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Consider the problem of constructing an estimator T(Xn) for the binomial
p and determining the smallest sample size NT such that, for specified
values of ("γ,δ) and for all n > NT, the interval T(Xn) ±δ contains
the true value of p with a minimum probability 7. In principle, any
conventional 1007% confidence interval for p can be adapted to solve the
present problem. We show that, for small <5, all known confidence intervals
effectively lead to the estimator Tb(Xn) = (Xn + \b){n + b)'1 with the
sample size Nb « {z/2δ)2 H-5"1, where z is the | ( 1 + 7 ) quantile of
the standard normal distribution and b > 0 is a specified constant which
does not depend on n. The major purpose of this paper is to propose
the estimator T*(Xn) = (Xn + ̂ aΊy/n){n + aΊy/ri)~1 with sample size
N* pa {(z/2δ) - α 7 } 2 + (5-1, where aΊ = 1 when 7 > .917 and 0 < α 7 < 1
is defined in (1.10) when 7 < .917. The proposed method is more efficient
in the sense that N* < Nb for any b > 0. These asymptotic conclusions
are shown to be quite adequate for arbitrary values of <5 £ [.01, .10] and
7 £ [.90, .99] by making exact calculations for the minimum coverage
probabilities of Tb{Xn) ± δ and T*(Xn) ± δ as well as for Nb and N*.

1. Introduction. An ubiquitous but rarely researched problem of practical
statistics arises in the context of a binomial distribution. Suppose we can observe
the number of "successes" Xn in n independent "trials", each trial having the same
unknown probability of success p, 0 < p < 1. Let 7 G (0,1) be a specified confidence
level and δ G (0, | ) be a specified margin of error. Then the problem is to construct
an estimator T(Xn) for p and predetermine the (smallest) sample size NT such
that

(1.1) inf 7τ(p,n) > 7 for all n > Nτ,
0<p<l

where

(1.2) 7τ(p,n) = Pp(\T(Xn)-p\<δ)

is the coverage probability of the interval T(Xn) ± δ. The implication of (1.1) is, of
course, that T(Xn) ± δ contains the true value of p with a minimum probability
7 for any n > NT. We allow T(Xn) to involve 7 and, clearly, 7τ(p,^) will involve
δ while Nτ will generally depend on both 7 and δ. We will sometimes qualify
Ίτ{Pi n) and NT with the word exact in order to emphasize that (1.2) and NT
are computed under the binomial distribution of Xn. The problem just described
is encountered almost daily in opinion polls, market research, clinical trials and
quality control, where one usually chooses .90 < 7 < .99 and .01 < δ < .10. Note
that for any given δ > \ the trivial choice T(Xn) — \ with Nτ = 0 provides
a solution. Clearly, if T(Xn) and T*(Xn) are two competing estimators and their
sample sizes satisfy NT > Nτ*>> one should prefer to use T*(Xn) ±δ. Indeed, a main
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objective of this paper is to propose a T*(Xn) which is better in this sense than a
wide variety of T{Xn). The interval T(Xn) ± δ for any n > NT is also referred to
as a fixed-width confidence interval for p (the actual width being < 2δ). Another
version of the present problem is to determine a pair (Tf(Xn),Nτ') such that, for
specified 7 G (0,1), δι and £2(0 < δ± < 1 — #2 < 1), one wishes to guarantee
mίpPp(T'(Xn) - <5i < p < T'{Xn) + δ2) > 7 for all n>Nτ,. The equivalence of
the two problems becomes clear if one identifies T(Xn) = Tf(Xn) + | ( 5 2 — δι) and

The statistical literature treats the present problem routinely as an offshoot of
a conventional confidence interval for p. Suppose [Ln,Un], n > n 0, is a sequence
of 1007% confidence intervals for p, that is, Pp(Ln < p < Un) > 7 for each p and
n > no, Ln and Un being functions of Xn. Then the standard approach is to choose

(1.3) T(Xn) = \{Ln + Un)

and determine Nτ so as to guarantee Un — Ln < 2δ for all Xn G {0,1, ...,n} and
n > Nτ One encounters, of course, numerous confidence intervals for p in the
literature (see [9, 3, 5, 4, 2] for references) and, in principle, one can determine
NT under each of them, at least numerically. In Section 2, we show that all known
confidence intervals lead asymptotically to the estimator

(1.4) Tb(Xn) = (Xn + \b){n + b)-1 =pn + 6( | - pn)(n + 6)" 1

and the sample size

(1.5) N^i

where pn and z axe defined by

(1.6) Pn = n-'Xn, Φ(z) = | (

and b > 0 is a constant depending only on z. By asymptotic we mean throughout
that n -¥ 00 and δ -¥ 0 in such a way that nδ2 approaches a positive constant.
The result in (1.5) incorporates the notion of correction for continuity (i.e., the
term 5"1), as explained in Section 2. The effect of b on iV& actually shows up in
the error term 0(1) of (1.5) and its contribution turns out to be negligible relative
to the magnitude of δ " 1 . In Section 2 (see also Table 3), we carry out some exact
calculations for infp 7&(ί>,n) and Nf, for certain values of b to show that, although
infp7&(p, n) slightly increases and iV& slightly decreases as b goes up from zero, the
approximation in (1.5) without the term 0(l)is quite adequate.

Most textbooks recommend the solution

(1.7) T(Xn)=pn, Nτπ(z/2δ)2

which is based on the asymptotic confidence interval

(1.8) [ pn - z{pn(l - pn)/nY'\ pn + z{pn(l - pn)lnγ'2 ].

This solution is a cruder version of (1.4)-(1.5) when b = 0 in that NT of (1.7)
ignores the correction for continuity introduced in NQ of (1.5). In Section 2 (see
also Table 3), we show that, for .90 < 7 < .99 and .01 < δ < .10, (z/2δ)2
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may considerably underestimate the exact value of JV0 while (z/2δ)2 + δ~x often
overestimates. Similar conclusions can be made for other common choices of b in
(1.4) (see Tables 1 and 2). Many of these conclusions are to be expected from the
recent exhaustive investigation of several standard confidence intervals made by
Brown, Cai, and Dasgupta [4].

Since all known confidence intervals for p lead to the same sample size (1.5) up
to order J " 1 , a natural question now arises: Does an estimator T*(Xn) exist which
satisfies (1.1) and requires a sample size N* which is, up to order 5" 1, smaller
than (z/2δ)2 + J" 1 ? For an intuitive answer, observe that, up to order δ~λ, Nb in
(1.5) does not involve b because infP7&(p,n) occurs at p = \ under the normal
approximation (Xn - np){np(l -p)}~lj/2 -+ iV(0,1) up to order n""1/2 and 7&(§,n)
itself happens to be independent of b (see Section 2 for details). If, however, b itself
were of order n 1/ 2 then 7&(§,n) would, indeed, depend on b and one should be
able to exploit this fact in order to improve upon (1.5). In Section 3, we formally
establish the following result. Let

(1.9) T*{Xn) = (Xn + \aΊyfϊι){n + α ^ ) " 1 = pn + α7(§ - pn)(y/n + aΊ)~\

where

α 7 = 1 if 7o < 7 < 1

= {4(l + z 2 ) 1 / 2 -4-^ 2 } 1 /2 if ! < 7 < 7 o

(1.10) =z if 0 < 7 < §,

and 7o is defined by 70 = 2Φ(Λ/3) - 1 = .91673548. Then T*{Xn) satisfies (1.1)
with sample size

(1.11) N* = {(z/2δ) - aΊγ + (Γ1 + 0(1).

It is easily verified that the middle expression in (1.10) increases from .60818862
to 1 as 7 increases from | to 70. Since z = .67448975 for 7 = | , α 7 is obviously
discontinuous at 7 = \ and the reason for this is explained in Section 3. In practical
applications, one may safely use α 7 = 1 when .9 < 7 < 70 because (1.10) shows
that .997 < α 7 < 1 for all 7 e [.9,70]. It follows from (1.5) and (1.11) that, up to
order δ " 1 and for all 7 G (0,1), we have

(1.12) Nb-N* w ajiδ^z - aΊ)

which represents the approximate saving in sample size if one uses T*(Xn) ± δ for
n > TV* instead of Tb(Xn) ± δ for n > Nb. The quantity in (1.12) lies between
15 and 257 for all .90 < 7 < .99 and .01 < δ < .10. Table 3 shows a numerical
comparison between No and TV*, both exact and approximate. It can be seen from
the table that (1.11) without the 0(1) term is remarkably close to the exact value of
N* and, in fact, the slight overestimation by (1.11) makes T*(Xn) ± δ for n > TV*
more trustworthy in achieving the confidence level. It is also apparent from the
last column of Table 3 that the percentage savings achieved by T*(Xn) ± δ over
T0(Xn) ± δ are often substantial. Finally, one can logically think of choosing some
other a in (1.9) instead of a = α 7 of (1.10). In Section 3, we show that a = α 7
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is in a sense better than most other choices of α. Note that TV* and the coverage
probability 7*(p,n) of T*(Xn) ± δ are also denoted by N^^ and 7(o'y)(p,n) in
Section 3 for reasons made clear later.

In Section 4, we give the relevant formulas for the exact computation of the cov-
erage probabilities and thence exact values of Nb and N*. They also reveal some
interesting features which are obscured by the normal approximation. For instance,
contrary to what the normal approximation indicates, 7&(p,n) and 7*(p,n) have a
local maximum at p = \ under arbitrary δ > (2ή)~1 and, in fact, a genuine mini-
mum of either of them does not even exist. Moreover, infp 7&(p, n) and infp 7* (p, n)
are not monotonic in n and, as a consequence, the exact determination of Nb and
N* becomes non-trival and rather time-consuming.

2. From Confidence Intervals to (Tb(Xn),Nb). Consider the estimator
Tb(Xn) defined in (1.4) for any specified b > 0. Let

Ίt>ip,n)=Pp{\Tb{Xn)-p\<δ)

(2.1) = Pp((n + b){p-δ)-\b<Xn<{n + b)(p + δ) - \b)

denote the coverage probability of Tb(Xn) ± δ for any given δ G (0, | ) , n > 1 and
p G (0,1). Then the following inequalities show that Nb = Nb(j,δ) satisfying (1.1)
does exist for every 7 G (0,1):

(2.2) 6(1 - 2δ)(2δ)~1 <Nb< [\ω2 - b + {{\ω2 - b)2 + b2(ω2 - I)}1/2],

where ω = |5~ 1(1 — 7)" 1 / 2 > 1 and [x] denotes the smallest integer > x. The lower
inequality in (2.2) follows from the fact that 7&(p, n) = 0 for any p < ^ ( n + δ)" 1 — δ
and therefore infp jb(p, n) > 7 > 0 implies that n must satisfy b(n + 6)"1 < 25. The
upper inequality is a consequence of

(2.3) 7 & ( p , n ) > l - J - 2 E p ( T 6 ( X n ) - p ) 2 > l - ( 4 5 2 ) - 1 ( n + 62)(n + 6)-2 for all p

and the requirement that inίpjb(p, n) > 7.
We will now derive the approximation (1.5) for Nb as δ -> 0 and, to this end, it is

necessary to explain the notion of correction for continuity in the present context.
Let Y denote a normal variable with mean up and variance np(l — p). Then the
well-known asymptotic result (Xn - np){np(l - p)}~1 / 2 ->• iV(0,1), as n -¥ 00,
implies that, for A < B, PP(A < Xn < B) = P(A < Y < B) + 0{n~1/2) and, under
the standard correction for continuity cited in textbooks, PP(A < Xn < B) —
P(A - I <Y < B + | ) + (Kn-1/2). The error term 0(n~1/2) is a consequence of
the Berry-Esseen theorem (see [12]). Although the errors in both P(A <Y<B)
and P(A — \ <Y < B + \) are theoretically of the same order, it is well known
that the latter is usually far more accurate in practice (see [10, p. 62]). Now, if one
wants to choose A and B to guarantee PP{A < Xn < B) > 7 for given (p,7), then
the choice coming from the solution of P(A <Y < B) = 7 may be inadequate and
the choice from P(A — | < 1 Λ < 5 + | ) = 7 may be equally or more so because
one may end up with

PP(A < Xn < B) < P(A <Y < B) = 7
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or

P(A<Y<B)< PP(A <Xn<B)<P{A-\<Y <B+\)=Ί.

Consequently, to be safe-sided one ought to use the more conservative correction

(2.4) Pp(A <Xn<B)=P(A+\<Y <B-\)+ Ofa'1/2)

and solve A and B from P{A+ § <Y <B-\)=η. We will use the representation
(2.4) throughout in order to obtain approximations for 7&(p,n) as well as for other
coverage probabilities considered in this paper. Blyth and Still [3] also used (2.4)
to modify certain conventional confidence intervals for p.

It can be verified from (2.1) that, for any fixed b > 0 and allp G (0,1), 7&(p, n) ->
0 if π -» oo and δn1!2 -¥ 0, while 7&(p,n) —>• 1 if n -> oo and 5n1//2 ->•
oo. Consequently, for the purpose of asymptotically determining the smallest n to
satisfy jb(p, n) > 7 for any 7 G (0,1), it is necessary and sufficient to assume that,
as n -)> 00, Jn 1/ 2 ->> λ for some finite positive λ. It follows from (2.1) and (2.4) that

(2.5) 76(p

where

(2.6) ~ Ί b M = *(β

(2.7) (Z = l - P , α^fen" 1 / 2 , /?

and Φ is defined in (1.5). One can show using Petrov's [12, p. 125] Theorem 14 that
the error term 0(n~1//2) in (2.5) is, in fact, uniform in p G (0,1). In view of the order
of approximation in (2.5) and the fact that Φ(̂ 4 + n~1) = Φ(A) + O^" 1 ) , we will
feel free to drop terms of order δn~1^2 from the argument of Φ. Since b is assumed
fixed, we may assume that b < min[n1//2, (2nδ — 1)3~1//2] in which case (2.7) shows
that

(2.8) 0 < α < l and β > {4 - a2 - 4(1 - α 2 ) 1 / 2 } 1 / 2 .

It follows from (2.6), (2.8) and Lemma A(i) in the Appendix that

(2.9) inf 7>(p,n) - 7>(|,n) = 2Φ(25n1/2 - n" 1 / 2 ) - 1.
0<p<l

Hence 'mtpηb(p,n) > 7 holds for every 7 G (0,1) whenever n satisfies 25n1 / 2 -
n~1//2 > z, that is, for all n satisfying

(2.10) n > (z/4δ)2{l + (1 + Sδz~ψ2}2 = (z/2δ)2 + δ~λ + 0(1),

which leads to (1.5). Note that, although one can formally expand the middle term
in (2.10) beyond ί"1, the final result for Nb cannot be expected to have accuracy
beyond δ~λ because (2.5) itself has accuracy to order 0(n~ 1 / 2 ). Note also that, if
the correction factor | were ignored in (2.4), then the factors n" 1 / 2 and δ~x would
drop out of (2.9) and (2.10) respectively. This, in turn, implies that the normal
approximation without any correction factor would overestimate the true smallest
coverage probability and underestimate iV&.
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We will now relate Tb(Xn) ± δ and Nb to several well-known confidence intervals
when the latter are adapted to the present problem. Three asymptotic confidence
intervals for p are often cited in the vast literature and they are

(2.11)

(2.12)

(2.13) sin^sin-^^iln-1/^).

The first one is the same as (1.8). To adapt these intervals to the present problem,
note that the midpoints of (2.11) and (2.12) are Tb(Xn) of (1.4) with b = 0 and b =
z2 respectively. Consequently, the common (up to order δ~x) sample size generated
by (2.11) and (2.12) is Nb in (1.5). The midpoint of (2.13) can be expressed as

(2.14) pncos(n-1/2z) + sm2(±n-1/2z)=Th(Xn) + (l+pn)0(n-2) with b = \z2.

The term 0(n~2) comes from the Taylor expansion of sine-cosine and does not
contain pn. It is easily verified from (1.4) and (2.4) that, for any fixed b > 0, the
coverage probability of Tb(Xn) + (1 + pn)0(n~2) ± δ remains the same as (2.5).
Hence (2.14) leads to the same sample size as in (1.5). The interval (2.13) is based
on the well-known fact that (sin"1]?}/2 - sin" V / 2 ) ( 4 n ) 1 / 2 -> JV(0,1) as n -> oo.
If one uses the more refined approximation (see [10, p. 65])

(2.15) [sin-^ίpn + In-ψ2(l + f n" 1 )- 1 / 2 } - sin"1 p1/2](4n + 2)1/2 -> 7V(0,1),

one can develop a new confidence interval similar to (2.13). It is easily shown as
above that the new interval leads to the estimator Tb(Xn) + (1 +p n )0(n~ 2 ) with
b = | z 2 + I and therefore the same Nb as in (1.5).

One can also analyze the intervals in (2.11)-(2.13) according to the technique
described after (1.3). In fact, this technique is actually used in most textbooks for
(2.11) as well as by Bickel and Doksum [1, p. 161] for (2.12) and by Ghosh [9, p.
899] for (2.11)-(2.13). They all lead to Nb = (z/2δ)2+ 0(δ~1) because (2.11)-(2.13)
do not incorporate any continuity correction (the factor — z2 arrived at by Bickel
and Doksum and by Ghosh from (2.12) for the 0(1) term in Nb is too ambitious
because their coverage probability is valid only up to order n~ 1 / / 2). Blyth and Still [3]
recommended continuity corrections for (2.11) and (2.12), which are their (3.3) and
(2.1), along the arguments underlying (2.4). If one applies the technique described
after (1.3) to their corrected intervals (3.4) and (2.4), one gets the same Tb(Xn)
and Nb up to order 5" 1 as in the preceding paragraph.

There is a second family of confidence intervals for p, the so-called exact intervals,
which are usually recommended for small values of n (e.g., [6, 7, 3, 5]). To describe
the non-randomized versions of these intervals, let r G [0,1 — 7] be a suitably chosen
number. Given any n > 1 and the observed value of x of Xn, one can show that
the solutions Ln = Ln(x,τ) and Un = Un(x,τ) of the following equations

(2 16) έ (£K(i-£„)"-* = 1 -7 -
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are unique (defining Ln(0,τ) = 0, Un{n,τ) = 1) and satisfy Pp(Ln <p< Un) > 7
for every p £ (0,1). Thus, [Ln,Un] constitutes a family (as r varies) of 1007%
confidence intervals for p and there axe charts for Ln and Un for selected values
of 7, r, n and x G {0, l,...,n}(e.g., [11, 3, 5]). Clopper and Pearson [6] chose
r = | ( 1 — 7) for convenience while other authors have suggested different choices
for τ to satisfy some additional criteria (e.g., to reduce the length Un — Ln). Now,
if one wants to adapt [Ln, Un] for a given τ to our problem as explained after
(1.3), one must first find Ln(x,τ) and Un(x,τ) from (2.16) for each n > 1 and
each x £ {0, l,...,n}, then verify if Un(x,τ) — Ln(x,τ) < 2δ under the specified
5, and finally determine the smallest N(τ) such that Un(x,τ) — Ln(x,τ) < 2δ for
every n > N(τ). Evidently, such a numerical procedure to generate T(Xn,τ) =
| {L n (X n ,τ) + Un(Xn,τ)} and N(τ) as a solution to (1.1)-(1.2) is quite daunting,
especially because N(r) will be laxge when 7 > .9 and δ < .1. Moreover, the
subsequent natural problem of minimizing N(τ) with respect to r e [0,1 — 7]
would seem to be hopeless. Nevertheless, we will now show that, among all intervals
generated by (2.16) for 0 < r < 1 — 7, the one that has asymptotically the smallest
N(τ) is precisely (2.12).

The normal approximation to the binomial sums in (2.16), without any correction
for continuity, leads to

for I = Ln

(2.17) = r + 0(n- 1 / 2) for i = Un.

Define z$ and z\ by Φ(̂ o) = r and Φ(^i) = 7 + r, so that —00 < ZQ < z\ < 00
for all 0 < r < 7 + r < 1. Then the solutions of (2.17), neglecting 0(n~1 / 2), are
uniquely given by

Ln = (1 + n-'zfr'lpn + (2n)-1zl ~ (2n)"1z1{4npn(l - p n ) +

(2.18) Un = (l + n " 1 * 2 ) - 1 ^ + (2n)'14 - (2n)-12ό{4n f t l(l - pn) +

If r = | ( 1 — 7), then z\ — —Zo = z and (2.18) shows that the interval [Ln,ί7n] is

identical to (2.12). If r φ | ( 1 - 7), then Zo + ZiφO and (2.18) yields

| ( L n + Un) = Tb(Xn) - ^n-^izo 4- zi){pn(l - pn)}^2 + 0p(n" 3/ 2),

where Tb(Xn) is as in (1.4) with b = | ( ^ o + z i ) a n ( i t n e e r r o r t e r m 0p(n~3 / 2) involves
pn in such a way that n3/20p(n~3/2) approaches some finite c(p) with probability
one as n -> 00. Using (2.4) and the fact that pn(l -pn) ->- p(l -p) with probability
one, one finally gets

PP(\h(Ln + Un) -P\<δ)= Φ(β + ^ P h
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where a and β are the same as in (2.7). Ignoring (^n"1/2) as in all earlier cases, we
conclude that, for any τ φ | ( 1 - 7),

pdKLn + Un) ~p\<δ)< P 1 / 2 ( |§(L n + Un) - § | < ί)

- Φ(/3 - |(zo + *i)) + Φ(/3 + §(*o + *i)) - 1

< 2Φ(/J) - 1 = Q m f χPp{\TAXn) ~P\< δ).

In the last step above, we have used the fact that Φ(β + A) + Φ(β - A) < 2Φ(/3) for

all β > 0 and A φ 0. Consequently, 7V(τ) > iV> = JV(|(1 - 7)) for all r e [0,1 - 7]
so that r = | ( 1 — 7) is asymptotically the best choice in (2.16) for our purpose.

We conclude this section with some numerical comparisons among Tb(Xn) ±δ for
6 = 0, | z 2 , 2 2 , which were obtained from the confidence intervals in (2.11)-(2.13).
Table 1 shows the exact values of the smallest coverage probabilities under certain
combinations of (7, δ, n) and these are computed using (2.1) and the formulas given
in Section 4 (the last column in Table 1 arises in Section 3). The asymptotic result
in (2.9) suggests that the values for all three cases should approximately equal 7.
Given any pair (7,n), we have chosen the value of δ to satisfy

(2.19) δ = (2n)-1{(l + nz2)1'2 + 1}.

The reason for such a choice is that (1.5) implies that, if one uses Tb(Xn) of (1.4)
and δ of (2.19), then JV& satisfying (1.1) would be approximately the same as the n
shown in Table 1. It is obvious from the table that the three cases in (2.11)-(2.13)
are remarkably alike when adapted to the present problem, although their relative
merits from the standpoint of confidence intervals axe somewhat different. See, for
example, [9, 3, 4]. We point out here that the case b = \z2 + f, cited after (2.15),
can be expected to show values of infp 7&(p, n) somewhere between those of b = \z2

and b = z2 because \z2 < \z2 + f < z2 for .9 < 7 < .99.

Table 2 shows the exact and approximate values of No and NZ2 for some com-
monly used values of (7, δ). The exact ones axe computed using (2.1) and the formu-
las in Section 4. Their common approximate value comes from (1.5) and the table
shows this with and without the correction factor <5-1. The general conclusions are
quite similar to those for Table 1. Note from Table 2 that the approximation with-
out the correction factor considerably underestimates the exact values of both JV0

and NZ2. An augmented table for No is given in the next section.

3. The Proposed (T*(Xn),7V*). An intrinsic and, indeed, desirable feature
of any conventional confidence interval for p is that, for any fixed n, the lower and
upper confidence limits approach each other as pn approaches 0 or 1. This is evident
in all intervals considered in the preceding section. However, this aspect constitutes
a drawback when the same interval is adapted to ensure (1.1)—(1.2) because the
shrinking length is achieved at the expense of widening the length around pn = \
and, as noted after (1.3), it is the latter (compared with 2δ) that determines how
large Nτ will be. It seems, therefore, logical that in our search for a better solution
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Table 1: A Comparison of the Exact Values of inf

n 7 = 0 b=\z=\z2 b = z2 6 =

100 .90 .0873945 .91094 .91125

100 .95 .1031257 .95489 .96386

100 .99 .1338885 .99100 .99332

500 .90 .0377936 .90210 .90211

500 .95 .0448375 .95100 .95573

500 .99 .0586060 .99057 .99058

1000 .90 .0265122 .90616 .90618
1000 .95 .0314938 .95013 .95362
1000 .99 .0412305 .99051 .99052

2000 .90 .0186417 .90202 .90202

2000 .95 .0221645 .95092 .95093

2000 .99 .0290497 .99051 .99052

z2 6 = aΊyJn

.91137

.96441

.99501

.90211

.95579

.99171

.90620

.95364

.99132

.90203

.95093

.99052

.93274

.96970

.99528

.91598

.95983

.99299

.91127

.95695

.99229

.90862

.95536

.99159

Table 2: Some Values of No and NZ2

7 δ Exact No Exact NZ2 Approximate iVb

b=(z/2δ)2 b=(z/2δ)2

.01
90 .03

.05

.10

.01
95 .03

.05

.10

.01

99 .03

.05

.10

6850
784

280

75

9700
1084

400

100

16650

1867

680

170

6848
764

278

68

9647
1080

387

97

16644

1861
664

159

6764
752

271

68

9604

1068

385

97

16588
1844

664

166

6864
785

291

78

9704

1101

405

107

16688

1877
684

176

than (1.4)-(1.5) we should examine the family of shrinkage estimators

(3.1) pn{a) = (Xn + \as/n){n + ay/n)'1 =pn + α(§ - pn)(y/n + a)'1

for constants a > 0. An attractive feature of this family is that pn(a) is strongly
consistent for each a and the family includes the minimum variance unbiased esti-
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mator pn(0) of p, the minimax estimator pn{l) under quadratic loss, and the Bayes
estimator pn(a) under beta-prior with parameter ^an1/2 (see [8, p. 93]). Denote the
coverage probability of pn(a) ± δ by

(3.2) 7(o)(p,n) = Pp(\pn(a) -p\<δ) = Ίa^(p,n) of (2.1).

Denote the (smallest) sample size of pn(a) ± δ to satisfy (1.1) by N^a\ Then, using
the technique underlying (2.3), it is readily shown that, analogous to (2.2), we now
have

(3.3) α 2 ( l - 2δ)2(2δ)~2 < JV< > < [Aa(Ί, δ)},

where

Aa(<y,δ) = (ω-a)2 if 0 < α < l

= a2(ω-l)2 if α > l .

The inequalities in (3.3) obviously guarantee the existence of the exact N^ for
every a > 0. Moreover, comparing the upper bound of N^ with the lower bound
of 7V(α) we conclude that

NM<NW whenever a > (1 - 25)~1{(1 - Ί)~1/2 - 2δ}

which shows that a "good" choice of α cannot be "too large".
In order to avoid any confusion among different notations in this section and Sec-

tion 1 observe from (1.9), (1.11), (3.1) and (3.2) that the following correspondences
hold throughout

(3.4) (T*(Xn),iV*)Ξ(pn(α 7),iV^)) and (pn,JV0) = (pn(0),ΛΓ(°>),

where α 7 is defined in (1.10). We will now prove the asymptotic result that the pair
(T*(Xn),7V*) satisfies (1.1)-(1.2) for small δ. To this end, we need the following
approximation, which follows from (3.2), (2.1) and (2.4),

(3.5) Ί{a){P,n) = 7{a)(p,n) +0(n

where

and

Note that 7<α) is symmetric about p = | for all a > 0, n > 0, δ € (0, \) and is
increasing in n > 0 for all a > 0, p G (0,1), 5 € (0^ ) . I f ^ ( α )denotes the smallest
number satisfying infp 7

( α ) (p, n) > 7 for all n > N^a\ then N^ is obviously the
approximation we are seeking for N^ when δ is small. For notational simplicity,
we will use N^ also for JV(α) below with the understanding that the results are
valid for N^ only up to order ί"1.
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Consider first the case 7 > 70, where 70 is defined in (1.10). Then z > >/3.
Choose a = 1 and βf = z in (3.6), which implies that

(3.7) n = f!(z) = {(z/2δ) - I } 2 + r 1 + 0(1),

where

(3.8) fa{z) = \{(z/2δ)-a} + [\{{z/2δ)-a}2 + {2δ)-1]1/2 for a > 0.

Since a = 1 and β1 > \/3 in (3.6), it follows from Lemma A(i) in the Appendix
that 7^) decreases from 7 ( 1 )(0,n) = 1 to 7(1)(§,™) = 2Φ(z) - 1 = 7 - Since 7W is
increasing in n, we conclude that infp 7^^ (p,n) > 7 holds for all n > N^ if and
only if 7 ( 1 ) (§,N ( 1 ) ) = 7 The solution JVW (i.e. TV*) of the latter is precisely the
right-hand side of (3.7). Suppose next that 0 < 7 < 70. Choose

(3.9) α = {4(l + * 2 ) 1 / 2 - 4 - z 2 } 1 / 2 and β' = z

in (3.6). Then it is easy to check that 0 < a < 1 and βf > {4 - a2 - 4(1 - a2)1!2}1'2.
Using Lemma A(i) as above one finds

(3.10) tfW = f2

a{z) = {(z/2δ) - a}2 + δ-1 + 0(1).

This proves that 7V"(α^ (i.e. N*) is given by (1.11) when | < 7 < 7o Although the
pair (pn(a),N^), with a as in (3.9), satisfies (1.1)-(1.2) also for 0 < 7 < | , it is
different from the pair (T*(Xn), AT*) defined in (1.9)-(1.11) and we proposed the
latter on the following ground. For the case 7 < | , one can choose a = β' = z <
0.675 in (3.6) and conclude from Lemma A(iii) that

(3.11) ΛfW - fz(z) = {(z/2δ) - z}2 + δ-1 + 0(1)

which is, in fact, 7V*of (1.11). It is easily verified that

^ for all 7 € (0, §].

Consequently, (3.10) and (3.11) imply that N^ > N& for every a under (3.9)
when 0 < 7 < \. Thus, the pair (pn(z),N^) is better than (pn(a),N^) under
(3.9) for any 7 < \ and this also explains the discontinuity in α 7 of (1.10) at 7 = | .

One final question now remains: What is the asymptotically optimum choice of a
in (3.1) that minimizes N^ with respect to a > 0 for a given pair (7, J)? A general
answer for the case 7 > | is difficult because minα N^ will occur at some 0(7, δ)
which depends on 7 and δ in an intricate way (see Lemma A(ii) and the comments
after the lemma). We provide instead a partial answer below, which also gives a
justification for the special choice of a in (1.10).

Given any 7 e (0,1), δ € (0, \) and a > 0, the requirements 7(α)(0,iV(α)) > 7
and 7 ^ ( 1 , JV^) > 7 for (3.6) imply that N^ must satisfy

(3.12) VN{a)>max[fa(a)Ja(z)],

where /β(z)is defined in (3.8). Now, if 0 < 7 < | , it follows from (3.11) and (3.12)
that

N ( z ) < /2(α) for every a > z, iV(z) < f2(z) for every a < z.
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Consequently, minα N^ = N^ (i.e. N*) and a = α 7 is, indeed, the asymptoti-
cally optimum choice for a in (3.1) when 7 < | . On the other hand, if | < 7 < 1,
it follows from (3.7),(3.10) and (3.12) that

N(aΊ) < N(a) for a < a ^ Q r a > ( z .

and the possibility remains that N^ may attain a minimum at some α(7, δ) be-
tween α 7 and (z — 25α7)(l — 2δ)~ι. However, there are reasons to hope that in such
cases both α(7, δ) — α 7 and JV(°τ) — N^ at a — α(7, δ) will be negligibly small. For
instance, if 7 = .95 and δ — .03, then α 7 = 1 and a further numerical investigation
of the equation in Lemma A(ii) shows that α(.95, .03) = 1.0050. Moreover, the ex-
act values of N^ at a = 1 and a = 1.0050 are both 1035, while their approximate
counterparts under (3.5) are both 1037.

To summarize, the proposed T*(Xn) is defined in (1.9)-(1.10) and, for any p,
the exact coverage probability of T*(Xn) ± δ is 7*(p, n), which is identical to (3.2)
when a = α 7; iV* is the smallest n for which infP7*(p,n) < 7 for all n > N* and a
good approximation for N* is provided in (1.11). The last column in Table 1 shows
some exact values of infP7*(p,n) and they are based on the formulas in Section 4.
Table 3 shows a detailed comparison between the exact and approximate values No
of pn ± δ and N*. The exact ones are computed using (2.1) with 6 = 0, (3.2) with
a — aΊ and the formulas in Section 4. Note from (1.10) that α 7 = 1 for 7 = 0.95 or
0.99 and α 7 = 0.99718194 for 7 = 0.9 in Table 3. As noted in Table 2, No will not
differ much from Nf, for popular choices of b > 0. The general conclusions one can
draw from Table 3 have been summarized after (1.12).

4. Exact Coverage Probabilities and Sample Sizes. In this section, we
describe the method of calculating the exact values of 7τ(p> n) and NT when T(Xn)
is of the form (1.4), (1.9) or (3.1). We may note here that there are several papers
(e.g., [3, 4]) which show computer-plots of 7τ(p,n). Such graphs are inadequate for
determining the exact value of NT that guarantees infP7τ(p, n) > 7 for all n > 7V"τ
The pk below are constants and should not be confused with pn of (1.6).

Recall 7&(p,n) of (2.1) but assume that, for present purposes, b > 0 may depend
on n > 1. Define

(4.1) c = largest integer contained in n ( | + δ) + bδ.

Then n ( | + δ) + bδ — 1 < c < n(J + δ) + bδ by definition and it can be checked that
7&(|>n) > 0 if and only if c > | n , while c <\n holds if and only if n is odd and
n + b < (2δ)~1. For integers k > 0, let

(4.2) pk = l-{c-n(±

which imply that

Pk - Pk+i = Pk ~ Pfc+i = (n + 6)" 1 > pk - p'k > ~(n + 6)" 1 ,

(4.3) and p'k < pk if and only if c < n ( | + δ) + bδ) - \.
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Table 3: Exact and Approximate Values of No and N*

Exact Approximate No Exact Approximate N*

No (^)\l N* <* ^ '

177

Exact 100 x

.01

.02

.03

.04

90 .05

.06

.07

.08

.09

.10

.01

.02

.03

.04

95 .05

.06

.07

.08

.09

.10

.01

.02

.03

.04

99 .05

.06

.07

.08

.09

.10

6850
1725

784

438

280

200

150

113

89

75

9700

2425

1084

613

400

275

204

157

128

100

16650

4175

1867

1050

680

475

350

269

212

170

6864
1741

785

448

291

205

153

119

95

78

9704

2451

1101

626

405

284

211

163

130

107

16688

4197

1877

1062

684

478

353

272

216

176

6669
1656

725

405

256

177

129

98

77
62

9503

2352

1035

576

363

251

182

139

109

87

16422

4062

1792

994

634

436

318

241

189

153

6701
1660

732

408

259

179

130

99

78

63

9509

2354

1037

578

366

252

184

140

109

88

16431

4070

1792

999

633

436

318

241

189

152

2.6

4.0

7.5

7.5

8.6

11.5

14.0

13.3

13.5

17.3

2.0

3.0

4.5

6.0

9.3

8.7

10.8

11.5

14.8

13.0

1.4

2.7

4.0

5.3

6.8

8.2

9.1

10.4

10.8

10.0

Then the right-hand side of (2.1) is equivalent to: if c < n(~ + δ) + bδ — \ then

7&(p,n) = Pp(n -c-k<Xn<c-k) for pk < p < p'k + (n + b)'1

(4.4) = Pp(n -c-k-l<Xn<c-k) for p'k < p < pk,
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and if c> n(§ 4- δ) + bδ - \ then

7&(p,n) = Pp(n -c-k<Xn<c-k) for p'k < p < pk + (n + 6)"1

(4.5) = P p (n - c - fc < X n < c - k - 1) for pk < p < p'k.

Observe that, since po +p$ = 1 — (n -f 6) " 1 by (4.2), the point p = \ is contained in
the interval (po, 1 — Po) under (4.4) and in [pό, 1 — p'o] under (4.5). Since 7&(p, n) =
7&(1 — p, n), it suffices to compute 7&(p, n) only for p < | . The largest value, m
say, of fc one needs to consider in the computation of 7&(p,n) for any p < \ is
determined by p m + i < 0 < p m or p ^ + 1 < 0 < p'm, whichever occurs later.

It is easy to see that 75 is discontinuous in p at the end-points of the intervals
in (4.4) and (4.5). Since the minimum of PP(A < Xn < B), for fixed A < JB, with
respect to p e [s,ί] occurs at p = s or t, it follows that a minimum of % with
respect to p G (0,1) does not exist when c > \n. On the other hand, it is easily
shown from (4.4) and (4.5), respectively that

o mf i 7fc(p,n) = πύn{Ffc(pfc) Λ Fk(p'k + (n + 6)" 1 )} if c < n ( | + 5) + bδ - \

(4.6) = πdn{G*(pfc) Λ Gfcipi)} if c > n ( | + 5) + 6δ - | ,

where, for 0 < p < 1,

A(P) = p

P(n -c-k<Xn<c-k), Gk(p) = Pp(n - c-k < Xn < c-k - 1).

Given any δ G (0, | ) , n > 1 and 6 > 0, we compute the exact value of inf^ 75(p,n)
as follows. First find c from (4.1) and then determine pk and p'k from (4.2) for
k — 0, l,...,m. If c < n(\+δ)+bδ— | , one finds the smaller one, £& say, of Fk(pk) and
f̂e(p/fc + (ft+&)~1) for every fc. Then (4.6) states that infP7&(p, n) = min{5o,...,»S'm}.

Similarly, one uses the second expression in (4.6) when c > n{\ + δ) + bδ — \. Table
1 shows some of these values when 6 = 0, | ^ 2 , 22, aΊ^Jn.

To determine the exact value of i\Γ& for a given 7, one repeats the process in the
preceding paragraph for successive values of n and verifies whether mίp 7&(p, n) > 7.
The verification may entail switching back and forth between the two expressions in
(4.6). When b does not involve n, a reasonable starting value of n for this purpose
is (1.4) without 5" 1 ; when b = OγΠ1/2, a reasonable starting value is (1.11) without
J " 1 . If the search leads to an no satisfying infp 75(p, no) > 7, it does not mean that
Nb = no because infp7&(p, n) is not monotonic in n. One needs to check whether
infp 75(p,n) > 7 also for n = n 0 + 1, ...,ni, where ni is typically not too far away
from n 0 . This process finally generates the smallest N^ for which infp7&(p, n) > 7
for all n > 7V&. Table 2 shows values of iV& when 6 = 0, z2 and Table 3 shows a few
more when 6 = 0, aΊy/n.

To conclude, we may point out an interesting feature of 75. Suppose 5,n and 6
are such that 7fc(|,n) > 0, which is true in particular if n + 6 > {2δ)~1. It is then
easily shown from (4.4) and (4.5) that there exists a positive Δ = Δ(5,n, 6) such
that

max Ίb{p,n) = 7 6 (§,n).
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On the other hand, it was seen in Sections 2-3 that for many values of b > 0 the
normal approximation 7&(p,n) indicates that 7&(§,n) is the absolute minimum of
Ίb {p , n). This anomaly disappears as n -»> oo or δ -> 0 for then Δ -ϊ 0.

5. Some Examples. We will now clarify certain aspects of our results by
some numerical examples for the case 7 = .95 and δ — .03. Note that this special
combination of (7, δ) is used quite often in opinion polls, where p represents the
unknown proportion of a populace "favoring" a certain product or statement.

(a) For any b e [0,z2] = [0,3.84], the exact (minimum) sample size needed by
Tb(Xn) ±δisNb and it satisfies 7V> = 1080 < Nb < No = 1084. The range [0,z2]
actually covers the three well-known choices b = 0,^z2,z2 (see [1, p. 161]; [9, p.
899]; [3, pp. 112, 114]). The approximation in (1.5) yields

Nb « 1068 without the correction factor 5" 1

« 1101 with the correction factor.

The case To(Xn) with No « 1068 corresponds to (1.7), which is cited in most
textbooks and, we suspect from published figures, also used by most pollsters. Since
infP7o(p, 1068) = .949773 is quite close to 7 = .95, one may be tempted to feel
comfortable with No « 1068. However, the insidious aspect of this approximation
is that the coverage probability may drop even more for some n > 1068. In fact,

min inf 70 (p, n) = inf 70 (p, 1083) = .948246.
1068<n<1084 p p V '

Consequently, if one must use the estimator T0(Xn) at all, one should fall back
on No pa 1101 when the exact JVΌ is unavailable. It maybe pointed out here that
infP7o(p,lO84) = .951600 and infP70(p,1101) = .953268.

(b) The exact (minimum) sample size needed by the proposed T*(Xn) ± δ is TV* =
1035 and the approximation in (1.11) yields

N* w 1003 without the correction factor δ~x

w 1037 with the correction factor.

Clearly, the approximation with the correction factor is remarkably accurate and
Table 3 exhibits the same feature for other combinations of (7, δ) as well. The table
also shows that, under any fixed 7, a slight change in δ may drastically alter TV*,
exact or approximate.

(c) JVo = 1084 and N* = 1035 show that one actually saves 49 observations by
using T*(Xn) ± δ for n = 1035 instead of T0(Xn) ± δ for n = 1084. This saving
constitutes 4.5% of No and this actual percentage is slightly overestimated to 5.8%
by the approximate counterparts No » HOland iV* w 1037. Table 3 (last column)
shows that the actual percentage saving can increase substantially as δ increases
under the same 7.
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(d) Suppose one uses n = N* = 1035 for both Tb(Xn)±δ under some b € [0, z2] and
T*(Xn) ± δ. In practice, Tb(Xn) and T*(Xn) are often rounded off to two decimal
digits. It can be verified from (1.3) and (1.9) that, to two decimal digits,

Tb(X1035) = T*(Xio35) whenever 316 < X1035 < 636.

This means that the reported values of T&(Xn) dz δ and T*(Xn) ± δ may turn out
to be identical for a wide range of observed values of Xn around | n . However,
since Nb > 1080 for b G [0,3.84], one ought to keep in mind that it is the proposed
T*(Xn) ± δ that ensures the confidence level 7 = .95. In fact, exact calculations
show that infP76(p, 1035) = .946001 < .95 when 6 = 0.

(e) Finally, suppose we observe Xno for an arbitrary no and compute T*(Xno) for
a given 7. Then (1.11) implies that the margin of error δ in the resulting T*(Xno)
satisfies no ~ {(z/2δ) — α 7 } 2 + 5"1, which leads to

(5.1) δ » §(n0 - α 2 ) - 1 ^ - aΊz + {(1 - aΊz)2 + (n0 - a*)*?}1'2].

Results of opinion polls often announce the precise values of n 0 and 7 but tend
to round off the value of δ to two decimal digits. This custom ignores the fact that
a slight change in the value of δ can drastically alter the required value of N* to
satisfy (1.1) (see Table 3). Formula (5.1) is then useful in retrieving the precise value
of δ when the chosen no is claimed to be N*. For instance, if 7 = .95, no = 500
and one wants to claim N* = no, then (5.1) yields the genuine margin of error as
δ « .043. If, however, .043 is subsequently rounded off to .04, then (1.11) shows that
one would actually require n > 578 to honestly assert that 7 = .95 and δ « .04.

6. Appendix. Lemma A. Let 7(p), 0 < p < | , denote the function in (2.6)
for arbitrary β > a > 0.

(i) If α = 0 < β or if 0 < a < 1 and β > {4 - a2 - 4(1 - α 2) 1/ 2} 1/ 2, then 7
strictly decreases from 7(0) = 1 to 7( | ) = 2Φ(/3) — 1.

(ii) If a = 1 < β < \/3 or β > a > 1, then 7 decreases from 7(0) = 1 to 7(po)
and then increases to 7( | ) = 2Φ(/3) — 1, where po = Po(&,β) is the unique solution
of the equation ψ(po) = 0 and

(iii) If a = β > 1, then 7 strictly increases from 7(0) = § to η(\) = 2Φ(α) — 1.
I f θ < α = / 3 < 1 , then 7 increases from 7(0) = \ to 7(^0) and then decreases to
7( | ) = 2Φ(α) — 1, po = po(#) being defined by ψ(po) = 0, where ψ(p) is as in (1)
with β = α. Proof. Observe first that 7(§) = 2Φ(/3) - 1 for all β > a > 0, 7(0) = 1

for β > a > 0, and 7(0) = | for /3 = a > 0. Consider the assertions in (i) and (ii).
If a = 0 < /?, it is obvious from (2.6) that 7 is strictly decreasing. If /? > a > 0,
then (2.6) yields
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where

K{P) -

Clearly, 7;(p) < 0 for 0 < p < | ( 1 - α/3"1) and therefore 7 is decreasing on this
interval. It also follows from (1) and (2) that, for | ( 1 - aβ'1) < p < §, y'(p) <
or > 0 according as ψ(p) < or > 0. Now, (1) shows

where

J(p) = \cxβ(pq)-2{a2 -β2(q- p) 2 }" 1 > 0,

(3) 9{p) = (β2 + 1)(« - p)4 + (β2 -a2- 2)(q - p)2 + (1 - α 2 ).

If 0 < α < 1 and β > (a2 + 2)1/2, then obviously g(p) > 0 and therefore φ{p) < 0
for | ( 1 - aβ~x) < p < | , implying that 7 is decreasing on the same interval. If 0 <
α < land{4-α 2 -4(l-α 2 ) 1 /2}i/2 < £ < ( α

2 + 2 ) ^ ^ then again p(p) > 0 and 7 is
decreasing; the lower bound for β guarantees that g{p) > 0 for |(1—α/3"1) < p < | .
This proves part (i) of the lemma. Next, suppose a = 1 < β < y/S or β > a > 1. In
these cases, it is easily verified that g(p) > 0 for | ( 1 — aβ~λ) < p < pf and g(p) < 0
for pf < p < | , where

(4) p ; = § - |{2(/32 + l ) } " 1 / ^ - /32 + α2 + {(β2 + α 2 - 4)2 + 16(α2 - I)}1/2]1/2.

Consequently, there exists a unique po satisfying ψ(po) = 0 such that ^(p) < 0 for
| ( 1 — α/3"1) < p < po and ψ(p) > 0 for p 0 < p < | . Note that po must lie between
| ( 1 - α/3"1) and p' of (4) and that po(α,α) = 0 for any α > 1. Part (ii) of the
lemma thus follows. The proof of (iii) is similar; in the case of 0 < a = β < 1, po
satisfying ψ(p0) = 0 lies between 0 and \ - | ( 1 - α 2 ) χ / 2 (l + a2)-1/2.
It can be seen that the only case left unexplored by the lemma is when 0 < a < 1
and a < β < {4 - α 2 - 4(1 - α 2 ) 1 / 2 } 1 / 2 . One can show that in this case there
exists a unique β(a) for any a G (0,1) such that 7 behaves differently depending
on whether β < β(a) or β > β(a). For β > /3(α), 7(p) strictly decreases in
p € (0, | ) . For β < β{a), 7 decreases from 7(0) to 7(po), then increases to 7(pi),
and finally decreases to 7( | ) , where po and p\ are two possible solutions ofψ(p) = 0.
Unfortunately, it is not possible to obtain a simple expression for β(a) in terms of
a.
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