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MODELLING AND ROBUSTNESS ISSUES
IN BAYESIAN TIME SERIES ANALYSIS!
By MIKE WEST

Abstract. Some areas of recent development and current interest in time
series are noted, with some discussion of Bayesian modelling efforts motivated by
substantial practical problems. The areas include non-linear auto-regressive time
series modelling, measurement error structures in state-space modelling of time se-
ries, and issues of timing uncertainties and time deformations. Some discussion of
the needs and opportunities for work on non/semi-parametric models and robust-
ness issues is given in each context.

1. Introduction. Three areas of recent development and current in-
terest in Bayesian time series analysis are: non- or semi-parametric models
for non-linear auto-regressions, and related time series structures, based on
mixture models; the modelling and accommodation of measurement errors
in state space models; and timing errors, uncertainties, and the use of time
deformations to map linear time series models to practically interesting non-
linear forms. Methodological developments in each area are made possible
through the use of MCMC simulation methods, and we are likely to see
growth in application of these, and related, kinds of models for this reason
(if no other). Needs and opportunities for theoretical and empirical robust-
ness and sensitivity studies are apparent and, in the light of the preceding
comment, very practically desirable. It is hoped that this paper will stimu-
late some time series research interest among some members of the Bayesian
robustness communities. In contrast to much of the growth in the “offi-
cial” Bayesian robustness field, the majority of the practically interesting
robustness issues raised here have to do with the forms of data models and
likelihood functions, rather than priors (though the distinction is not always

clear-cut).

The discussions below are all based in the context of a real-valued, scalar
time series y;, observed over a specified discrete time interval t = 1,...,n.
For any time point ¢, y* denotes the first ¢ observed values y* = {y1,. .., ¥:};
for any fixed p < ¢, y}, denotes the most recent p values, v = {y:—py1,--., ¥}

2. Non-linear auto-regression. Non-linear time series has been a
growth area in non-Bayesian statistics for over fifteen years, with interest
generally focussed on non-linear auto-regressions (e.g. Tong 1990 and ref-
erences therein). Though there is much Bayesian work in non-linear and
non-stationary modelling, only recently have Bayesians really taken up the

! Keywords: Mixture models; Non-normal time series; Non-linear auto-regressions;
Non-parametric Bayesian models; Time series outliers; Time deformations; Timing
uncertainties.
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challenge of empirical non-linear modelling in any generality; recent inter-
est is, naturally, partly driven by computational feasibility and currently
accessible simulation methods.

A general objective of AR modelling is to identify useful predictive mod-
els p(y¢|y*) via a fixed order model p(y|y}), an AR(p) model for some order
p, under the Markovian assumption p(y:|y*) = p(y:|y;) for all t. Covariates
may be involved, in which case the focus is on p(yt|y;,zt) where z; repre-
sents known covariates at time ¢. The standard linear AR(p) model, with
covariates, has y; conditionally normal, N (y|ut, v), where p; is linear in ele-
ments of y;, and z;. Approaches to generalising this to non-linear time series
would model the entire distributional form, rather than just the mean as in
common non-Bayesian approaches.

The basic and simple idea of developing Bayesian mixture models defin-
ing interesting classes of conditional distributions p(y:|y}, z;) is introduced
in Miiller, West and MacEachern (1994). In essence, these authors build a
modelling framework that embodies and formalises the notions underlying
standard kernel auto-regression methods (e.g. Tong 1990). The mixture
framework derives from Dirichlet mixture models in density estimation (e.g.
as in West, Miiller and Escobar 1994). Full background and technical de-
tails are given by these authors, and by references therein, for the interested
reader.

In the archetype model, p(y:, y;,xt) is a mixture of multivariate normal
distributions, whose number and parameters may be estimated to provide
Bayesian, model based approaches to estimating the joint density. Such
mixtures are well-known to provide a high degree of flexibility in modelling
observed data configurations, so suggesting that the derived conditional dis-
tributions p(y:|y}, z+) will be of utility in representing non-linear features of
auto-regressions. The conditional distribution p(y|y;,:) is then a mixture
of univariate normals with mixing weights varying as functions of the condi-
tioning past values y/ and covariates z;. To be specific, write z; = (yt, Y, 1)
and suppose that, conditional on a parameter T,

k
p(ze|m) = Y wiN(zila;, A;);
i=1

here 7 represents the full set of parameters {k, (w;, a;, Aj)fﬂ}. The condi-
tional distributions of interest are then

k
p(ytly;t), Tty 7l') = Z w](ygtn zt)N(ytlb](y:w zt)a BJ)
i=1

where: (A) the component regression functions b;(-) are linear and vary with
Jj, and the component variances B; vary with j but do not depend on (y,‘,, zt);
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and (B) w;(-) = cw;k;(yh, ;) where k;(-) is a kernel factor proportional to
the density ordinate at (y;, z;) under the marginal (multivariate normal) dis-
tribution of (y}, ;) from N(za;, A;); this implies higher conditional weights
wj(yf,, z;) for components j best supporting the current state value (g7, ;).

The connections with kernel methods are transparent; E(yt|yzt,, zt, ) has
the form of predictor usual in kernel (auto-)regression. In some applications,
however, there may be substantial variation in the global shape of p(ytlyzt,, ),
as well as in just its mean, and then the full model-based framework provides
additional, useful information. The conditional mean may poorly summarise
location; for example, conditional distributions may be unimodal for (yf,, Tt)
in some regions of the “design” space, bimodal or multi-modal elsewhere.
In moving continuously through the design space, a trace of the conditional
mode may be discontinuous at discrete points, so capturing “threshold AR
structure” (Tong 1990) in useful ways. Such modal traces will bifurcate in
cases where a single mode in one region develops into two modes in another
region. The facility to capture such features, observed in practice, is a nice
facet of conditional mixture models.

Adapting Dirichlet mixture modelling for random sampling contexts,
Miiller, West and MacEachern (1994) show how this framework can be im-
plemented. Inference is largely predictive, focussed on evaluating features of
the predictive distribution for the next value in the series, i.e. integrating the
mixture distribution with respect to the posterior p(r|y’, z?). Implementa-
tion is feasible, though complicated, via MCMC, combining the configuration
based Gibbs sampling methods for mixtures (MacEachern and Miiller 1994;
West, Miiller and Escobar 1993) with various Metropolis steps. Extensions to
incorporate inference about uncertain hyper-parameters, including variance
parameters that play the role of local smoothing parameters, are practically
essential, and correspond to automatic smoothing parameter estimation.

Some early applied development of these models appears in Miiller, West
and MacEachern (1994). One example involves an auto-regression plus co-
variates model for the waiting time between consecutive eruptions of the Old
Faithful geyser. This data series is evidently not well described with linear
models (restricting only to the available covariates and past values of the
series) and the mixture analysis highlights that fact; predictive distributions
for waiting times become bimodal in regions of the design space covered by
this data set, and so quite marked variation in predictive structure is exhib-
ited. A second example in that paper concerns the oft-analysed lynx trapping
series. This series measures annual estimates of lynx trappings in a Cana-
dian region for a period of over a hundred years, and exhibits cyclical be-
haviour with a period of around 7-11 years. The cycles are time-varying and,
though various linear models provide reasonable fits, are generally viewed
as suffering mild non-linearities. One analysis reported mixes basic cycli-
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cal AR(2) models, viz y; ~ Zf:l w;(Ye-1, Ye—2) N (¥el Biys—1 — Yi—2, B;). As
in West (1995a), AR(2) models E(y;) = Bjy:—1 — yt—2 represent sinusoidal
patterns with time-varying amplitudes and phases, but constant periods
Aj = 2m/cos™1(B;/2). Hence the state-dependent mixture of such models
provides opportunity for identifying variation in the period parameter A
across the design space. Some summary inferences from the analyses indi-
cate such variation; they highlight the suggestion that, in periods of rising
lynx trappings (i.e. when g1 > y:—2), the model favours mixture com-
ponents j with larger values of the period A; (through larger values of the
regression parameter 3;) than when trappings have been locally falling. This
is suggestive of an asymmetry in the form of the cycles — a slower rate of in-
crease, with period closer to 11 years, than the rate of decrease, with period
closer to 7 years — consistent with early studies.

In addition to further studies of this framework for non-linear time series,
there are various related areas that are of potential for future development,
now mentioned.

First, though some interesting application have been studied, these mod-
els have significant overheads in terms of specifying hyperpriors on param-
eters of mixture models, and resulting inferences can be very sensitive to
these priors. On the positive side, a focus on prediction makes such sensitiv-
ity much less of an issue than it is for parameter estimation. However, this
is an area of significant need for sensitivity and robustness investigations,
especially in higher dimensional models.

Second, note that other kinds of time series problems are being ap-
proached using semi/non-parametric models based on Dirichlet mixtures.
In particular, the modelling of jumps, structural changes, outliers, etc., in
dynamic linear models is explored in Corradi and Mealli (1995).

Third, the above framework says nothing about stationarity, and there is
a need to develop alternative approaches for assumedly stationary processes.
Take the case of an AR(1) series, so that the process is characterised by a
bivariate distribution F(y;,y:—1). Stationarity implies a common univariate
margin, G(y;) for all ¢. Interest lies in inference about F' quite generally,
subject to the constraint to a common margin. Assuming densities, exist,
for example, the full joint density of the series y™ given G is simply

p(y"™) = p(y1) f[ P(Yelye-1) = 9(n1) fI (Yt y2-1)/9(y1-1)
t=2 t=2

in an obvious notation. So the kinds of questions of interest might include:
identifying non-parametric models for F' constrained to common margins;
identifying flexible classes of parametrised bivariate distribution F’ with com-
mon margins, and consideration of non-parametric priors for the margin
G; robustness approaches where the uncertain distributions lie in specified
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classes, subject to the constraints. The case an AR(p) series is a direct
extension, with apparent additional complications.

Finally, data in some applied contexts depart from linearity in only small
and often subtle ways. In the non-parametric modelling approach, this sug-
gests starting out with priors, and hyper-priors, that are weighted towards
linearity; in the above mixture approach, for example, this would be im-
plied by priors on the Dirichlet hyper-parameters that induce priors with
high probability on the series being generated by a mixture of just one or
two components. On the robustness side, studies of analyses under classes
of models whose elements lie “close” to linear auto-regression are suggested;
some developments in this direction, such as local sensitivity analyses explor-
ing “interesting” directions of departure from linearity, would be of interest
to the time series community quite widely.

3. Measurment Error Models. The recent introduction of serious
simulation methodology into time series analysis, in particular, in state space
modelling, is providing opportunity for wider use of both standard (i.e. nor-
mal, linear) and somewhat non-standard (i.e. non-normal, non-linear) error
models for observational/measurement errors (e.g. Carlin et al 1992; Carter
and Kohn 1994; Frithwirth-Schnatter 1994; West 1995a,b). For example, the
class of auto-regressive dynamic linear models, of interest in modelling (lin-
ear) auto-regressions corrupted by purely additive noise (measurement and
sampling errors, truncation and rounding errors, gross outliers), is being
more widely explored (e.g. West 1995a,b, 1996). MCMC methods are devel-
oping for inference about model variance components and other parameters
defining state evolution equations, in addition to sequences of state vectors.
Extensions of the normal error models to heavier-tailed normal mixtures
for accommodating time series outliers are quite straightforward. Though
these kinds of models have been around for some time, together with vari-
ous approximate and non-Bayesian approaches to their analyses, it is only
through the recent MCMC developments that we can begin to explore them
fully in practical contexts. And there are quite significant computational,
convergence and implementation issues raised in this area, largely due to
the dimension of resulting parameters spaces. There are also interesting and
important modelling and robustness issues raised, some specific examples
mentioned below.

A particular class of auto-regressive models has the following, basic DLM,
or state-space, representation. An underlying, latent AR(p) process z; =
Z§=l ¢jri_; + €, with zero-mean, independent innovations €; ~ N (€0, v),
is assumed to be observed with additive, zero-mean and independent noise v,
giving the data series y; = z; + v4. In DLM form, y; = F'2; +v; and 2z =
Gz—1 + wi, where 2, = (24, 2¢-1,...,%1—p+1)’, the state vector at time ¢,
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w = (€,0,...,0), and with

1 ¢1 ¢2 ¢)3 ¢p—1 ¢p

0 1 0 0 .- 0 0
F=|0 and G=| 0 1 0 - 0 0
: ) 0 :

0 0 O 1 0

MCMC analysis involves running Markov chain simulations to produce
sequences of values from the posterior of all model parameters and state
vectors. Under the usual assumptions of normality of the observation and
innovation error sequences, this is now straightforward to implement. Full
technical details appears in West (1995b), especially the appendix on MCMC
in state space models, and are quite similar to the developments in related
models in West (1995a). This is a new area for MCMC and there are many
issues associated with the simulation analyses that need study. A typical
problem with even a moderate AR dimension p has many uncertain quan-
tities; the entire set of state vectors over the observed data series, plus the
AR parameters and variance components. MCMC convergence issues with
the associated high dimensional posterior distributions need study.

Note that the MCMC analyses of state space models are computation-
ally very demanding, in even moderate dimensional models, relative to a
standard AR model. In the latter, we observe z; exactly, and have a basic
linear regression model framework, though with some complications due to
the starting value problem. The posterior of interest has dimension 2p+1 (p
elements ¢;, p starting values, plus the innovations variance). As soon as we
admit non-zero observational errors, the dimension is sample size dependent;
with n observed values 9™, the number of uncertain quantities is increased by
n, the number of latent values of the z;. Current versions of MCMC analyses
operate in the strict state-space format above; here the state dimension is p
and so calculations involve sequences of n or more, highly related p—variate
normal distributions, and their iterative simulation. This involves repeat in-
versions of the associated covariance matrices, raising questions of numerical
stability as well as dramatically increasing the computational burden. More
efficient algorithms are needed.

The basic normal model is trivially extended to accommodate the usual
kinds of contamination error distributions, such as heavy-tailed normal mix-
tures. The contamination models of Kleiner, Martin and Thompson (1979),
for example, have become popularised through S-Plus implementation (e.g.
S-Plus 1993, section 16.7). Here vy ~ (1 — 7)éo(v¢) + N (4|0, w), a mixture
of a point mass at zero with the contaminating normal of variance w; thus
either the AR process is observed exactly, or it is observed with a (usu-
ally rather diffuse) normal error. This is a special case of the well-known
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scale-inflation model v; ~ (1 — )N (14|0,02) + wN (4]0, k?0?), admitting a
background level of “routine” measurement error together with (occasional)
“outliers;” here o2 is the variance of the routine error, and & > 0 a scale
inflation factor. Some exploratory analyses of a range of data series from
(largely) the physical sciences indicate cases when this latter model, with
non-negligible o, is to be preferred over that with o very close to zero, but
also cases more in conformity with the latter. The following is an example
of the latter case.

Figure 1 displays a series of measurements on the strontium isotope ra-
tio 8797 /%6Sr derived from seawater measurements from the Indian ocean
(Clemens et al 1993, and communicated to the author by Steve Brooks
of Cambridge University). These data have been constructed as interpo-
lates of original raw data, and represent approximate levels of the stron-
tium ratio at equal spacings of 3kyr (3000 years); thus the time interval
represents approximately the last 450,000 years. They are of interest as cli-
matic indicators, driven by changes in seawater chemistry due, largely, to
input from the weathering of continental crust. The series has been pre-
processed to remove an underlying trend. A state-space AR(5) has been
fitted in the above framework with the scale-inflation measurement error
model v; ~ (1 — m)N(14|0,0%) + 7 N(14]0, k%0?); reported analysis assumed
© = 0.05, £ = 10, and uniform priors (over finite ranges, bounded below
above zero but at a very small value) for each of the standard deviations, o
and /v (n.b. the model actually included an additional term for a non-zero,
locally constant trend, though the effect is negligible as the series had been
pre-processed and reduced to one with essentially no trend).

Here we use this series to illustrate an analysis under a contamination
model, and one with rather diffuse priors on the key variance factors. The
figure displays the data and some summary estimates from analysis. All es-
timates and components quoted are approximate posterior values based on
the 5,000 posterior draws. The figure shows, on the same vertical scale, the
series, the estimates of the measurement errors vy, and the estimated decom-
position of the latent AR(5) component z; into its two major components.
This decomposition is based on the developments in West (1995b); the AR(5)
can model two distinct, damped sub-cycles of time-varying amplitudes and
phases, and, as it turns out here, the posterior heavily supports two such cy-
cles. As described in West (1995b), we can easily extract posterior estimates
of the amplitude of the corresponding sub-components, and these appear in
the figure. There is a third, negligible (and acyclic) component that is not
graphed; as a result, the strontium series is approximately the sum of the
two sub-components and the observation errors displayed. Also shown is the
estimated innovation series w; that “drives” the AR(5) process. The model
is a reasonable data description (a small degree of residual correlation in
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Figure 1: Strontium series and some features of its analysis. The graph
displays the posterior estimates of additive observational errors vy, the two
main, quasi-cyclical sub-components of latent AR(5) process z+, and the cor-
responding estimated innovation series v;. All estimates are approzimate pos-
terior means from the MCMC analysis.
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the estimated innovations, at lag one, notwithstanding). Of note here is the
fact that, though a general contamination model is assumed with a diffuse
prior for o, the posterior heavily supports the degenerate version, indicating
that o is negligible and that only a small fraction of the data values are
corrupted with observational noise. (The first three or four errors are inter-
esting; the data series, it turns out, was constructed by interpolating basic
raw data, and the suspicion is that the initial three or four observations are
corrupted due to the spline interpolation method used). The impact of the
few observations on the analysis can be gauged by comparing some infer-
ences of interest with an analysis assuming no measurement errors, and this
was done using the standard reference analysis (e.g. West 1995b). For in-
stance, the standard reference posterior means (s.d.s) of the five AR param-
eters ¢; are approximately 1.43(0.08), —1.13(0.14), 0.62(0.16), —0.14(0.14),
and —0.09(0.08), whereas the state-space analysis leads roughly 2.08(0.15),
—2.36(0.33), 1.80(0.38), —0.85(0.26), and 0.16(0.09). Perhaps the main point
is to note the “damping” towards zero of the reference estimates, i.e. the
suppression of the “signal” that is theoretically predicted if measurement
errors are ignored. This effect, and the impact on posterior uncertainties, is
quite marked, especially in view of the very small number of really discrepant
measurement errors.

Of interest in the application context of this series are inferences about
cyclical structure in the series. As noted, the analysis indicates that the
AR(5) process has two main quasi-cyclical sub-components, damped cycles
of time-varying amplitudes and phases; based on posterior estimates and
samples of the AR coefficients, we can easily extract posterior estimates of
the periods of these sub-cycles. Consider the dominant of the two sub-cycles.
In the state-space analysis, the approximate posterior distribution for its pe-
riod has median of 40.9/3, quartiles at 37.2/3 and 44.7/3, and mean (s.d.)
of 40.8/3 (1.8/3); the posterior mean of the ¢; translates into an estimate
of 42.0/3 Kyrs. These values are quoted in terms of Kyrs/3, and corre-
spond closely to the accepted of close to 41Kyrs value that is the established
earth-orbital (Milankovitch) period known to drive climatic variation. By
comparison, the corresponding figures in the reference analysis are biased
upwards; for example, the direct estimate based on the estimated AR co-
efficients is 44.5/3Kyrs, some way above the accepted period of the known
“driving” influence.

Some practical issues arising with these kinds of developments, and some
needs for further development and robustness studies, include the following;
much of this is based on the state-space AR context above, though naturally
the comments have more general purview.

The extension of the basic AR model to the state space version to accom-
modate observational errors is made at the expense of a very large increase
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in computational cost, and in user time in monitoring and analysing the
simulation outputs. Hence, in parallel to working on more efficient MCMC
algorithms for state space models, it might be useful to explore these models
from a robustness viewpoint to ask when and whether or not this cost is
worthwhile or can be avoided. In some applications, there may be strong
evidence to support non-negligible additive observational errors, and they
may impact severely on some inferences, thus should not be ignored; then
the state space analysis is needed. The potential for additive errors to distort
subsequent inferences in the spectral domain, for example, are well known
(e.g. Kleiner, Martin and Thompson, 1979). For other inferences, however,
and in other applications, their impact may be minor. It would be of some
interest, therefore, to develop robustness investigations focussed on local
sensitivity; beginning with the strict AR model, i.e. the state space model
with a measurement error distribution degenerate at zero, focus on how spe-
cific posterior characteristics vary with measurement error models “close”
to degeneracy. Studies like this would impact on the question of whether or
not the rather dramatic increase in computational expense (in moving from
the simple AR model to the state space form) is justified. Presumably some
theoretical study in the AR(1) case might yield insights.

Specification issues concerning the form of non-normal elaborations of
the observational error distribution arise. Normal mixtures are traditional
forms for accommodating occasional outliers, but the constraint to symme-
try is sometimes questionable based on a posterior residual analysis under
a normal model in a given study. Even retaining symmetry, there are issues
of sensitivity to assumed form. Some possible directions for future study
include normal mixtures with rather non-parametric approaches to mod-
elling the mixing distributions (e.g. Corradi and Mealli 1995) and possible
exploration of other mixture classes (e.g. Brunner 1994).

Related to the above comments are the specific features of error distri-
butions arising in problems where the observations are censored, truncated
or rounded. For example, a recent discussion with research radiologists con-
cerned simulations of ultrasound signals reflected from human body tissues
of various compositions, with a focus on characterising the returned ultra-
sound signals in order to distinguish/discriminate tissue types. For various
reasons, the return signals are significantly truncated, so suggesting a finite
range uniform observational error model (assuming other sources of measure-
ment error are negligible). In principle, MCMC analyses under such models
might be developed. Can robustness approaches using mixture classes be
developed? The general isses of dealing with censored and truncated mea-
surements are not, of course, time series specific; our interest in robustness
issues in this context relates closely to the work of Dempster and Rubin
(1983) on rounding errors in a regression context.
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4. Timing Uncertainy Rather more specific to time series problems
are issues arising through errors or uncertainties about the timing of obser-
vations. Two examples provide context.

Time Deformed Sine Wave

1.0 - P
0.5 -
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Real Time t

Figure 2: Time deformed sine wave of period A = 15, ezhibiting flatter, noisy
peaks and sharper troughs.

First, errors and uncertainties in timing, as exemplified in West (1996),
can be a serious practical complication. In that study, the time series data
y™ represent chemical constituents of lake sediment related to patterns of
climatic change over time. The true calendar time of observation y; is un-
known, measured indirectly and with substantial uncertainty based on its
associated sedimentary core depth and processes of carbon-14 calibration.
This leads to a rather elaborate model for the true times t” = {¢1,...,t,} of
all observation y™, defining a (class of) prior distributions p(¢"™); West (1996)
describes in detail the development of prior distrbutions within this class.
Analysis is then developed to incorporate t™ along with the parameters and
state variables of the time series model for y™ conditional on t". MCMC
analysis, as illustrated in this application, is feasible.

The second example is a rather simple illustration of how a time trans-
formation maps a simple linear model to a practically interesting non-linear
(but close to linear model). In a beginning collaboration with psychiatrists
at Duke University, we are studying waveform characteristics of lengthy EEG
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Figure 3: Time deformation inducing distortion of sine wave.

(electro-encephalogram) signals in order to characterise such signals for use
in discrimination between EEG outputs from electro-convulsive therapy ap-
plied to patients on different seizure control treatments. Various models,
such as AR, time-varying AR, and others, are being considered, as are per-
haps more basic harmonic regressions. At sampling rates much cruder than
the raw EEG recordings, some of the data have the appearance of noisy
cycles that would be quite well approximated by single harmonic regres-
sions but for one apparent feature; the cycles have very sharp “troughs”
and much flatter and noiser “peaks”. This could be modelled, perhaps, by
superposition of several harmonics of a base frequency. Another idea is to
“deform” the time axis in order to map a sine wave to this flat peak/sharp
trough appearance; this can be done by “stretching” time around the peak
and “compressing” time around the trough. For example, Figure 2 displays
the function cos(27s(t)/A) + v; over time ¢t = 1,...,225, where the v; are
independent N(14]0,0.1) errors, the wavelength A = 15, and the time scale
is deformed periodically as follows: for ¢t > A, s(¢) = s(¢ mod A); for t < A/2,
s(t) = t;and for A\/2 < t < t, s(t) is given by log(s(t)/A—s(t)) = olog(t/A-t)
where, in this example, ¢ = 5. Figure 3 graphs s(t) versus ¢ over the range
(0, A).

Time varying amplitude and phase characteristics might be incorporated
by using auto-regressive models with cyclical or quasi-cyclical components.
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Otherwise, the kinds of features exhibited in Figure 2 are in close resemblance
to those mentioned in the EEG context, so suggesting that a basic harmonic
model with a modified time scale could be relevant.

More widely, this relates to the idea that non-linearities in observed se-
ries may be modelled indirectly via (possibly stochastic) deformations of the
time scale in some generality, assuming that appropriate models for defor-
mations can be identified and estimated. This builds on basic ideas in Stock
(1988), who demonstrates that, under certain deterministic deformations,
traditional linear models can be mapped into models with characteristics

similar to some common non-linear models, such as ARCH models and
threshold AR models.

A framework for Bayesian inference currently being explored uses non-
parametric models for deformations functions; this is work with F Li and
Y Chen at Duke University. Assume an underlying continuous time scale.
This is the case in harmonic regression models, for example, but not in usual
AR or state space models. In the latter case, and in other cases of discrete
time models, we may be able to access an underlying continuum to support
arbitrary timings of observations by embedding the discrete time model in
an underlying continuous stochastic process model (e.g. Stock 1988, for
example). The resulting analysis is complicated in major ways, but some
initial work (with F Li) is encouraging. Alternatively, rather standard state-
space modelling techniques for missing data may apply; this is true in cases
when an underlying fine time scale, discrete and equally spaced, is available,
and when the variation in uncertain timings is restricted to this underlying
discrete scale. This is the case in the study in West (1996) for example.

Assuming a continuous time scale, one class of non-parametric mod-
els under study assumes Gaussian processes priors for deformations. In
the EEG case above, for example, a plausible model is as follows. First,
take y; = acos(2rs(t)/A) + Bsin(27s(t)/A) + v¢ where the errors are in-
dependent N(14|0,v); set 8 = (o, 5, A, v), the data-model parameter, and
write s® = {s(1),...,s(n)} for the uncertain true timings. The above de-
fines p(y™|0, s™) = [Ti=; P(v:]0, s(t)), hence provides a likelihood function for
(0,s™) given the observations. A non-parametric prior for the global time
deformation function will now imply a prior p(s"|6) for the discrete set of
values for any n. In many contexts, this may not depend on the time series
model parameters 6, though there are contexts in which it will; this includes
the current model in which the deformation is assumed periodic with (un-
known) period A, an element of 8. One prior with the right kinds of features
here is a Gaussian process for the function log(s(t)/(A—s(t))) over 0 < t < A,
with periodic behaviour outside the interval. The mean function might be
a prior guess at the form suggested by Figure 3, or simply log(t/(A —t)), so
not anticipating the form of deformation.
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Given specified time series and deformation models, Bayesian analysis
may be developed through extensions of the MCMC methods introduced
in West (1996) in the discrete time context. These kinds of developments
are under investigation in this, and other, applied contexts. Of the many
modelling and robustness arising, some rather immediate directions include
the following.

First, in contexts of expected uncertainties in timing, such as rounding
and truncation errors on the time scale, various candidate forms of timing
error distribution, and possibly non-parametric approaches, are worth in-
vestigating. Second, local robustness studies may be able to contribute in
cases where small degrees of timing error are anticipated or suspected — how
much timing truncation/rounding can be “tolerated”? Third, in developing
time deformation models, the idea of exploring a neighbourhood of a speci-
fied (linear) model through use of a stochastic deformation function that is,
under the prior deformation model, expected to be “very close” to linear, i.e.
heavily biased towards essentially no deformation, bears close resemblance
to the earlier ideas of local exploration of models close to linearity in the
mixture context. Both non-parametric modelling of the deformation and
local robustness studies might be worthwhile here.
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Modelling and Robustness Issues in Bayesian Time Series
Analysis

discussion by
JAMES O. BERGER
Purdue University

This paper is a nice introduction to several exciting current developments
in Bayesian time series analysis, many of which relate to robustness issues.
The paper also proposes a variety of challenging problems in Bayesian robust-
ness; alas, I cannot suggest any solutions to these problems. My discussion
will instead consist of two specific questions, and two general cautions about
Bayesian analysis of highly complex models.

The first question concerns the idea of using mixture models, such as

k
(1) p(y) = Z:WjN(ylaj,Aj),

to model non-linear auto regressions. Auto regressive models typically
arise through the modelling of the conditional distributions of, say, y: given
previous observations. Nonnormal and nonlinear auto regressive models are
also typically modelled through focusing on these conditional distributions.
The question is whether the typical deviations from conditional linearity,
that are encountered in practice, can be captured by low-dimensional mix-
tures of the form (1)? The concern is that (1) defines a joint distribution,
and the particular conditionals of this joint distribution may not be the type
of conditionals that easily model the desired nonlinear autoregressions. For
large enough k, the model in (1) can, of course, capture any type of behavior,
but unless it is effective for small or moderate k its usefulness in practice
will be limited.

My second question concerns use of mixture models for outliers. If a
measurement error, v, is modelled as

v~ (1= m)N(14]0,v) + TN (4]0, k2v),

the analysis can often be quite sensitive to the choice of the variance multi-
plier, k%, in the “outlier” distribution. The alternative of using a flat-tailed
distribution, such as a t-distribution with 4 degrees of freedom (my favorite,
since it looks roughly normal), would seem to have the advantage of not
requiring specification of k£ (or 7). Is there any disadvantage to using t-
distributions here? In particular, in time series contexts and using MCMC
computation, is the use of t-distributions as computationally feasible as the
use of mixture distributions?
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The first general concern I have is that of propriety of posteriors when
dealing with complicated models. As a simple example, consider the trivial
version of the measurement error model discussed in section 2,

Yo = Tt v (vt ~ N (4]0, v))
T = pte (e+ ~ N(&l0,0?)).

Clearly v and o? are not identifiable (since only the y, are observed), so
that use of standard improper priors will result in an improper posterior.
A second example is in the use of mixture models, as in (1). Here, use
of almost any common noninformative priors for the a; and A; will yield
improper posteriors.

A commonly used non-solution to this difficulty is to use vague proper
priors. This is a non-solution, because the answer will then typically depend
strongly on the degree of “vagueness” chosen. Indeed, I never use vague
proper priors, feeling that they can only hide-and never solve-the problem.
At the very least, when one uses vague proper priors, study of the sensitivity
of the answers to the “scale” of the priors is virtually mandatory (and the
scales should be varied separately for nonexchangeable parameters).

The real solution to this difficulty is to learn for which parameters (in a
complex model) one can use improper priors and which require proper priors
(or some default analogue). It is thus important for those who obtain expe-
rience in using a complex model to communicate this type of information,
especially since we know that subjective specification of prior destributions
for all parameters in a complex model is typically not feasible.

The second general concern in Bayesian use of compex models is that
they no longer carry usual Bayesian guarantees of good performance, in
part because of the necessity to choose many prior distributions, and small
errors in such choices can accumulate across parameters to yield a bad an-
swer. A simple example, developed by J.K. Ghosh, consists of independent
observations

Tij ~ N(mij“l'i’az), 1=1,2,...,m; ) =1,2.

The goal is inference concerning o2, for which trivial consistent estimators
exist, such as 62 = (1/4n) ¥ (zi1 — @i2)?. Interestingly, if one were to
choose independent proper priors for the y;, then the resulting Bayes estima-
tor for 02 would be inconsistent, unless the priors were perfectly calibrated
in a certain sense. Hence, for large n, it would not be wise to blindly use
even a proper subjective Bayesian analysis, without making some effort to
check the performance of the procedure.

In conclusion, I am very excited by the potential of the new complex
Bayesian models, such as those being developed by Mike West, but note
that they carry with them certain difficulties of which we must continually
remain aware.
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MiKE WEST

Thanks to Jim Berger for his insightful comments and observations. They
raise several issues worthy of further study in various modelling contexts, not
restricted to the time series specifics of the paper. I take the specific points
raised in turn.

Approximating auto-regressions using conditional mixtures
Elaborating the question a little, we really have two related issues:

(a) that the derived conditional distributions of a mixture may not ade-
quately represent a specified conditional structure, at the specific val-
ues of conditioning quantities, even though the overall joint mixture
may be a good approximation to the corresponding joint structure;
and

(b) that, in any case, a conditional mixture may require a large number of
components to model key observed features of conditional structure,
so limiting its practical utility and interpretation.

With respect to (a), it is certainly true at a theoretical level that a
joint mixture model may arbitrarily well approximate a specified multivari-
ate distribution, whereas a derived conditional mixture, at a specific set of
conditioning values, may be arbitrarily poor as an approximation to the rel-
evant conditional distribution. At a general level, I suspect that meaningful
discrepancies will arise only in models approaching the pathological, from
an applied perspective, though theoretical studies might prove otherwise; I
know of no specifically relevant published works.

More directly in connection with our own work, I note that the prac-
tical impetus starts with the conditional mixture framework, and embeds
in a joint structure for computational/algorithmic reasons. Thus our focus
on approximation accuracy is initially and immediately in the conditional
world, and there we have much to go on in terms of assurances that sim-
ple, low-dimensional mixtures exhibiting “piece-wise linear” auto-regressive
structure are often adequate in representing observed phenomena (e.g. Tong
1990). A good part of the original motivation for the reported develop-
ments lay in the interest in a Bayesian, model-based framework encompass-
ing the widely accepted “standard” non-linear models, namely threshold and
smooth-threshold auto-regressions. Without a doubt threshold models oc-
cupy a central position in non-linear time series, and as mechanistic models
of bifurcations that provide plausible explanations of non-linear, dynamic
phenomena more widely (Tong 1990). The relevance of low-dimensional
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(e.g. two or three component) threshold models as useful approximating
forms for a variety of observed non-linear phenomena is undoubted. The
Bayesian mixture framework starts with a set of conditional distributions
in which such threshold forms are embedded, with a view to overlaying the
relevant formal machinery of Bayesian learning, “automatic” threshold de-
tection and estimation, “smooth-threshold” modifications, hyperparameter
estimation, and so forth. Appeal to an underlying joint mixture structure is
made, of necessity here, in order to utilise modifications of existing simula-
tion methods in the conditional model; in no other sense is the joint mixture
structure needed nor used, though it becomes a more integrated part of the
formal structure in contexts where stationarity of the time series is to be
imposed.

With respect to point (b), the issue of whether or not the model’s “use-
fulness in practice will be limited” unless the number of mixture components
k is small or moderate turns on the nature of the practical uses to which
the model is to be put. Our perspective has been largely predictive. From
that viewpoint, the issues of parameter interpretation are somewhat moot.
There are real issues of over-fitting, however; seriously increasing numbers
of components, hence expanding numbers of parameters, can degrade the
reliability of predictions as the model tailors itself too closely to past data.
One “strategy” we have adopted is to explore sequences of analyses, suc-
cessfully changing the prior for k from one very concentrated near k£ = 1 to
successively less concentrated forms, aiming to identify only truly meaning-
ful departures from the baseline linear, one component models. Of course,
in some cases the data configuration really screams non-linearity, and then
even very precise priors on small k¥ can be drastically over-ridden, as in other
areas of application (e.g. examples in West and Turner 1992).

Alternative outlier models
It is certainly the case that alternative outlier models, such as T distribu-
tions, are as easily implemented as normal mixtures, and various authors
have experimented with such models in time series. Technically, depending
on the specific mixture parameters and degrees of freedom parameters cho-
sen, there may be little difference between the two models until we move way
out into the tails. As a result, in some applications there will be little data
based evidence to distinguish between error models, and then the mixture
appears relatively disadvantaged due to the additional parameter specifica-
tions required (or the requirements to specify priors for parameters such as
7). One point in favour of the mixture model is the question of very low
levels of routine observation noise, and the opportunity to identify this in the
presence of occasional outliers. Another is the resulting explicit computation
of posterior probabilities of “outlying” for individual observations.

Perhaps more practically important than concerns about specific distri-
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butional forms (which can always be compared via repeat analyses in any
case) are the needs for closer investigations and more incisive modelling of
outlier generating mechanisms. Some application areas naturally involve
considerations of dependencies between the outlier characteristics of consec-
utive or near-by observations — the occurrence of outliers in small “batches”
is a case in point. Here the issue is not so much one of distributional form
for the v, but of time-varying and state-dependent outlier probabilities, i.e.
7 rather than 7 for v;.

Propriety of posteriors

Jim Berger is right to note that the general issues of posterior propriety
and related problems of parameter identification are becoming more evident
as Bayesian models become larger and more complex. The problems arise
in models/likelihood functions, and evaporate if modellers toe-the-line and
adhere to proper priors, though then the questions Jim raises about where
the “action” is in the priors are foremost.

I have little to add to Jim’s concluding comments about communica-
tion of insights and experiences in specific kinds of models. In practical
Bayesian forecasting models we have long followed this rule in connection
with the specification of variance components (related to Jim’s example) in
dynamic models. Our use of discount factors (related to ratios of component
variances), and the focus on such factors as “key” determinants of model sen-
sitivity, is evident in ranges of published work. We have stressed the need to
explore data analyses and inferences with such factors constrained to vary in
“relevant” ranges, and have often been involved in communicating the “dan-
gers” of relaxing such constraints through the use of vaguer priors. Jim’s
comment is a plea for more of this, at a more formal and constructive level
and addressed to prior sensitivity questions in broader classes of models.

More specifically, I am unclear as to the relevance of the particular model
Jim displays to illustrate the identification point. That model is one of
independent observations, and not one we use, nor discuss in the paper.
The models discussed do not suffer mathematical identification problems.
For example, a similar model form that does get used a great deal is the
first-order polynomial, in which y; = z; + v4 and z; = x4_; + €, with the
same error assumptions. Here there is no mathematical identification issue;
the joint density of a series of observations depends on (functions of) the
variances of both error sequences that (for more than two observations)
leads to identification and proper posteriors under the usual improper priors
(though I don’t recommend improper priors). The potential for significant
sensitivity to the priors for variance components remains, of course.

As a final comment I note that the reported data analysis in the pa-
per, and other similar analyses (e.g. West 1995), utilise priors on variance
components that are developed from uniform priors, on finite ranges, for the
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corresponding standard deviations. These might be viewed as “vague proper

_priors” in these analyses, as the chosen ranges are essentially irrelevant. We
learn this by running the simulation analyses using rejection methods to
sample variance components from the relevant conditional posterior distri-
butions, and this generates checks on the prior dependence through the
rejection rates. Very low rejection rates are indicative of the insensitivity to
the chosen prior ranges.

Consistency Issues

I have little to add to Jim’s commentary and warning on the issue of posterior
inconsistency in models whose parameter dimension grows with the sample
size. The particular example is disturbing in view of its simplicity and for the
inference that apparently subtle changes in proper priors may so completely
and seriously impact on the asymptotic behaviour of the posterior. I'd like to
hear more of the example, and, in particular, to ask about just how subtle the
variations in the prior are in this case. The example model does bear analogy
with even rather standard dynamic models used in times series, so suggesting
the need to explore the issue in the time series domain. This reinforces the
need for the Bayesian robustness community to begin to explore time series
and dynamic modelling areas, in line with my “invitations” in the paper.
Whether or not these issues are relevant in any of the specific contexts of
the paper remains an open question.

I thank Jim for his insightful and incisive commentary.
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