model. For estimating
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the weights for the universal cluster, where p and q are fixed, we just use
Step 1, with p = q = 1.

While we do not impose the constraint that P = Q in the estimation
procedure, we find empirically that in the symmetric case of INDCLUS,
the matrices P and Q are equal upon convergence at the global optimum.
We conjecture that this will always occur under conditions of unique global
optimality. Also, while the default option in LADCLUS is to estimate the
INDCLUS model by treating the diagonals as missing data, LADCLUS
also allows fitting of the INDCLUS model when diagonals are treated as
non-missing. One major advantage of LADCLUS in addition to its greater
computational efficiency, is its ability to handle arbitrary patterns of miss-
ing data satisfactorily. (In fact, the default option for diagonals simply is
a special case of handling missing data). Since, at each stage of the algo-
rithm, we are conditionally estimating one new "dimension" (e.g., the pr or
qr vector in LADCLUS), through the use of the elementary discrete LAD
procedure mentioned earlier, omission of data is accomplished by omitting
the corresponding terms from the corresponding LAD loss function. (The
treatment of missing data as described is a special case of weighted LAD
fitting, with weights of zero for missing observations and one for those that
are present.) The generalization of LADCLUS to weighted LAD, is also
straightforward, since each of the three conditional LAD estimation stages
can simply be replaced with an appropriately weighted LAD estimation
procedure.

One final comment vis-a-vis LADCLUS is that no special case needs
to be described for the fitting of the ADCLUS model, in which K — 1.
ADCLUS is simply fit as a special case of the INDCLUS model, in which
the third way, for subjects or other sources of data, has only one level.

4 Applications of LADCLUS to some real data
The LADCLUS procedure was applied to the Kinship data of Rosenberg
and Kim published in Arabie, Carroll, and DeSarbo (1987). The application
of SINDCLUS to this data set is described in detail in Chaturvedi and
Carroll (1994). We present this application of LADCLUS to compare the
solutions derived via LADCLUS and SINDCLUS.

The fifteen most commonly used kinship terms - Aunt, Brother, Cousin,
Daughter, Father, Granddaughter, Grandfather, Grandmother, Grandson,
Mother, Nephew, Niece, Sister, Son, and Uncle, were printed on slips of
paper for use in a sorting task by Rosenberg and Kim (1975). Eighty-
five male and eighty-five female subjects were run in a condition where
subjects gave (only) a single-sort of the fifteen terms. A different group
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of subjects (eighty-five males and eighty-five females) were told that, after
making their first sorts of the terms, they should give additional subjective
partitioning(s) of these stimuli using "a different basis of meaning each
time". Rosenberg and Kim (1975) used only the data from the first and
second sortings for this group of subjects. Thus, we have six conditions
which will correspond to our subjects: females' single-sort, males' single-
sort, females' first-sort, males' first-sort, females' second-sort, and males'
second-sort. Again note that the "subjects" (or other sources of data) in
the first two conditions were distinct from those in the last four conditions.

Since the subjects' partitions of the stimuli comprise nominal scale data
that do not immediately assume the form of a proximity matrix, some
pre-processing is necessary to obtain such a matrix. If we form a stimuli
x stimuli co-occurrence matrix for each experimental condition, with the
(i, j)th entry derived as the number of subjects who placed stimuli i and j
in the same group, and subtract that entry from the total number of sub-
jects contributing to the matrix, then we have what is called the S-measure
(Arabie, Carroll, and DeSarbo, 1987). As in Arabie, Carroll, and DeSarbo
(1987), the six matrices constructed using the S-measure were analyzed
using LADCLUS via a matrix unconditional approach. A five cluster so-
lution explaining 38.75 percent of absolute deviation in the data (around
the grand median) was extracted. The optimal clusters derived using the
LADCLUS procedure are identical to the clusters derived by Arabie, Car-
roll, and DeSarbo (1987). The five cluster solution is presented in Table
1, while the importance weights derived via LADCLUS and INDCLUS are
presented in Tables 2 and 3.

The clusters are easily interpreted. In the order listed, the first two are
sex-defined, the third is the collateral relatives, the fourth is the nuclear
family, while the fifth consists of grandparents and grandchildren.

5 Conclusions
The LADCLUS procedure introduced least absolute deviations as an ob-
jective function for the ADCLUS/INDCLUS models. The enhanced ro-
bustness of LADCLUS to the presence of extreme outliers over existing
least squares procedures was demonstrated in an extensive Monte-Carlo
simulation. The LADCLUS procedure can be extended to fit other hybrid
multivariate models that entail both continuous and discrete parameters,
where the discrete parameters can take on any discrete values. We hope
that the LADCLUS procedure further enhances the applicability of the
ADCLUS and INDCLUS models. While in the current version LADCLUS
can yield locally optimal solutions, we are investigating approaches that
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ameliorate these problems and yield globally optimal solutions, even for
large data sets.

Table 1: LADCLUS & INDCLUS solutions for Rosenberg and Kim data.

Cluster Items in Cluster Interpretation
a Brother, father,

grandfather
grandson, nephew,
son, uncle

Male relatives excluding cousins

Aunt, daughter,
granddaughter,
grandmother,
mother, niece, sister

Female relatives excluding cousins

Aunt, cousin, Collateral relatives
nephew, niece, uncle
Brother, daughter, Nuclear family
father, mother,
sister, son
Granddaughter,
grandfather,
grandmother,
grandson

Grandparents and Grandchildren

/ All objects Universal cluster

Table 2: LADCLUS weights for the Rosenberg and Kim data.

Subject
F ' single
M' single
F' first
F' second
M' first
M' second

a
0.11
0.2
0.57
0.25
0.33
0.31

b
0.11
0.19
0.57
0.27
0.33
0.32

c
0.44
0.29
0.27
0.33
0.28
0.11

d
0.29
0.28
0.17
0.25
0.17
0.15

e
0.48
0.28
0.21
0.32
0.29
0.13

Universal
0.04
0.05
0.05
0.09
0.08
0.16
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Table 3: INDCLUS weights for the Rosenberg and Kim data.

Subject a b c d e Universal

F' single M2 !(J49 ^52 U78 ^26 Ό55
M' single .143 .146 .397 .372 .449 .075
F' first .551 .554 .283 .206 .251 .132
F' second .241 .246 .373 .322 .385 .158
M' first .299 .291 .340 .241 .395 .158
M? second .295 .306 .237 .219 . 2 5 3 . 2 0 7
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