Chapter 2

Lecture 6

Bayes estimation

We have the setup from the previous lecture: (S,.A, Py), 8 € ©. We want to estimate
g(). Let B be a o-field in © and X a probability on B. We assume that g is B-
measurable and that g € L?(©, B, ) - i.e., that [  g(0)?dA(f) < co. We regard 6 as
a random element and P,(A) as a conditional probability that s € A, given 6. Let
w=(s,6), 2 =5 x 0O and C = A X B be the smallest o-field containing all sets of
the form A x B with A € A and B € B. We assume that 8 — P,(A) is B-measurable
for all A € A.

Lemma 1. There exists a unique probability measure M on C such that
M(A x B) = / Py(A)AA(6) VA€ A, B € B.
B

(A is the distribution of §, Py is the distribution of s given § and M is the joint
distribution of w = (s,6). We will see the explicit formula for @ — the distribution
of 6 given s — soon.)

Consider an estimate t. Our assumption on g is that

E(g% =/g2dM :/de/\ < 00,
Q e

SO

7= [ R(O2NO) = [ Bt = 36)*ix0)
= B(E((t~9)°10) = B(t— 9" = ||t — gl

(the norm taken in L2(Q2,C,M)). We would like to choose a ¢ to minimize this
quantity. Since ¢ is a function only of s, the desired minimizing estimate — which we
will denote by t* — is the projection of g to the subspace of all .A-measurable functions
t(s) satisfying Ep (t(s)%) < co. We know that ¢*(s) = E(g(f) | s).
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4. a. There exists a minimizing t* (this is the Bayes estimate for g with respect
to A).

b. The minimizing t* is unique up to P-equivalence, where

P(A) = /@ Py(A)dA(0)

for A € A.

Ry = iItlth = |It* = gll* = llglI* — l1*][?
- / G2dM — / (£)2dM = / 9(6)2dA(8) — / (s)2dP(s).
Q Q C) S

d. t*(s) = E(g(0) | ), where (s, 0) is distributed according to M.
Proof. Clear. O

Note. P is the marginal distribution of s.

Some explicit formulas

Suppose we begin with a dominated family {P, : 8§ € ©} — i.e., a family such that
there exists a o-finite u such that each Py admits a density, say ¢y with respect to u
such that £y is measurable, 0 < £4(s) < oo and

Py(A4) = /A to()du(s) YA € A

Two basic examples are:

i. S = {s1,82,...} is countable and p is counting measure. Then #y(s) is the
Py-probability of the atomic set {s}.

ii. S =Rk A= B* and p is Lebesgue measure on R¥. Then ¢, is the probability
density in the familiar sense.

We assume that (s, ) — £p(s) is a C-measurable function. We write v = p X .

5. a. M is given by

W (5,0) = tals).

b. P is given by B
dP
o= /@ £a(5)dN(0).
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c. For all s € S, Q,, the conditional probability on © given s when (s,0) is
distributed according to M, is well-defined and given by

dQs _ EH(S)
a 0= i«s)’

where £(s) = %.

d. For all g € L?,

Blg|5) =) = [ o0)i@0) = [ g2 Jaxo)

Proof. These are all easy consequences of Fubini’s theorem. (For example, since

Pr(s € A,0 € B) = E(Ia(s)Ip(0)) = E(Iz(8)E(Ia(s) | 9))
= E(Ip(6)Py(A))

= 5(1200) [ tods) = [ 1a0)[ [ a(s)du(s)]are) = [ ta(s)an(s,0),

we have (a).) O

Lecture 7
Note. In any V = L?(Q2,C, M), the constant functions form a subspace, which we will
denote by W, = W.(Q2,C, M). The projection of f € V on W, is just E(f).

Note. In the present context, with w = (s,6) and Q = S x O, s is the datum and
0 is the unknown parameter. A is the prior distribution of 6, @) is the posterior
distribution (after s is observed) of 6, t*(s) = E(g | s) is the posterior mean of g(6),

6 — £p(s) is the likelihood function and ¢y = %Df.

Note. If we do have a A on hand but no data, then the Bayes estimate is just Eg =
Jo 9(6)dX(0).

6. If t* is a Bayes estimate of g, then ¢t* cannot be unbiased, except in trivial cases.

Proof. Suppose that t* is unbiased and Bayes (with respect to \). Then, by
unbiasedness,

(t".9) = BE(t"g) = E(E(t'g | 0)) = E(9(0) E(t" | 6)) = E(9(6)*) = |l9]I*;

but also, since t* is a Bayes estimate,

(t"9)=E(E(t"g | s)) = E(t"(s)E(g | 5)) = [1t"]]*.
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From this we conclude that:

1t = gll> = llglI* - Ht*ll2 =0 M({w:t'(s) #9(0)}) =
& / Py(t 9(8))dA(8) =0 & Py(t*(s) = g(9)) =1a.e.(A)

This last statement, though, holds iff there is an estimate ¢ such that Py (t(s) =
g(9)) = 1 a.e.(\). Hence, except in the trivial case, t* cannot be both Bayes

and unbiased. O
Ezample 1(a). s = (X1, X2,...,Xy), X; ~ S ~ N(6,1) and © = R!. Let u be Lebesgue
measure; then dy = dX; - dX and fy(s) = [, me‘i(x ~0°_ Consider the esti-

mation of g(f) = 0. X = 13" X; is an unbiased estimate of g (in fact, it is the
UMVUE of g), so X is not Bayes with respect to any X. We will see later that:

i. X is minimax,
ii. X is the pointwise limit of Bayes estimates and

iii. X is admissible.
Suppose that ) is the N(0,0?) distribution, so that dA() = \/—IT-We‘ZiTGL)dH. Given s,
‘Z—?\i(ﬂ) is proportional to £4(s), i.e., dQs(8) = v1(s)€s(s)dA(#) for some function ¢, of
- Now

1 n
lo(s) = (%> e~ 3(X- 9)2_—11,

J— n 2
where v = 137 (X; — X)?, so that dQ,(0) = o1(8)pa(s)e"3X—0%e727 4. Let

0% = -3 for some h > 0, so that

Yo_n n _____n( h2) 2
dQs(Q) — QOg(S)CnXO_Eh?gZ"fmdQ _ (p4(s) 1+ [6‘ T+—hf] do.
Thus Q, ~ N (1%, w@ry) (where h? = (l)/a2 is the ratio of observation variance
to prior variance) and t*(s) = E(0 | s) = 5 +h2 Therefore
2 1 = 1/0? —
£s) = e 0 X = 2T z

= -0 X
1+ h? \Tf’ 1+ h? n+1/0? +n+1/a2 ’

t

where the 0 (labelled 1 above) arises from the fact that we are dealing with a Bayes
estimate with no data; and the terms marked I represent a weighted average of prior
and data mean, with weights proportional to inverse variance.

We have

Rye(6) = Varg(X) +0 = -71;
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% 4 0 ’ — ._1___1 + _h2_ 202
Rt* (0) = Varg(t ) + _‘—‘1 n h2 - - (1 + h2)2 n 1 + h2
and 2
T — 1 1 " h? o2 = 1
CTa+men  \1+r2) 7 T Ry
(The last can be checked by noting that Ry = || — t*||? = ||0][? _RHt*”?')

Lecture 8

In the framework (S,.A, ), 8 € ©, set up in the previous lectures, suppose that
dPy = ledp on S, where dy is a fixed measure (this is another way of saying that £y
is the likelihood function). Given s, suppose § = 6(s) is the point in © such that
£j(5)(s) = supgee £o(s). Then d is the (or an) ML estimate of 6.

A

Given a function g on ©, g(6(s)) is the ML estimate of g(f).

Homework 2

1. What is 4 in Example 1(b) (on page 10)? In Example 1(c) (no explicit answer
is available in this case)? Assume that © = R!.

We return to our investigation of Example 1(a).

Ezample 1. Here p is n-dimensional Lebesgue measure and 44(s) = w(s)e‘%(7“9)2, o)
that §(s) = X. The ML estimate of 62 is X, the ML estimate of 6] is | X|, etc.
Under square error loss, we know that, if A is distributed as N (0, 0%) with 0% = L5,

then the Bayes estimate of 6 is t*(s) = —X

= 124z The Bayes estimate of 6 is

. ! X
/Rl P40 = SaT T T T e

and the Bayes estimate of |0] is [, |6|dQ,(8), which is a sum involving special func-
tions.

Note.
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i. We have seen that the Bayes estimates of § converge to X, which is ML and
UMVUE, as h — 0 (i.e., 02 — +00). This does not always happen, however:

The Bayes estimates of #2 converge to X+ %; the ML estimate of 62 is X and

the UMVUE of 6% is X — % These three are not identical, but they are close
if n is large.

ii. The case h = 0 (02 = +00) corresponds to uniform prior ignorance about 6;
i.e., for two intervals (a,b) and (c,d) in R! = ©, ;‘\ggg — %2 as h | 0 (from
Homework 2).

ii. t*(s) = 1—;755 (h fixed) is admissible because ¢* is an essentially unique Bayes
estimate in L?(M) (i.e., if o is also Bayes, then P(t, = t*) = 1, which is
equivalent to saying that Py(ty = t*) = 1 for all § € ©). It follows that, for
any constant ¢, t(s) = aX + (1 — a)c is admissible for any 0 < o < 1. (Let
X! =X;+cand @ =0+ c, and apply the above result.)

Homework 2

2. Find a necessary and sufficient condition such that by + b; X; + - - - + b, X, be
admissible for 6.

For any h > 0, Ry (0) = u + v6?, s0 supgee R+ (8) = +00 and t* is not minimax. We
do have, however, that:

i. X is minimax.
Proof. Choose any estimate t.

1

RO >R, >Rp = ———:
sup Rull) 2 R 2 Re = Sy

s0, since h is arbitrary, supy R:(0) > %, which is the (constant) risk of X. Thus
X is minimax. O

ii. X is admissible.
Proof. Let t be an estimate such that
1

and let, for b > 0, A be distributed as N(0,1/nh?). We have that R; > R
because t* is Bayes for ).
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Now t — 0 = (t — t*) + (t* — 0) and (t—t*) L (* —6), s

1t = ¢I = ||t = 61> = [[t" = ]I = R — R

We have also that

m—mf=4m< vyiaM = [ (e— P

- [ oo [ 72
(t

=AM @—f@féga%”@@wmwm

“Lg(s)d8 dpu(s)

From these two equalities we conclude that

/Rn+1 (t(S) - t*(S))z\/gT—e_L ( )d'u(S) _(_liTZ)

Letting A — 0 and using Fatou’s lemma and the fact that t* — X (as h — 0),
we have that

/Rnﬂ (t(s) — X)L (s)dps(s)d6 = 0

and hence that (¢(s) — X) 229(s) = 0 a.e. (with respect to Lebesgue measure) in
R™*!. Since £y(s) > 0 for all (s,0) € R**! by presumption, we have that

(t(s) — X = 0 a.e. (with respect to Lebesgue measure) on R**!)

= (t(s) = X a.e. (Wlth respect to Lebesgue measure) on S = R")
1
= (Py(t(s) =X) =1V0 € ©) = (R,(0) = Rx(0) = —~ Ve Q).

O

Lecture 9

Homework 2

3. In Example 1(a), what is the marginal distribution P of s? Are the X;s normal
and independent under P? What is the distribution of X under P? Here the
prior is assumed to be A ~ N(0,1/nh?).
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Ezample 2(a). Let n be a fixed positive integer and s = (Xi,...,X,) with the X;
iid random variables assuming the values 1 and 0 with probabilities 8 and 1 — @
respectively and © = [0,1]. Let u be counting measure on S, the set of 2" possible
values assumed by s. Then

Co(s) = Py({s}) = 67 (1 — )~ T

where T'(s) = 3 i~ X;. The ML estimate is 0(s) = T(s)/n = X, which is unbiased
for 6. (We will see that in fact X is the UMVUE.) Rg(#) = Varg(X) = 6(1 — 6)/n.
The ML estimate of §(1—8)/n is just X (1—X)/n, which is not unbiased. We shall see
later that 1 (Z — ZI=1) 5 the UMVUE for §(1—6)/n. Let A be the Beta distribution
B(a,b), i.e.,

0“—1(1 _ e)b—l
ar\f) = ———

(6) B(a,b)

— L(a)T'(b)

for 0 < 6 <1, with parameters a,b > 0. Here B(a,b) = T35

it is easy to check that Ex(f) = ;43 and Van(0) = ey

We visualize the product space 2 = S x © as a unit interval attached to each
point of S:

do

is the Beta function;

S (2" points)

We let p be counting measure on S, A prior measure on © and ¥ = p x A the
product measure on Q. We have dM(s,0) = £y(s)dv(s,8) on Q, so that M(C) =
Jo le(s)dv(s,0) for all C € C = A x B, and

dQ,(6) = ng’((j))

dA(0) = 1(5)Ls(s)dA(6)

= 5(5)07E) (1 — 9" TN (9)
— 9012(8)011+T(s)—1(1 _ 0)b+n—T(s)—1d9’

where ©4(s) = B(a+T(s),b+n—T(s))™}, so that Qs is the B(a+T(s),b+n—T(s))
distribution.
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The Bayes estimate for 6 is t*(s) = Eg,(0) = ‘;:ﬂsrz, similarly, the Bayes estimate

for (1 — 0) is Eq,(0) — Eo,(6°).

R (6) = Var(t*) + [bi-(8)]° = (:i%;?ﬁ [a(:; Zen — g] _

If we choose a = 4 = b, then t* becomes t;, = T:+‘/%2 and

n 1
Ry (0) = —F——— < —.
6 () A(yn+n)? " 4n
Hence t;, is a Bayes estimate with constant risk; therefore it must be minimax. The
graphs for the risk functions of X and ¢;, look like:

Pz R3=6(1-8)/n

& —==] N\
n R*

t

m

0 SEb— 1

Asn — oo, b, = 0 and ﬁgn—) — 0. Neither X nor ty, is perfect; for example, if

n =100 and T = 0, then X = 6 = 0, which is too low, but t}, = ;35 ~ 41%, which
may be too high.

n/4 _

. _ \/ﬁ _ . . 1 . . .
Note. With a = %= = b, the prior mean is 5 and the prior variance is D) =

2 2
1

4(v/n+1)"

Homework 2

4. Show that X = fo—) is admissible in two ways:

a. Show that X is the pointwise limit of ¢* as ¢ | 0 and b | 0.

b. Redefine the loss function by L(t,6) = %, so that R;(0) = Eg—((lt—:g)ﬁ.

(Admissibility with respect to this loss function is equivalent to admissi-
bility with respect to the loss function L(t,0) = (¢t — 6)2.)

5. Show that X is the unique Bayes estimate with respect to some \.
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Lecture 10

Ezample 2(b) (negative binomial sampling). We have § € © = (0,1). We choose a
positive integer k£ and observe the iid

X = 1 with probability 6
" 10 with probability 1 — 6

until exactly £ 1’s are observed.

Let N be the total number of X;s observed. Here s = (Xi,...,Xy) and N is a
random variable.

Now let S be the set of all possible values of s; then S is countable (obviously
N > k. There are (,’;:i) values of s corresponding to N = r). Let u be counting
measure on S (such that sample points with N the same have the same probability).

Then
£4(s) = Py(observing s) = g¥71(1 — g)(N&)-D=(k-1)g — gk(1 _ g)N(s)=k

The MLE of 0 is X = N(s which is not unbiased. Note that N = Ny + -+ + Ny,
where NV; is the number of trials until the first ‘success’ (i.e., observation of a 1), Ny is

the number of additional trials required for the second success etc. The N;s are iid, so
that Eg(N) = kEg(N,) and Varg(N) = k Varg(N;). Since Py(N; =71) = (1 — 0)"10
(for r =1,2,...), we have Ey(N;) = 1/0 and Varg(N;) = (1 — 6)/6%. Thus

k k 0

remember, however, that, by the Cauchy-Schwarz inequality, E(X)FE(1/X) > 1 for
any random variable X > 0, with equality iff P(X =c¢) =1, and so

E9<k> 75~

is biased upwards.

Ef)(E) = ZEy(N) = Eo(Vy) =

-ie, X = NG
It can be s}iown by the Rao-Blackwell theorem that the estimate t = = is unbi-
ased when k > 2. In fact, t is (by the Lehmann-Scheffé theorem or a geometrlcal ap-
proach) the UMVUE. (Heuristically, we see that, if s = (X1,..., Xy_1, Xn), then nec-
essarily Xy = 1 (we stop as soon as we observe the kth 1) and so only (X1,...,Xy-1)
constitute the active part. Then t(s) =

number of successes In active part ) T gee that ¢ is unbiased, note that
number of trials in active part

Py(N =r) = (; B 1) 65(1 — gy

forr=Fk,k+1,..., so that




We have X —t(s) = NI(C 5~ N'Zs_)l_l = N(g((;r)(;;c_u > 0, the inequality being strict with

positive probability; so Eg(X) > Ey(t) = 0.

Bayes estimates

Let A be a prior probability measure on (0,1). As always dQ;(6) = ¢1(s)€s(s)dA(0).
Since £p(s) is as in Example 2(a), formally the Bayes estimate here is identical to the
one there. In particular, - +g:]'\°,(s) is admissible and Bayes with respect to the B(a,b)
prior with a,b > 0.

Note. Although the MLEs in Examples 2(a) and 2(b) are formally identical, the risk
functions are different. In Example 2(b), Rx(f) = Varg(X) + [Ep(X — 9)]2 and
R;(0) = Vargy(t) are complicated expressions.

Ezample 2(c). Depicted here are the stopping points for Examples 2(a) and 2(b),
along with those of another possible (two-stage) sampling scheme:

X+y=n

Example 2(a) Example 2(b) Example 2(c)

Here (as in any scheme) the likelihood function is £y(s) = 7 (1 — §)N()-T(s),
where T'(s) is the number of successes (and, of course, N(s) — T'(s) is the number of
failures). p is counting measure and the MLE is §(s) = f,((‘z)) always.

s = (X1,...,Xn), where N = n; or N = n; + ny depending on s. How do we
estimate 87 What is the precision of this estimate?
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