
Chapter 2

Lecture 6

Bayes estimation

We have the setup from the previous lecture: (S, A, P#), θ G θ . We want to estimate
g(θ). Let B be a σ-field in θ and λ a probability on B. We assume that g is im-
measurable and that g G L 2 (θ,#, λ) - i.e., that JΘg(θ)2dλ(θ) < oo. We regard θ as
a random element and PΘ(A) as a conditional probability that s e A, given θ. Let
w = (5,0), Ω = S x θ and C = Λ x β be the smallest σ-field containing all sets of
the form Ax B with A e A and B e B. We assume that 0 ι-> P${A) is ^-measurable
for all AeA.

Lemma 1. There exists a unique probability measure M on C such that

M(A x B) = [ Pθ(A)dλ(θ)
JB

(λ is the distribution of 0, Pβ is the distribution of s given θ and M is the joint
distribution of w = (s,θ). We will see the explicit formula for Qs - the distribution
of θ given s - soon.)

Consider an estimate t. Our assumption on g is that

E{g2) = ί g2dM = ί g2dλ < oo,
JΩ. JΘ

so

Rt = J Rt(θ)dλ(θ) = JEθ{t- g(θ))2dλ(θ)

= E ( E ( ( t - gf \θ)) = E ( t - gf = | | ί - g\\2

(the norm taken in L2(Ω,C,M)). We would like to choose a ί to minimize this
quantity. Since t is a function only of 5, the desired minimizing estimate - which we
will denote by t* - is the projection of g to the subspace of all .4-measurable functions
t(s) satisfying EM(t(s)2) < oo. We know that t*(s) = E(g(θ) | s).

14



4. a. There exists a minimizing t* (this is the Bayes estimate for g with respect
to λ).

b. The minimizing t* is unique up to P-equi valence, where

P(A) = ί Pθ(A)dλ(θ)
Je

for AeΛ.

c.

Rt. = inf Rt = \\t* - g\\2 = \\g\\2 - \\tψ
t

= [ g2dM- ί(f)2dM= ί g(θ)2dλ(θ) - ί t*(s)2d~P(s).
JΩ JΩ Je J s

d. t*(s) = E(g(θ) I s), where (s,θ) is distributed according to M.

Proof. Clear. D

Note. P is the marginal distribution of s.

Some explicit formulas

Suppose we begin with a dominated family {PQ : θ G θ } - i.e., a family such that
there exists a σ-finite μ such that each Pθ admits a density, say IQ with respect to μ
such that ίβ is measurable, 0 < tβis) < 00 and

PΘ(A) = f tθ{s)dμ(s) MA e A.
JA

Two basic examples are:

i. 5 = {si,S2,-..} is countable and μ is counting measure. Then lβ(s) is the
P^-probability of the atomic set {5}.

ii. S = Rfc, A = Bk and μ is Lebesgue measure on R*. Then ίβ is the probability
density in the familiar sense.

We assume that (5, θ) H> iθ(s) is a C-measurable function. We write v — μ x λ.

5. a. M is given by

dv v '

b. P is given by

— (a) = / eθ(s)d\(θ).
dμ JΘ
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c. For all s E S , Q5, the conditional probability on θ given s when (s,0) is
distributed according to M, is well-defined and given by

where Z(a) =

d. For all g G L2,

E(g I s) - ί*(s) = / 9(θ)dQs(θ) = / g(θ)ψldλ(θ).
Jθ Je £{s)

Proof. These are all easy consequences of Fubini's theorem. (For example, since

P φ G A,θ G B) = £(lA(s)JB(0)) = E(lB(θ)E(IA(s) \ θ))

= E(IB(Θ)PΘ(A))

= E(IB(Θ) f iθdμ) = / /B(β) f / ^(.5)dμ(5)]dλ(tf) = / £θ(s)dv(s, θ),
v J A ' J Q 1JA J JAXB

we have (a).) D

Lecture 7

. In any V = L2(Ω,C, M), the constant functions form a subspace, which we will
denote by Wc = ^ ( Ω , C, M). The projection of / G V on Wc is just £?(/).

Λ̂ ί?ίβ. In the present context, with it; = (5,0) and Ω = 5 x θ , s is the datum and
θ is the unknown parameter, λ is the prior distribution of 0, Qs is the posterior
distribution (after s is observed) of 0, t*(s) = E(g \ s) is the posterior mean of g(θ),
θ ι-> ̂ (5) is the likelihood function and ίg = ^p-.

Note. If we do have a λ on hand but no data, then the Bayes estimate is just Eg —
SB9(0)dX(θ).

6. If t* is a Bayes estimate of p, then t* cannot be unbiased, except in trivial cases.

Proof. Suppose that t* is unbiased and Bayes (with respect to λ). Then, by
unbiasedness,

(t*,g) = E(t*g) = E(E(t*g \ θ)) = E(g{θ)E(t* \ θ)) = E(g(θ)2) = \\g\\2-

but also, since t* is a Bayes estimate,

(f,g) = E(E(t*g \ s)) = E(t*(s)E(g |
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From this we conclude that:

r - <?ll2 = IMI2 - Π l 2 = o & M({W : t*{8) Φ g(θ)}) = o

Pθ(f(s) φ g(θ))dλ(θ) = 0 & Pθ(t*(s) = g(θ)) = 1 a.e.(λ)/
Je

This last statement, though, holds iff there is an estimate t such that Pβ{t(s) =
g(θ)) = 1 a.e.(λ). Hence, except in the trivial case, t* cannot be both Bayes
and unbiased. D

Example l(a). s = (XUX2, . .,Xn), X% ~ N{θ, 1) and θ = R1. Let μ be Lebesgue

measure; then dμ = dX\ dXn and ίg(s) = ΠΓ=i τk^e~^Xi~9^ . Consider the esti-

mation of g(θ) = θ. X = ^ Σ2=i X* ^s a n u nbiased estimate of g (in fact, it is the

UMVUE of #), so X is not Bayes with respect to any λ. We will see later that:

i. X is minimax,

ii. X is the pointwise limit of Bayes estimates and

iii. X is admissible.

Suppose that λ is the JV(O, σ2) distribution, so that dλ(θ) = -/^e~ϊ^θ dθ. Given 5,

is proportional to ̂ ( s ) , i.e., dQs(θ) = φι(s)£g(s)dλ(θ) for some function ψι of

ie{s) = ( ^

s.
Now

where υ = ^ΣΓ=i(χi ~ ^ ) 2 ' s o t h a t dQβ(θ) = φ1(s)φ2(s)e-^-θ^eSdθ. Let
2 = P ^ o r s o m e Λ > 0, so that

Thus Q5 ~ N(γ^2, n(i+h2)) ( w ^ e r e ^ 2 ~ ( n ) / σ 2 ^s *^ e r a ^ 0 °̂  °bservation variance

to prior variance) and t*(s) = -E1^ | 5) = γ ^ Therefore

t

where the 0 (labelled f above) arises from the fact that we are dealing with a Bayes
estimate with no data; and the terms marked ί represent a weighted average of prior
and data mean, with weights proportional to inverse variance.

We have

O
n
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and
1 1

-θ) =

h2

h2

hψn

hψn l + h2 h2)'

( T h e l a s t c a n b e c h e c k e d b y n o t i n g t h a t Rt* = \\θ - t*\\2 = \\θ\\2 - \\t*\\2.)
R

Lecture 8

In the framework (S,Λ,Po), ί ί θ , set up in the previous lectures, suppose that
dPg = igdμ on S, where dμ is a fixed measure (this is another way of saying that ίg
is the likelihood function). Given s, suppose θ = θ(s) is the point in θ such that
t§(s)(s) ~ suPέ>eθMs) Then θ is the (or an) ML estimate of θ.

Given a function g on θ, g{θ(s)) is the ML estimate of g(θ).

Homework 2

1. What is θ in Example l(b) (on page 10)? In Example l(c) (no explicit answer
is available in this case)? Assume that θ = E1.

We return to our investigation of Example l(a).

Example 1. Here μ is n-dimensional Lebesgue measure and £θ(s) = φ(s)e~%(χ~θϊ2, so

that θ(s) = ~X. The ML estimate of θ2 is X2, the ML estimate of |0| is |X|, etc.

Under square error loss, we know that, if A is distributed as N(0, σ2) with σ2 = ^ ,

then the Bayes estimate of θ is t*(s) = T^W The Bayes estimate of θ2 is

Jm.1 θ2dQs(θ) =
X2

h2)2

and the Bayes estimate of \θ\ is JR1 \θ\dQs(θ), which is a sum involving special func-
tions.

Note.
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i. We have seen that the Bayes estimates of θ converge to X, which is ML and
UMVUE, as h —> 0 (i.e., σ2 —> +00). This does not always happen, however:

2 2

The Bayes estimates of θ2 converge to X + ̂  the ML estimate of θ2 is X and
the UMVUE of θ2 is X — £. These three are not identical, but they are close

if n is large.

ii. The case h — 0 (σ2 = +00) corresponds to uniform prior ignorance about 0;

i.e., for two intervals (α, b) and (c, d) in M1 = θ , jj-^j —>- ̂  as /ι | 0 (from

Homework 2).

iii. t*(s) = γ^2 {h fixed) is admissible because t* is an essentially unique Bayes

estimate in L2(M) (i.e., if ί0 is a l s o Bayes, then P( ί 0 = ί*) = 1, which is

equivalent to saying that Pofa = ί*) = 1 for all θ e θ). It follows that, for

any constant c, t(s) = aX + (1 — a)c is admissible for any 0 < a < 1. (Let

X2' = Xj + c and θ' = θ -{- c, and apply the above result.)

Homework 2

2. Find a necessary and sufficient condition such that 60 + &1-X1 + + bnXn be
admissible for θ.

For any h > 0, it!** (0) = IA + ̂ 02, so sup^Gθ Rt* (θ) = +00 and t* is not minimax. We
do have, however, that:

i. X is minimax.

Proof. Choose any estimate t.

snpRt(θ) >~Rt> ~Rt* = ——
U / t i l 1

so, since h is arbitrary, sup# Rt(θ) > ^, which is the (constant) risk of Ύ. Thus

X is minimax. •

ii. X is admissible.

Proof. Let t be an estimate such that

Rt(θ) < Rχ(θ) = ~\/θeθ
I It

and let, for h > 0, λ be distributed as iV(0, l/nh2). We have that ~Rt > Tϊt*
because t* is Bayes for λ.
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Now t-θ = {t-t*) + {t*- θ) and (t - t*) ± (ί* - θ), so

\\t-t*\\2 = \\t-θ\\2-\\f-θ\\2 = Rt-Rt*

- n ** n n(l + /ι2) n(l +

We have also that

I \t - t*112 = / (ί - ί*)2dM = f (t- t*)2dP

= ί (t(s)-f{8)) ^[ ^
= f (t(s) -

jRn+l

β
V27Γ

From these two equalities we conclude that

Letting h —> 0 and using Fatou's lemma and the fact that t* —>• X (as /ι —> 0),
we have that

/ (ί(5) - ~X)2£θ{s)dμ{s)dθ = 0

and hence that (ί(s) —A") ^(5) = 0 a.e. (with respect to Lebesgue measure) in
M n + 1 . Since ίθ(s) > 0 for all (s, (9) G R n + 1 by presumption, we have that

(t(s) — X — 0 a.e. (with respect to Lebesgue measure) on R n + 1 )

=Φ> (ί(s) 1= X a.e. (with respect to Lebesgue measure) on S = Rn)

=> (Pθ(t(s) = X) = 1 V^ e θ ) ^ (#*(#) = % ( 0 ) = - V ί G θ ) .
I b

D

Lecture 9

Homework 2

3. In Example l(a), what is the marginal distribution P of s? Are the X^s normal
and independent under PΊ What is the distribution of X under P? Here the
prior is assumed to be λ ~ iV(0,1/n/ι2).
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Example 2(a). Let n be a fixed positive integer and s — (X 1 ? . . . ,Xn) with the Xι
iid random variables assuming the values 1 and 0 with probabilities 0 and 1 — 0
respectively and θ = [0,1]. Let μ be counting measure on 5, the set of 2n possible
values assumed by s. Then

£θ(s) = Pθ({s}) = 0 T ^ ( 1 - θ)n~τ^

where T(s) = Y^=ι Xi The ML estimate is θ(s) = T(s)/n = ~X, which is unbiased
for 0. (We will see that in fact ~X is the UMVUE.) RΎ(Θ) = Var^(X) = θ(l - θ)/n.
The ML estimate of 0(1 — θ)/n is just X(l — X)/n, which is not unbiased. We shall see
later that J ( J - J J r f ) is the UMVUE for 0(1 - θ)/n. Let λ be the Beta distribution

() "
ύ( ύ\

dλ{θ) =

 θ U-g) ^

for 0 < ^ < 1, with parameters α, b > 0. Here B(α, b) = ffi^ff is the Beta function;

it is easy to check that Ex(θ) = ^ and Varλ(^) = ( a + 6 ) 2 ^ + / ) + 1 )

We visualize the product space Ω = S x θ as a unit interval attached to each
point of S:

S (2n points)

We let μ be counting measure on S, λ prior measure on θ and v = μ x λ the
product measure on Ω. We have dM(s,θ) — ίg(s)du(s,θ) on Ω, so that M(C) =
fceβ(s)du(s, θ) for all C G C = A x B, and

dQs{θ) = |

where ^ ( s )
distribution.

n-Γ(s))- 1 , so that Qs is the B(a + T(s), b + n-T(s))
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The Bayes estimate for θ is t*(s) = EQs{θ) =
for 0(1 - θ) is EQ.(Θ) - EQs{θ2).

similarly, the Bayes estimate

Ί 2

If we choose a=ψ = b, then t* becomes t*m =
τ + ^ / 2 and

1

An

Hence t*m is a Bayes estimate with constant risk; therefore it must be minimax. The
graphs for the risk functions of X and ί^ look like:

χ = θ(l-θ)/n

1

As n —> oo, bn -> 0 and γf^\ —> 0. Neither X nor ί^ is perfect; for example, if

n = 100 and T = 0, then X = ί = 0, which is too low, but t*m = ^ g ^ w 4 |%, which

may be too high.

Note. With a = ^ψ = 6, the prior mean is \ and the prior variance is
1

4(Vn+l) '

Homework 2

4. Show that X — -^- is admissible in two ways:

a. Show that X is the pointwise limit of ί* as α | 0 and 6 ^ 0 .

b. Redefine the loss function by L(t,θ) = 1/ΓfL, so that

(Admissibility with respect to this loss function is equivalent to admissi-
bility with respect to the loss function L(ί, θ) = (ί — 0)2.)

5. Show that X is the unique Bayes estimate with respect to some λ.
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Lecture 10

Example 2(b) (negative binomial sampling). We have 0 e θ = (0,1). We choose a
positive integer k and observe the iid

1 with probability 0

with probability 1 — 0

until exactly k Γs are observed.

Let N be the total number of Xφ observed. Here s = (X l 5 . . . , XN) and TV is a
random variable.

Now let S be the set of all possible values of s; then 5 is countable (obviously
N > k. There are (£lj) values of s corresponding to N = r). Let μ be counting
measure on S (such that sample points with N the same have the same probability).
Then

£θ(s) = P, (observing 5) = θk^(l - θfN{s)-ι)-{k~ι)θ = θk{\ - θ)N{s)~k.

The MLE of 0 is X — ̂ k , which is not unbiased. Note that N — Nx-\ h Nk,

where Nι is the number of trials until the first 'success' (i.e., observation of a 1), JV2 is
the number of additional trials required for the second success etc. The Λ ŝ are iid, so
that EΘ(N) = kEθ(Nλ) and Var^ΛΓ) = k V a r ^ ) . Since Pθ{Nλ = r) = (1 - 0) r- x0
(for r = 1, 2,...), we have Eθ(Nι) = 1/0 and Varfl(JVχ) = (1 - 0)/02. Thus

remember, however, that, by the Cauchy-Schwarz inequality, E(X)E(1/X) > 1 for
any random variable X > 0, with equality iff P(X = c) = 1, and so

- i.e., X = ^ y is biased upwards.

It can be shown by the Rao-Blackwell theorem that the estimate t = j ^ - is unbi-
ased when k > 2. In fact, t is (by the Lehmann-Scheffe theorem or a geometrical ap-
proach) the UMVUE. (Heuristically, we see that, if 5 = (Xi, . . . , XN-U XN), then nec-
essarily XN = 1 (we stop as soon as we observe the A th 1) and so only (Xi, . . . , XN-I)
constitute the active part. Then t(s) =
number of successes in active part \ ry ,1 , . l i n U ; a ς p f l n π t p

number of trials in active part ') i 0 S β β t Π a t l 1 S u n D i a s e a . n o t e

PΘ(N = r) =

for r = k, k + 1,..., so that

r=k
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We have X - t{s) = j/fc - j^pi = N(")(N(S)-I) - °' t h e i n e ( l u a l i t y b e i n S s t r i c t w i t h

positive probability; so EQ(X) > Eθ(t) — θ.

Bayes estimates

Let λ be a prior probability measure on (0,1). As always dQs(θ) = φι(s)ίβ(s)dλ(θ).
Since £g(s) is as in Example 2(a), formally the Bayes estimate here is identical to the
one there. In particular, Q+β+fc i s admissible and Bayes with respect to the B(a, b)
prior with α, b > 0.

Note. Although the MLEs in Examples 2(a) and 2(b) are formally identical, the risk

functions are different. In Example 2(b), % ( 0 ) = Var^(X) + [EΘ{X - θ)]2 and

Rt(θ) = Var#(i) are complicated expressions.

Example 2(c). Depicted here are the stopping points for Examples 2 (a) and 2(b),
along with those of another possible (two-stage) sampling scheme:

Example 2(a) Example 2(b) Example 2(c)

Here (as in any scheme) the likelihood function is ίe(s) — θτ^s\\ —

where T(s) is the number of successes (and, of course, N(s) — T(s) is the number of

failures), μ is counting measure and the MLE is θ(s) = j ^ \ always.

s = (Xi, . . . , XN), where N = n\ or N = n\ + n2 depending on s. How do we
estimate θ? What is the precision of this estimate?
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