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Detecting a target in very noisy data

from multiple looks

Jiashun Jin1

Purdue University

Abstract: Consider an imaging situation with extremely high noise levels, hid-
den in the noise there may or may not be a signal; the signal—when present—is
so faint that it cannot be reliably detected from a single frame of imagery. Sup-
pose now multiple frames of imagery are available. Within each frame, there is
only one pixel possibly containing a signal while all other pixels contain purely
Gaussian noise; in addition, the position of the signal moves around randomly
from frame to frame. Our goal is to study how to reliably detect the existence
of the signal by combining all different frames together, or by “multiple looks”.

In other words, we are considering the following testing problem: test
whether all normal means are zeros versus the alternative that one normal
mean per frame is non-zero. We identified an interesting range of cases in
which either the number of frames or the contrast size of the signal is not large
enough, so that the alternative hypothesis exhibits little noticeable effect on
the bulk of the tests or for the few most highly significant tests. With care-
ful calibration, we carried out detailed study of the log-likelihood ratio for a
precisely-specified alternative. We found that there is a threshold effect for the
above detection problem: for a given amplitude of the signal, there is a critical
value for the number of frames—the detection boundary—above which it is
possible to detect the presence of the signals, and below which it is impos-
sible to reliably detect it. The detection boundary is explicitly specified and
graphed.

In addition, we show that above the detection boundary, the likelihood
ratio test would succeed by simply accepting the alternative when the log-
likelihood ratio exceeds 0. We also show that the newly proposed Higher Crit-
icism statistic in [11] is successful throughout the same region of number (of
frames) vs. amplitude where the likelihood ratio test would succeed. Since
Higher Criticism does not require a specification of the alternative, this implies
that Higher Criticism is in a sense optimally adaptive for the above detection
problem. The phenomenon found for the Gaussian setting above also exists for
several non-Gaussian settings.

1. Introduction

Consider a situation in which many extremely noisy images are available. In each
image frame, there is only one pixel containing a signal with all other pixels con-
taining purely Gaussian noise. For any single frame, the signal is so faint that it
is impossible to detect, and in addition, the position of the signal moves around
randomly from frame to frame. The goal is to study how to detect a signal hidden
in the extremely noisy background by combining all different frames together; i.e.
by “multiple looks”. This is a mathematical caricature of situations faced in two
applied problems.

1. Speckle Astronomy. In earth-based telescope imaging of astronomical objects,
atmospheric turbulence poses a fundamental obstacle. The image of the object
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is constantly moving around in the field of view; with a regular exposure time,
an image of what should be a sharp point becomes highly blurred. A possible
approach is to take many pictures with very short exposure time for each
picture; the exposure time is so short that during exposure the position of
the object hardly changes. However, this causes a new problem: the exposure
time being so short that few photons accumulate, therefore we are unable to
clearly see the object in any single frame. Technology nowadays enables us to
easily collect hundreds or thousands of frames of pictures; from one frame to
another, the position of the galaxy/star (if it exists) randomly moves around
within the frame. The goal is to find out roughly at what amplitude it becomes
possible to tell, from m realizations, that there is something present above
usual background, see [2]. In this example, we are trying to detect, but not
to estimate.

2. Single Particle Electron Microscopy (SPEM). In traditional crystallography,
the image taken is actually the superposition of the scattering intensity across
a huge number (1023) of fundamental cells of the crystal, the superposed im-
age lacks phase, and can only resolve the modulus of the Fourier Transform
(FT) of the image. However we need to see images with phase correctly re-
solved. A possible solution to this is the single particle EM, see [25]. This
method enables us to see correctly phased image from a single surface patch
of frozen non-crystallized specimen; however this caused a new problem: the
image is extremely noisy, there is little chance to see the molecule from any
single image. On the other hand, technology nowadays can easily take large
numbers (1010) of different frames of image; however from one frame to the
another, the position of the molecule randomly moves around the whole frame.
However, by combining these huge numbers of frames of images, we hope we
can reliably estimate the shape of the molecule. The question here is: what
are the fundamental limits of resolution? If we can’t “see” the molecule in
any one image, and the molecule is moving around, can we still recover the
image? In this example, the question is to estimate; however the first step for
estimation is to make sure the things you want to estimate are actually there,
and so problem of detection is an essential first step.

1.1. The multiple-looks model

Motivated by the examples in the previous section, suppose that we have indepen-
dent observations X

(k)
j , 1 ≤ j ≤ n, 1 ≤ k ≤ m (we reserve i for

√
−1), here j is the

index for different pixels in each frame, and k is the index for different frames. As
we have m frames and n pixels per frame, we have in total N observations, where

N ≡ m · n. (1.1)

For simplicity, assume that the signal, if it exists, is contained in one pixel for
each frame. We want to tell which of the following two cases is true: whether each
frame contains purely Gaussian noise, or that exactly one pixel per frame contains
a signal (of fixed amplitude) but all other pixels are purely Gaussian noise and that
the position of the signal randomly changes from frame to frame.

Formally, the observations obey:

X
(k)
j = µδj0(k)(j) + z

(k)
j , 1 ≤ j ≤ n, 1 ≤ k ≤ m, (1.2)
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where
z
(k)
j

i.i.d∼ N(0, 1),

µ is the amplitude of the signal, and j0(k) is the position of the signal. Here for
any fixed k, j0(k) is random variable taking values in {1, 2, . . . , n} with equal prob-
ability, independent with each other as well as z

(k)
j , and where δj0(k)(·) is the Dirac

sequence:

δj0(k)(j) =

{
1, j = j0(k),
0, j �= j0(k).

(1.3)

The problem is to find out: given µ and n, what’s the minimum value of m = m∗

such that we are able reliably to distinguish (1.2) from the pure noise model X
(k)
j =

z
(k)
j .

Translating our problem into precise terms, we are trying to hypothesis test the
following:

H0 : X
(k)
j = z

(k)
j , 1 ≤ j ≤ n, 1 ≤ k ≤ m, (1.4)

H
(n,m)
1 : X

(k)
j = µδj0(k)(j) + z

(k)
j , 1 ≤ j ≤ n, 1 ≤ k ≤ m, (1.5)

we call this testing model as multiple-looks model. Here, H0 denotes the global
intersection null hypothesis, and H

(n,m)
1 denotes a specific element in its comple-

ment. Under H
(n,m)
1 , for each fixed k, there is only one observation X

(k)
j0(k) among

{X(k)
j }n

j=1 containing a signal with amplitude µ, and the index j0(k) is sampled
from the set {1, 2, . . . , n} with equal probability, independently with k as well as
z
(k)
j ; in total, we have N observations which are normally distributed with zero

mean, except m of them have a common nonzero mean µ.
Suppose we let m = nr for some exponent 0 < r < 1 (or equivalently m =

N r/(1+r)). For r in this range, the number of nonzero means is too small to be
noticeable in any sum which is in expectation of order N , so it cannot noticeably
affect the behavior of bulk of the distribution. Let

µ = µn =
√

2s log n, 0 < s < 1; (1.6)

for s in this range, µn <
√

2 log n, the nonzero means are, in expectation, smaller
than the largest X

(k)
j from the true null component hypotheses, so the nonzero

means cannot have a visible effect on the upper extremes. For the calibrations we
choose in this way, there is only a tiny fraction of observations with elevated mean,
and the elevated mean is only of moderate significances.

1.2. Log-likelihood ratio and limit law

Obviously, with µ, n, and m fixed and known, the optimal procedure is the Neyman-
Pearson likelihood ratio test (LRT), [28]. The log-likelihood ratio statistic for prob-
lems (1.4)–(1.5) is:

LRn,m =
m∑

k=1

LR(k)
n ,

where for any 1 ≤ k ≤ m,

LR(k)
n = LR(k)

n

(
µ, n; X(k)

1 , . . . , X(k)
n

)
≡ log

(
1
n

n∑
j=1

eµ·X(k)
j

−µ2/2

)
.
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Fixed 0 < s < 1 and n large, when r ≈ 0 is relatively small, as the overall evidence
for the existence of the signal is very weak, the null hypothesis and the alternative
hypothesis merge together, and it is not possible to separate them; but when r gets
larger, say r ≈ 1, the evidence for the existence of the signal will get strong enough
so that the null and the alternative separate from each other completely. Between
the stage of “not separable” and “completely separable”, there is a critical stage of
“partly separable”; a careful study of this critical stage is the key for studying the
problem of hypothesis testing (1.4)–(1.5).

In terms of log-likelihood ratio (LR), this particular critical stage of “partly
separable” can be interpreted as, for any fixed s and µn =

√
2s logn, there is a

critical number m∗ = m∗(n, s) such that as n → ∞, LRn,m∗ converges weakly to
non-degenerate distributions ν0 and ν1 under the null and the alternative respec-
tively; since typically ν0 and ν1 overlap, the null and the alternative are partly
separable.

This turns out to be true. In fact, we have the following theorem:

Theorem 1.1. For parameter 0 < s < 1, let µn = µn,s =
√

2s log n, and

m∗ = m∗(n, s) ≡
{

n1−2s, 0 < s ≤ 1/3,
√

2π · µn,s · n−(1−s)2/(4s), 1/3 < s < 1,

then as n → ∞:

1. When 0 < s < 1
3 ,

under H0 : LRn,m∗
w=⇒ N(−1/2, 1),

under H
(n,m∗)
1 : LRn,m∗

w=⇒ N(1/2, 1).

2. When s = 1
3 ,

under H0 : LRn,m∗
w=⇒ N(−1/4, 1/2),

under H
(n,m∗)
1 : LRn,m∗

w=⇒ N(1/4, 1/2).

3. When 1
3 < s < 1,

under H0 : LRn,m∗
w=⇒ ν0

s , under H
(n,m∗)
1 : LRn,m∗

w=⇒ ν1
s ,

where ν0
s and ν1

s are distributions with characteristic functions eψ0
s and eψ1

s

respectively, and

ψ0
s(t) =

∫ ∞

−∞

[
eit log(1+ez) − 1 − itez

]
e−

1+s
2s z dz, (1.7)

ψ1
s(t) = ψ0

s(t) +
∫ ∞

−∞
[eit log(1+ez) − 1]e−

1−s
2s z dz. (1.8)

In fact, the difference between LRn,m∗ under Hn,m∗

1 and LRn,m∗ under H0

weakly converges to 1, 1/2, and ν∗
s according to s < 1/3, s = 1/3 and s > 1/3, here

ν∗
s is the distribution with characteristic function e[ψ1

s−ψ0
s ].

It was shown in [26, Chapter 2] that the laws ν0
s and ν1

s in Theorem 1.1 are
in fact infinitely divisible. In Section 6.3, we discuss several other issues about ν0

s
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Figure 1: Left panel: Characteristic functions for ν0
.5 (top) and ν1

.5 (bottom). Left
column: real parts, right column: imaginary parts. Right panel: Density functions
for ν0

.5 (left) and ν1
.5 (right). The mean values of them are approximately −2.09 and

4.19, and variance of them are approximately 2.57 and 20 respectively.

and ν1
s , where we view ν0

s as a special example of ν0
s,γ , and ν1

s as a special example
of ν1

s,γ , with γ = 2. In short, both ν0
s and ν1

s have a bounded continuous density
function, and a finite first moment as well a finite second moment. The mean value
of ν0

s is negative, and the mean value of ν1
s is positive; in comparison, ν0

s has a
smaller variance than ν1

s . In Figure 1, we plot the characteristic functions and
density functions for ν0

s and ν1
s respectively with s = 1/2.

In [8], adapting to our notations, Burnashev and Begmatov studied the limiting
behavior of LRn,m with m = 1, see more discussion in Section 7.3, as well as
Section 4. In addition, the LRT and its optimality has been widely studied, see [6,
14], etc., and have also been discussed for various settings of detection of signals in
a Gaussian noise setting, see [3, 4, 13], and also [29] for example.

1.3. Detection boundary

Theorem 1.1 implies that there is a threshold effect for the detection problem of
(1.4)–(1.5). Dropping some lower order terms when necessary, (namely

√
2π · µn,s

in the case 1/3 < s < 1), m∗ would be reduced into a clean form: m∗ = nρ∗(s),
where

ρ∗(s) =




1 − 2s, 0 < s ≤ 1/3,

(1 − s)2

4s
, 1/3 < s < 1.

(1.9)

Consider the curve r = ρ∗(s) in the s–r plane. The curve separates the square
{(s, r) : 0 < s < 1, 0 < r < 1} into two regions: the region above the curve or the
detectable region, and the region below the curve or the undetectable region; we
call r = ρ∗(s) the detection boundary. See the left panel of Figure 4 for illustrations,
also see the left panel of Figure 5, where the curve corresponds to γ = 2 is r = ρ∗(s).
Theorem 1.1 implies that, roughly say, LRn,m∗ weakly converges to different non-
degenerate distributions when (s, r) falls exactly on the detection boundary. We
now study what will happen when (s, r) moves away from the detection boundary.
On one hand, when (s, r) moves towards the interior of the detectable region, in
comparison, we will have a lot more available observations while at the same time
the amplitude is the same; so intuitively, LRn,m will put almost all mass at −∞
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under the null, and at ∞ under the alternative; this implies that the null and alter-
native separate from each other completely. On the other hand, when (s, r) moves
towards the interior of the undetectable region, conversely, we have much fewer ob-
servations than we need, so the null and the alternative would both concentrate their
mass around 0; more subtle analysis in Section 4 gives a much stronger claim: by
appropriate normalization, LRn,m weakly converges to the same non-degenerated
distribution, under H0 as well as under H

(n,m)
1 , and this non-degenerate distribu-

tion has a bounded continuous density function; thus the null and the alternative do
completely merge together and are not separable. Precisely, we have the following
Theorem. Recall that the Kolmogorov-Smirnov distance ‖ · ‖KS between any two
cdf’s G and G′ is defined as:∥∥G − G′∥∥

KS
= sup

t

∣∣G(t) − G′(t)
∣∣;

back to our notation m = nr, here m depends only on n and r, which is not the
critical m∗ = m∗(n, s) as in Theorem 1.1.

Theorem 1.2. Let µn = µn,s =
√

2s logn and m = nr.

1. When r > ρ∗(s), consider the likelihood ratio test (LRT) that rejects H0 when
LRn,m > 0, the sum of Type I and Type II errors tends to 0:

PH0{Reject H0} + P
H

(n,m)
1

{Accept H0} → 0, n → ∞.

2. When r < ρ∗(s),
lim

n→∞

∥∥F
(n,m)
0 − F

(n,m)
1

∥∥
KS

= 0,

where F
(n,m)
0 and F

(n,m)
1 are the cdf’s of LRn,m under H0 and H

(n,m)
1 re-

spectively. As a result, for any test procedure, the sum of Type I and Type II
errors tends to 1:

PH0{Reject H0} + P
H

(n,m)
1

{Accept H0} → 1, n → ∞.

1.4. Higher criticism and optimal adaptivity

If we think of the s - r plane, 0 < s < 1, 0 < r < 1, we are saying that throughout
the region r > ρ∗(s), the alternative can be detected reliably using the likelihood
ratio test (LRT). Unfortunately, as discussed in [11], the usual (Neyman-Pearson)
likelihood ratio requires a precise specification of s and r, and misspecification of
(s, r) may lead to failure of the LRT. Naturally, in any practical situation we would
like to have a procedure which does well throughout this whole region without
knowledge of (s, r). Hartigan [18] and Bickel and Chernoff [7] have shown that the
usual generalized likelihood ratio test maxε,µ{[dP

(n)
1 (ε, µ)/dP

(n)
0 ](X)} has nonstan-

dard behavior in this setting; in fact the maximized ratio tends to ∞ under H0. It
is not clear that this test can be relied on to detect subtle departures from H0. Ing-
ster [21] has proposed an alternative method of adaptive detection which maximizes
the likelihood ratio over a finite but growing list of simple alternative hypotheses.
By careful asymptotic analysis, he has in principle completely solved the problem
of adaptive detection in the Gaussian mixture model (2.2)–(2.3) which we will in-
troduce in Section 2; however, this is a relatively complex and delicate procedure
which is tightly tied to the narrowly-specified Gaussian mixture model (2.2)–(2.3).
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It would be nice to have an easily-implemented and intuitive method of detection
which is able to work effectively throughout the whole region 0 < s < 1, r > ρ∗(s),
which is not tied to the narrow model (2.2)–(2.3), and which is in some sense eas-
ily adapted to other (nonGaussian) mixture models. Motivated by these, we have
developed a new statistic Higher Criticism in [11], where we have shown that the
Higher Criticism statistic is optimally adaptive for detecting sparse Gaussian het-
erogeneous mixtures, as well as many other non-Gaussian settings.

To apply the Higher Criticism in our situation, let us convert the observations
into the p-values. Let p

(k)
j = P{N(0, 1) > X

(k)
j } be the p-value for observation X

(k)
j ,

and let the p(�) denote the p-values sorted in increasing order, (recall N = n · m):

p(1) < p(2) < · · · < p(N),

so that under the intersection null hypothesis the p(�) behave like order statistics
from a uniform distribution. With this notation, the Higher Criticism is:

HC∗
N = max

1≤�≤α0·N

√
N [�/N − p(�)]/

√
p(�)(1 − p(�)),

where 0 < α0 < 1 is any constant. Under the null hypothesis H0, HC∗
N is related to

the normalized uniform empirical process. Intuitively, under H0, the p-values p
(k)
j

can be viewed as independent samples from U(0, 1). Adapting to the notations of
[11], let FN (t) = 1

N

∑N
�=1 1{p(�)≤t}, then the uniform empirical process is denoted

by:
UN (t) =

√
N [FN (t) − t], 0 < t < 1,

and the normalized uniform empirical process by

WN (t) = UN (t)/
√

t(1 − t).

Under H0, for each fixed t, WN (t) is asymptotically N(0, 1), and

HC∗
N = max0<t<α0WN (t).

See [11] for more discussion. The following theorem is proved in [11]:

Theorem 1.3. Under the null hypothesis H0, as N → ∞,

HC∗
N√

2 log log N
→p 1.

It then follows if we threshold HC∗
N at

√
4 log log N , the Type I error would equal

to 0 asymptotically; moreover, thresholding at
√

4 log log N also gives a Type II
error which equals to 0 asymptotically:

Theorem 1.4. Consider the Higher Criticism test that rejects H0 when

HC∗
N >

√
4 log log N. (1.10)

For every alternative H
(n,m)
1 defined in (1.4)–(1.5) above where r exceeds the de-

tection boundary ρ∗(s)—so that the likelihood ratio test rejects H0 at 0 would have
negligible sum of Type I and Type II errors – the test based on Higher Criticism
in (1.10) also has negligible sum of Type I and Type II errors:[

PH0{Reject H0} + P
H

(n,m)
1

{Accept H0}
]
→ 0, n → ∞.
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Roughly speaking, everywhere in the s–r plane where the likelihood ratio test
would completely separate the two hypotheses asymptotically—the Higher Crit-
icism will also completely separate the two hypotheses asymptotically; since it
doesn’t require any specification of parameters s and r, the Higher Criticism sta-
tistic is in some sense optimally adaptive. Of course, in the cases where the s–r
relation falls below the detection boundary, all methods fail.

It is interesting to notice here the phenomena that the detection boundary
r = ρ∗(s) is partly linear (s < 1/3) and partly curved (s > 1/3); the curve only has
up to the first order continuous derivatives at s = 1/3. As discussed in [11] or [26,
Chapters 2–5], this phenomena implies that the detection problem of (1.4)–(1.5) is
essentially different for the cases 0 < s ≤ 1/3 and 1/3 < s < 1. Intuitively, when
(s, r) is close to the curved part, statistics based on those a few largest observations
would be able to effectively detect, while when (s, r) is close to the linear part,
statistics based on a few largest observations (such as Max, Bonferroni, FDR) will
fail, and only the newly proposed statistic Higher Criticism, or the Berk–Jones
statistic which is asymptotically equivalent to the Higher Criticism in some sense
[5, 11], is able to efficiently detect. As the study is similar to that in [11], we skip
further discussion. However, in Section 2.2, we will explain this phenomenon from
the angle of analysis.

1.5. Summary

We have considered a setting in which we have multiple frames of extremely noisy
images, in each frame, hidden in the noise there may or may not be some signals,
and the signal—when present—is too faint to be reliably detected from a single
frame, and the position of the signal moves randomly across the whole frame. For
fixed contrast size of the signal and the number of pixels in each frame, there is
a critical number of frames—the detection boundary—above which combining all
frames together gives a full power detection for the existence of the signal, and
below which it is impossible to detect.

Above the detection boundary, the Neyman-Pearson LRT gives a full power
detection. However, to implement LRT requires a specification of the parameters,
and misspecification of the parameters may lead to the failure of the LRT. Motivated
by this, we proposed a non-parametric statistic Higher Criticism in [11], which
doesn’t require such a specification of parameters; the Higher Criticism statistic
gives asymptotically equal detection power to that of LRT. The Higher Criticism
statistic only depends on p-values and can be used in many other settings.

Moreover, the detection boundary is partly linear and partly curved; compare
the case when parameters are near the curved part and the case that the parameters
are near the linear part, the detection problem is essentially different. Asymptoti-
cally, for the first case, statistics based on the largest a few observations are able
to efficient to detect; however, for the second case, such statistics will totally fail,
but the Higher Criticism statistic is still able to efficiently detect.

Below the detection boundary, asymptotically, all tests will completely fail for
detection, even when all parameters are known.

The approach developed here seems applicable to a wide range of settings of
non-Gaussian noise. In Section 6, we extend the Gaussian noise setting to the
Generalized Gaussian noise setting.

1.6. Organization

The remaing part of the paper is organized as follows.
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Sections 2–3 are for the proof of Theorem 1.1. In Section 2, we introduce a
Gaussian mixture model, which we expect to be an “approximation” of the multiple-
looks model, or Model 1.4–1.5; in comparison, this Gaussian mixture model is easier
to study, and thus provides a bridge for studying the multiple-looks model. We
then validate this expectation in Section 3 by showing that, with carefully chosen
parameters, the difference between the log-likelihood ratios of these two models are
indeed negligible; Theorem 1.1 is the direct result of those studies in Sections 2–3.

Second, we prove Theorem 1.2 in Section 4, and Theorem 1.4 in Section 5.
Next, in Section 6, we extend the study in Section 2 on the Gaussian mixture

to non-Gaussian settings.
Finally, in Section 7, we briefly discuss several issues related to this paper.

Section 8 is a technical Appendix.

2. Gaussian mixture model, and its connection to multiple looks model

Model (1.4)–(1.5) can be approximately translated into a Gaussian mixture model
by “random shuffling”. In fact, recall that the observations {X(k)

j } are collected

frame by frame; suppose we arrange the X
(k)
j ’s in a row according to the natural

ordering:

X
(1)
1 , X

(1)
2 , . . . , X(1)

n , . . . , X
(m)
1 , X

(m)
2 , . . . , X(m)

n ,

we then randomly shuffle them and rearrange back into frames, according to the
ordering after the shuffling; we denote the resulting observations by {X̃(k)

j : 1 ≤
j ≤ n, 1 ≤ k ≤ m}.

Of course under H0, the above random shuffling won’t have any effect and the
joint distribution of X

(k)
j is the same as that of {X̃(k)

j }. However, if H
(n,m)
1 is

true, then X̃
(k)
j will have a slightly different distribution than that of X

(k)
j , which,

approximately, can be viewed as sampled from a Gaussian mixture:

X̄
(k)
j

iid∼ (1 − ε)N(0, 1) + εN(µ, 1), 1 ≤ j ≤ n, 1 ≤ k ≤ m, (2.1)

with
ε = εn = n−1, µ = µn = µn,s =

√
2s logn.

The difference between {X(k)
j } and {X̄(k)

j } is that under Hn,m
1 , {X(k)

j } has exactly

a fraction 1/n of nonzero means in each frame while the {X̄(k)
j } has such a fraction

only in expectation. Moreover, the problem of hypothesis testing the multiple looks
model (1.4)–(1.5) is approximately equivalent to hypothesis testing:

H0 : X̄
(k)
j

i.i.d∼ N(0, 1), 1 ≤ j ≤ n, 1 ≤ k ≤ m,

(2.2)

H(n,m)
1 : X̄

(k)
j

i.i.d∼ (1 − 1/n)N(0, 1) + (1/n)N(µn, 1), 1 ≤ j ≤ n, 1 ≤ k ≤ m.

(2.3)

In this paper, we refer this model as the Gaussian mixture model, in contrast
to the multiple-looks model. Since the random shuffling has no effect on the null
hypothesis, we still use H0 to denote the null hypothesis; however, we use Hn,m

1

to denote the new alternative hypothesis. Moreover, we denote the likelihood ratio
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statistic of Model (2.2)–(2.3) by LRn,m, in contrast to LRn,m of Model (1.4)–(1.5).
Notice here:

LRn,m = LRn,m

(
µn, n; X̄(1)

1 , . . . , X̄(1)
n , . . . , X̄

(m)
1 , . . . , X̄(m)

n

)
=

m∑
k=1

n∑
j=1

LR(k)
j ,

where

LR(k)
j = LR

(
µn, n; X̄(k)

j

)
≡ log

(
1 − 1

n
+

1
n

eµnX̄
(k)
j

−µ2
n/2

)
.

There are two important reasons for introducing the Gaussian mixture model
above. First, as the multiple-looks model can be converted into the Gaussian mix-
ture model by random shuffling, we expect that these two models are closely related.
In fact, compare the two log-likelihood ratios: LRn,m and LRn,m: on one hand, as
we will see in Section 3, with particularly chosen parameters (s, r), the difference
between LRn,m and LRn,m is in fact negligible; on the other hand, clearly, LRn,m

has a much simpler form than that of LRn,m, and thus it is much easier to analyze
LRn,m than LRn,m. In short, the study of the Gaussian mixture model will provide
an important bridge for studying the multiple-looks model.

The second important reason is that, the Gaussian mixture model itself is of
importance and has many interesting applications. In [11], we mentioned three ap-
plication areas where situations as in Model (2.2)–(2.3) might arise: early detection
of bio-weapons use, detection of covert communications, and meta-analysis with het-
erogeneity. There are many other potential applications in signal processing e.g.,
[22, 23, 24].

The main result on the problem of hypothesis testing the Gaussian mixture
model, or Model (2.2)–(2.3) is the following.

Theorem 2.1. For parameter 0 < s < 1, let µn = µn,s =
√

2s log n and

m∗ = m∗(n, s) =

{
n1−2s, 0 < s ≤ 1/3,
√

2π · µn,s · n−(1−s)2/(4s), 1/3 < s < 1,

then as n → ∞,

1. When 0 < s < 1/3,

LRn,m∗
w=⇒ N(−1/2, 1), under H0,

LRn,m∗
w=⇒ N(1/2, 1), under Hn,m∗

1 .

2. When s = 1/3,

LRn,m∗
w=⇒ N(−1/4, 1/2), under H0,

LRn,m∗
w=⇒ N(1/4, 1/2), under Hn,m∗

1 .

3. When 1/3 < s < 1,

LRn,m∗
w=⇒ ν0

s , under H0, LRn,m∗
w=⇒ ν1

s , under Hn,m∗

1 ,

where ν0
s and ν1

s are the same as in Theorem 1.1.
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Similarly, there is a threshold effect for the hypothesis testing of the Gaussian
mixture model, and so the detection boundary. In the s-r plane, the detection
boundary of the Gaussian mixture model is:

r = ρ∗(s),

which is exactly the same as that of the multiple-looks model; see more discussion
on the Gaussian mixture model in [11].

Ingster [20] studied a similar problem and noticed similar threshold phenomena,
see more discussions in Section 7.3. There are many other studies on the detection
of Gaussian mixtures using LRT, see [9, 16], and [17] for example.

2.1. Proof of Theorem 2.1

For the proof of Theorem 2.1, the approach below is developed independently and
is different from that in [20]; the approach below is also generalized to the settings
of non-Gaussian mixture which we will discuss in Section 6.

Denote the density function of N(0, 1) by

φ(z) =
1√
2π

e−z2/2. (2.4)

To prove Theorem 2.1, we start with the following key lemma:

Lemma 2.1. With µn = µn,s as defined in Theorem 2.1,∫ ∞

−∞

[
eit log(1+ez) − 1 − itez

]
e−

1+s
2s zφ

(
z

µn

)
dz

=




− it + t2 + o(1)
2

· µn · n
(1−3s)2

4s , 0 < s < 1/3,

− it + t2 + o(1)
4

· µn, s = 1/3,

1√
2π

ψ0
s(t) + o(1), 1/3 < s < 1,

(2.5)

and ∫ ∞

−∞

[
eit log(1+ez) − 1

]
e−

1−s
2s zφ

(
z

µn

)
dz

=




(
it + o(1)

)
· µn · n

(1−3s)2

4s , 0 < s < 1/3,

it + o(1)
2

· µn, s = 1/3,

1√
2π

[
ψ1

s(t) − ψ0
s(t)

]
+ o(1), 1/3 < s < 1,

(2.6)

where ψ0
s(t) and ψ1

s(t) are defined in Theorem 1.1.

Let N∗ = N∗(n, s) = n ·m∗(n, s), to prove Theorem 2.1, it is sufficient to show
that:

under H0: EeitLR(k)
j =




1 −
(
it + t2 + o(1)

)
/
(
2N∗), 0 < s <

1
3
,

1 −
(
it + t2 + o(1)

)
/
(
4N∗), s =

1
3
,

1 +
(
ψ0

s(t) + o(1)
)
/N∗,

1
3

< s < 1,

(2.7)
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and

under H(n,m∗)
1 : EeitLR(k)

j =




1 +
(
it − t2 + o(1)

)
/
(
2N∗), 0 < s <

1
3
,

1 +
(
it − t2 + o(1)

)
/
(
4N∗), s =

1
3
,

1 +
(
ψ1

s(t) + o(1)
)
/N∗,

1
3

< s < 1;

(2.8)

in fact, by EeitLRn,m∗ = (EeitLR(k)
j )N∗

, a direct result of (2.7)–(2.8) is that as
n → ∞, we have the following point-wise convergences:

under H0: EeitLRn,m∗ →




e−(it+t2)/2, 0 < s < 1/3,

e−(it+t2)/4, s = 1/3,

eψ0
s , 1/3 < s < 1,

and

under H(n,m∗)
1 : EeitLRn,m∗ →




e(it−t2)/2, 0 < s < 1/3,

e(it−t2)/4, s = 1/3,

eψ1
s , 1/3 < s < 1,

and Theorem 2.1 follows.
We now show (2.7). Under H0, notice that:

EeitLR(k)
j =

∫ ∞

−∞
eit log(1−1/n+(1/n)eµnz−µ2

n/2)φ(z) dz (2.9)

= eit log(1−1/n) ·
∫ ∞

−∞
eit log(1+ 1

n−1 eµnz−µ2
n/2)φ(z) dz; (2.10)

rewrite:∫ ∞

−∞
eit log(1+ 1

n−1 eµnz−µ2
n/2)φ(z) dz (2.11)

= 1 +
it

n
+

∫ ∞

−∞

[
eit log(1+(1/n)eµnz−µ2

n/2) − 1 − it · (1/n)eµnz−µ2
n/2

]
φ(z) dz

+ O
(
1/n2

)
; (2.12)

the key of the analysis is using the substitution ez′
= (1/n)eµnz−µ2

n/2:∫ ∞

−∞

[
eit log(1+(1/n)eµnz−µ2

n/2) − 1 − it · (1/n)eµnz−µ2
n/2

]
φ(z) dz (2.13)

=
1
µn

e−
(1+s)2

8s2 µ2
n

∫ ∞

−∞
e−

1+s
2s z

[
eit log(1+ez) − 1 − itez

]
φ

(
z

µn

)
dz; (2.14)

combining (2.9)–(2.14) with Lemma 2.1 gives (2.7).
The proof of (2.8) is similar. Under Hn,m∗

1 ,

EeitLR(k)
j = (1 − 1/n) ·

∫ ∞

−∞
eit log(1−1/n+(1/n)eµnz−µ2

n/2)φ(z) dz (2.15)

+ (1/n) ·
∫ ∞

−∞
eit log(1−1/n+(1/n)eµnz−µ2

n/2)φ(z − µn) dz, (2.16)
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the first term can be analyzed similarly as in the case under H0, as for the second
term, similarly we have:∫ ∞

−∞
eit log(1−1/n+(1/n)eµnz−µ2

n )φ(z − µn) dz (2.17)

= 1 +
∫ ∞

−∞

[
eit log(1+(1/n)eµnz+µ2

n/2) − 1
]
φ(z) dz + O(1/n) (2.18)

= 1 +
1
µn

e−
(1−s)2

8s2 µ2
n

∫ ∞

−∞

[
eit log(1+ez) − 1

]
e−

1−s
2s zφ

(
z

µn

)
dz + O(1/n), (2.19)

combining (2.15)–(2.19) with (2.9) and Lemma 2.1 gives (2.10).
This concludes the proof of Theorem 2.1.

2.2. Proof of Lemma 2.1

As we mentioned before, an interesting phenomenon for the detection of the multiple-
looks model is that, the detection boundary is partly linear and partly curved; the
whole curve only has up to the first order continuous derivatives. As the intuition
for why this phenomenon happens had been developed in [11], here we try to un-
derstand the phenomenon from the angle of analysis.

In fact, take (2.5) for example, as µn → ∞, the integration∫ ∞

−∞

[
eit log(1+ez) − 1 − itez

]
e−

1+s
2s zφ

(
z

µn

)
dz (2.20)

behaves totally different for the cases 0 < s < 1/3 and 1/3 < s < 1. The reason is
that, by dropping the term φ(z/µn), the integrand in (2.20) is absolute integrable
if and only if (1 + s)/(2s) < 2, or equivalently 1/3 < s < 1; to see this, notice that
the only possible place could make the integration to diverge is z = −∞, observe
that when z < 0 and |z| very large:

eit log(1+ez) − 1 − itez ∼ e2z, (2.21)

it immediately follows that the integration diverges if and only if (1 + s)/2s < 2,
or 1/3 < s < 1.

As a result, when 1/3 < s < 1, (2.5) follows easily by Dominated Convergence
Theorem. In fact, recall the definition of ψ0

s and by noticing the point-wise conver-
gence of φ(z/µn) to 1/

√
2π, we have:∫ ∞

−∞
e−

1+s
2s z

[
eit log(1+ez) − 1 − itez

]
φ

(
z

µn

)
=

1√
2π

ψ0
s(t) + o(1).

However, when 0 < s ≤ 1/3, the integration goes to to ∞ as µn → ∞, so we need
to analyze differently. In fact, using (2.21), we have:∫ ∞

−∞

[
eit log(1+ez) − 1 − itez

]
e−

1+s
2s zφ

(
z

µn

)
dz

=
∫ 0

−∞

[
eit log(1+ez) − 1 − itez

]
e−

1+s
2s zφ

(
z

µn

)
dz + O(1)

= −1
2
(
it + t2

)[ ∫ 0

−∞
e2z · e−

1+s
2s z · φ

(
z

µn

)
dz

](
1 + o(1)

)
+ O(1)

= −1
2
(
it + t2

)
µne

(1−3s)2

8s2 µ2
n
(
1 + o(1)

)
.

The remaining part of the proof is similar, so we skip it. See [26, Chapter 2] for a
more detailed proof.
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3. Proof of Theorem 1.1

As we mentioned in Section 2, the multiple-looks model (1.4)–(1.5) can be converted
into the Gaussian mixture model (2.2)–(2.3) by random shuffling, we thus expect
the difference between the log-likelihood ratios LRn,m∗ and LRn,m∗ to be negligible,
or

LRn,m∗ = LRn,m∗ + op(1). (3.1)

As a result, the limiting behavior of LRn,m∗ would be asymptotically the same as
that of LRn,m∗ in Theorem 2.1.

Motivated by these, our approach for proving Theorem 1.1 is to, first validate
(3.1), and then, combine (3.1) with Theorem 2.1.

We now show the cases under H0 and under Hn,m∗

1 separately.
First, under H0. For z

(k)
j

iid∼ N(0, 1), 1 ≤ j ≤ n, 1 ≤ k ≤ m, let:

v(k) = v(k)
(
µn, n; z(k)

1 , z
(k)
2 , . . . , z(k)

n

)
� 1

n

[
n∑

j=1

eµn·z(k)
j

−µ2
n/2

]
, (3.2)

u(k) = u(k)
(
µn, n; z(k)

1 , z
(k)
2 , . . . , z(k)

n

)
�

(
n∏

j=1

[
1 − 1

n
+

1
n

eµn·z(k)
j

−µ2
n/2

])
− v(k),

(3.3)
then under H0, by symmetry:

LRn,m∗ =
m∗∑
k=1

log
(
v(k)

)
, LRn,m∗ =

m∗∑
k=1

log
(
u(k) + v(k)

)
;

intuitively, since for a sequence of small numbers aj ,
∏n

j=1(1+aj) ≈ 1+
∑n

1 aj , so:

u(k) + v(k) ≈ 1 +
n∑

j=1

[
− 1

n
+

1
n

eµnz
(k)
j

−µ2
n/2

]
= v(k);

we thus expect that the difference between LRn,m∗ and LRn,m∗ is indeed negligible.
Let

w(k) � u(k)

v(k)
, (3.4)

then:

LRn,m∗ − LRn,m∗ =
m∗∑
k=1

log
(
1 + w(k)

)
,

the following Lemma validates the heurism, or (3.1), under the null hypothesis H0:

Lemma 3.1. If z
(k)
j

i.i.d∼ N(0, 1), 1 ≤ j ≤ n, 1 ≤ k ≤ m, then for µn =
√

2s log(n)
and

m∗ =




n(1−2s), 0 < s ≤ 1
3
,

√
2π · µn · n

(1−s)2

4s ,
1
3

< s < 1,

we have:
m∗∑
k=1

log
(
1 + w(k)

)
→p 0.
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Combining Lemma 3.1 with Theorem 2.1 gives Theorem 1.1 under H0.
Now under Hn,m∗

1 , X
(k)
j = µδj0(k)(j) + z

(k)
j , where j0(k) uniformly distributed

over {1, 2, . . . , n}; so by symmetry:

LRn,m∗ =D

m∗∑
k=1

[
log

(
1
n

[
eµnz

(j)
1 +µ2

n/2 +
n∑

j=2

eµnz
(k)
j

−µ2
n/2

])]
,

and we can rewrite:

LRn,m∗ =

[
m∗∑
k=1

log

(
1
n

n∑
j=2

eµnz
(k)
j

−µ2
n/2

)]

+

[
m∗∑
k=1

log

(
1 +

1

[
∑n

j=2 eµnz
(k)
j

−µ2
n/2]/n

· 1
n

eµnz
(k)
1 +µ2

n/2

)]
. (3.5)

By the study for the case under H0, the first term on the right hand side above
weakly converges to:

m∗∑
k=1

log

(
1
n

n∑
j=2

eµnz
(k)
j −µ2

n/2

)
w=⇒




N(−1/2, 1), 0 < s < 1/3,

N(−1/4, 1/2), s = 1/3,

ν0
s , 1/3 < s < 1,

(3.6)

with ν0
s defined in Theorem 1.1, so all we need to study is the second term. The

following Lemma is proved in [26, Chapter 4].

Lemma 3.2. Fixed 0 < a < 1
2 , with µn = µn,s =

√
2s logn, then for z

(k)
j

iid∼
N(0, 1), 1 ≤ j ≤ n,

P
{
v(k) ≤ a

}
≤ 2e−[

(2a−1)2

8 µn·n(1−s)(1+o(1))], n → ∞, for any k ≥ 1.

With some elementary analysis, Lemma 3.2 implies:

1
v(k)

→ 1, in probability and in Lp, ∀p > 0. (3.7)

Now back to the second term on the right hand side of (3.5), or:[
m∗∑
k=1

log

(
1 +

1

[
∑n

j=2 eµnz
(k)
j

−µ2
n/2]/n

· 1
n

eµnz
(k)
1 +µ2

n/2

)]
;

inspired by(3.7), we expect that there will be only a negligible change if we replace

the messy term [(1/n)
∑n

j=2 eµnz
(k)
j

−µ2
n/2] by 1 for all k; this turns out to be true,

and we have the following lemma:

Lemma 3.3. For µn = µn,s and m∗ = m∗(n, s) defined in Theorem 1.1, if z
(k)
j

i.i.d∼
N(0, 1), 1 ≤ j ≤ n, 1 ≤ k ≤ m∗, then:

m∗∑
k=1

[
log

(
1 +

1
n

eµn·z(k)
1 +µ2

n/2

)
− log

(
1 +

1
1
n

∑n
j=2 eµn·z(k)

j
−µ2

n/2
· 1
n

eµn·z(k)
1 +µ2

n/2

)]

→p 0.
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Applying Lemma 3.3 directly to (3.5) gives:

LRn,m∗ =D

[
m∗∑
k=1

log

(
1
n

n∑
j=2

eµnz
(k)
j

−µ2
n/2

)]
+

[
m∗∑
k=1

log
(

1+
1
n

eµnz
(k)
1 +µ2

n/2

)]
+op(1).

(3.8)
But for the second term in (3.8), observe that for any t, by substitution ez′

=
eµnz

(1)
1 +µ2

n/2,

E
[
eit log(1+ 1

n e
µnz

(1)
1

+µ2
n/2

)
]

= 1+
1
µn

e−
(1−s)2

8s2 µ2
n ·

∫ [
eit log(1+ez)−1

]
e−

1−s
2s zφ(z/µn) dz,

by independency:

E
[
eit·

∑m∗

k=1
log(1+ 1

n e
µnz

(k)
1 +µ2

n/2
)] =

(
E

[
eit log(1+ 1

n e
µnz

(1)
1

+µ2
n/2

)
])m∗

,

we then derive:

m∗∑
k=1

log
(

1 +
1
n

eµn·z(k)
1 +µ2

n/2

)
w=⇒




1, 0 < s < 1/3,

1/2, s = 1/3,

ν∗
s , 1/3 < s < 1,

(3.9)

where ν∗
s is the distribution with characteristic function e[ψ1

s(t)−ψ0
s(t)]; inserting (3.6)

and (3.9) into (3.8) gives the proof of Theorem 1.1 under Hn,m∗

1 .

3.1. Proof of Lemma 3.1

A detailed proof of Lemma 3.1 is available in [26, Chapter 4]. In this section, we
will only illustrate the main ideas for the proof, while skipping the technical details.
Direct calculations show that:

1 + w(k) ≥ (1 − 1/n)n ·
∏n

j=1[1 + (1/n)eµn·z(k)
j

−µ2
n/2]

1
n

∑n
j=1[e

µn·z(k)
j

−µ2
n/2]

≥ (1 − 1/n)n,

so when n ≥ 2, there is a constant C > 0, such that:∣∣ log(1 + w(k)) − w(k)
∣∣ ≤ C ·

(
w(k)

)2
,

and to show Lemma 3.1, it is sufficient to show:

m∗∑
k=1

w(k) →p 0,

m∗∑
k=1

[
w(k)

]2 →p 0. (3.10)

Split:

w(k) = u(k) + u(k) ·
(

1
v(k)

− 1
)
· 1{v(k)≥1/3} + u(k) ·

(
1

v(k)
− 1

)
· 1{v(k)<1/3},

and [
w(k)

]2 =
[
w(k)

]2 · 1{v(k)<1/3} +
[
w(k)

]2 · 1{v(k)≥1/3};

using Lemma 3.2, the remaining part of the proof is careful analysis, see [26, Chap-
ter 4] for details.
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3.2. Proof of Lemma 3.3

It is sufficient to show:

m∗∑
k=1

[
log

(
1 +

1
n

eµn·z(k)+µ2
n/2

)
− log

(
1 +

1
v(k)

· 1
n

eµn·z(k)+µ2
n/2

)]
→p 0,

where z(k) iid∼ N(0, 1) and are independent of {v(k)}m∗

k=1. But since for any x, y ≥ 0,
log(1 + x) − log(1 + y) = (x − y)/(1 + x) + r(x, y), where the reminder term
|r(x, y)| ≤ C(x − y)2 for some constant C, so all we need to show is as n → ∞:

m∗∑
k=1

[
(1/n)eµn·z(k)+µ2

n/2

1 + (1/n)eµn·z(k)+µ2
n/2

(
1

v(k)
− 1

)]
→p 0, (3.11)

and
m∗∑
k=1

[(
1

v(k)
− 1

)
· (1/n)eµn·z(k)+µ2

n/2

]2

→p 0; (3.12)

or equivalently, for any fixed t:

Ee
it[

(1/n)eµn·z(k)+µ2
n/2

1+(1/n)eµn·z(k)+µ2
n/2

( 1
v(k) −1)]

= 1 + o

(
1

m∗

)
,

(3.13)

Ee
it[ 1

n eµn·z(k)+
µ2

n
2 ·( 1

v(k) −1)]2 = 1 + o

(
1

m∗

)
.

Similar to the proof of Theorem 2.1, using substitution ez′
= 1

neµn·z+µ2
n/2, we then

rewrite:

E

(
e

it[
(1/n)eµn·z(k)+µ2

n/2

1+ 1
n

e
µn·z(k)+µ2

n/2
( 1

v(k) −1)]

− 1

)

=
1
µn

µ
− (1−s)2

8s2 µ2
n

n

∫ ∞

−∞
E

[
eit(v(k)−1) ez

1+ez − 1
]
e−

1−s
2s z · φ

(
z

µn

)
dz, (3.14)

and

E

(
e

it[( 1
v(k) −1)·(1/n)eµn·z(k)+µ2

n/2]2 − 1
)

=
1
µn

µ
− (1−s)2

8s2 µ2
n

n

∫ ∞

−∞
E

[
eit[(v(k)−1)ez]2 − 1

]
e−

1−s
2s z · φ

(
z

µn

)
dz, (3.15)

where on the right hand side, the expectation inside the integral sign is with respect
to the law of v(k). Again by Lemma 3.2, the remaining part of the proof is careful
analysis. See [26, Chapter 4] for the technical details. This concludes the proof of
Lemma 3.3.

4. Proof of Theorem 1.2

We prove Theorem 1.2 for the cases r > ρ∗(s) and 0 < r < ρ∗(s) separately.
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For the case r > ρ∗(s), by the definition of m∗ and m, for (s, r) in this range,
m/m∗ → ∞ as n → ∞. First we consider the case under H0, let:

an =




√
m/m∗, 0 < s < 1/3,√
m/(2m∗), s = 1/3,√
m/m∗ ·

√
−(ψ0

s)′′(0), 1/3 < s < 1,

bn = −




m/(2m∗), 0 < s < 1/3,

m/(4m∗), s = 1/3,

(m/m∗)(−ψ0
s)′(0), 1/3 < s < 1;

(4.1)

roughly say, bn is the mean value of LRn,m, and an is the standard deviation
of LRn,m. By Theorem 1.1 and elementary analysis, it follows that [LRn,m −
bn]/an

w=⇒ N(0, 1), and thus LRn,m/
√

m/m∗ →p −∞ under H0. Similar argu-
ment shows LRn,m/

√
m/m∗ →p ∞ under H

(n,m)
1 , this concludes the proof of

Theorem 1.2 in this case.
We now consider the case r > ρ∗(s). First, we briefly explain why the proof is

non-trivial. Recall that, LRn,m converges to 0 in probability, under the null as well
as under the alternative—which is a direct result of the studies of Sections 2–3;
however, this claim alone is not sufficient for proving Theorem 1.2 in this case: the
Kolmogorov–Smirnov distance between two random sequences could tend to 1 even
when both of them tend to 0 in probability, the culprit is the discontinuity of the
cdf function of ν0 (here ν0 denote the point mass with all mass at 0).

However, recall that given a cdf F which is a continuous function, then for any
sequence of cdf’s such that Fn

w=⇒ F , we have:

lim
n→∞

‖Fn − F‖KS = 0, (4.2)

see, for example, [12]. Motivated by this, we need a stronger claim of the limiting
behavior of LRn,m. Namely, for any fixed (s, r) in this range, we hope to find a
sequence of numbers {�n = �n,s,r}∞n=1 such that:

�n · LRn,m
w=⇒ F, (4.3)

both under the H0 and H
(n,m)
1 , where F is some continuous cdf function.

This turns out to be true. Consider the following sub-regions of the undetectable
region {(s, r) : 0 < s < 1, 0 < r < ρ∗(s)}:

Ωa. 0 < s ≤ 1/4 and 0 < r < ρ∗(s), or 1/4 < s < 1/3 and 4s − 1 < r < ρ∗(s).

Ωb. 1/4 < s < 1/3 and r = 4s− 1.

Ωc. 1/3 < s < 1 and 0 < r < ρ∗(s), or 1/4 < s ≤ 1/3 and r < 4s − 1,

the following theorem is proved in the Appendix:

Theorem 4.1. For µn = µn,s =
√

2s logn, and

m =

{
nr, (s, r) ∈ Ωa ∪ Ωb,√

2π · µn · nr, (s, r) ∈ Ωc,
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let �n = �n,τ = nτ/2, where

τ = τ(s, r) =

{
1 − 2s − r, (s, r) ∈ Ωa ∪ Ωb,

2(1 + s − 2
√

s(1 + r)), (s, r) ∈ Ωc,

then under H0 as well under H
(n,m)
1 ,

�n · LRn,m
w=⇒




N(0, 1), (s, r) ∈ Ωa,

N(0, 1/2), (s, r) ∈ Ωb,

1√
2π

ν̃0
s,τ , (s, r) ∈ Ωc,

where ν̃0
s,τ is the distribution with characteristic function eψ̃0

s,τ , and ψ̃0
s,τ (t) =∫ ∞

−∞(eitez − 1 − itez)e−
1+s−τ/2

2s zdz.

Adapting to our notations, Burnashev and Begmatov [8] has studied the limiting
behavior of LRn,m, with m = 1.

We remark here that in Theorem 4.1, the log term in the calibration of m is
chosen for convenience. A similar result will be true if we take m = nr without any
log term, and at the same time adding some log term to �n.

We now finish the proof of Theorem 1.2 in this case. To do so, we first check
that ν̃0

s,τ indeed has a bounded continuous density function. In fact, by substitution
x = tez, we can rewrite:

ψ̃0
s,τ (t) = −|t|(1+s−τ/2)/(2s) · e±iπ·ξ/2, (4.4)

where in ± the upper sign prevails for t > 0, and ξ is a complex number determined
by:

eiπ·ξ/2 = −
∫ [

eix − 1 − ix
]
· |x|−(1+3s−τ/2)/(2s) dx;

with τ defined above and (s, r) ∈ Ωc, by elementary analysis, 1 < (1 + s −
τ/2)/(2s) < 2, and that ν̃0

s,τ has a bounded density function.
Now let Fs,r be the cdf of N(0, 1), N(0, 1/2), and ν̃0

s,τ according to (s, r) ∈ Ωa,
Ωb, and Ωc, notice that Fs,r is a continuous function; now for any fixed (r, s) in the
undetectable region, combining (4.3) with Theorem 4.1 gives:

lim
n→∞

∥∥F
(n,m)
0 − F

(n,m)
1

∥∥
KS

≤ lim
n→∞

[∥∥F
(n,m)
0 − Fs,r

∥∥
KS

+
∥∥F

(n,m)
1 − Fs,r

∥∥
KS

]
= 0;

(4.5)
it then follows that, for any sequence of thresholds {tn}∞n=1, the thresholding pro-
cedure that reject H0 when LRn,m ≥ tn has an asymptotically equal to 1 of sum
of Type I and Type II errors, uniformly for all sequences {tn}∞n=1:

lim
n→∞

[
PH0{LRn,m ≥ tn} + PHn,m

1
{LRn,m < tn}

]
= 1.

Last, since for fixed r,s, and n, among all tests, the Neyman–Pearson likelihood
ratio test with a specific threshold has the smallest sum of Type I and Type II
errors, see, for example, [28], it then follows that the sum of Type I and Type II
errors for any test tends 1. This concludes the proof of Theorem 1.2 in this case.
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Remark. We now give a short remark about the distribution of ν̃0
s,τ . First, it was

pointed out in [15] that, for a characteristic function eψ with ψ in the form as
that in (4.4), its corresponding distribution has a finite pth moment if and only if
p < (1 + s − τ)/(2s); thus ν̃0

s,τ has a finite first moment, but not a finite second or
higher moment. Second, it would be interesting to study whether (or when) ν̃0

s,τ is
a stable law; ν̃0

s,τ is a stable law if and only if that in (4.4), |ξ| ≤ 2−(1+s−τ)/(2s),
see, for example, [15]; we skip further discussion.

5. Proof of Theorem 1.4

To prove Theorem 1.2, we note that it is sufficient to show

lim
n→∞

P
H

(n,m)
1

{
HC∗

N ≤
√

4 log log N
}

= 0. (5.1)

The key for proving (5.1) is to argue that the distribution of HC∗
N under H

(n,m)
1 will

keep the unchanged if we replace the original sampling procedure by the following
simple procedure: draw independently a total of N samples, with the first m from
N(µn, 1) and the remaining N−m from N(0, 1); we refer the latter as the simplified
sampling.

In fact, if we use HC∗
N to denote the Higher Criticism statistic based such

samples obtained by simplified sampling. Compare HC∗
N with HC∗

N , for any set of
integers 1 ≤ j1, j2, . . . , jm ≤ n, let E{j1,j2,...,jm} be the event:

E{j1,j2,...,jm} =
{
j0(1) = j1, j0(2) = j2, . . . , j0(m) = jm

}
;

by symmetry, conditional on E{j1,j2,...,jm}, HCN∗ equals to HC∗
N in distribution:[

HC∗
N |E{j1,j2,...,jm}

]
=D HC∗

N ,

we thus conclude:
HC∗

N =D HC∗
N .

By the above analysis, it is clear that to show (5.1), it is sufficient to show:

lim
n→∞

P
{
HC∗

N ≤
√

4 log log N
}

= 0; (5.2)

where the probability is evaluated for samples obtained by the simplified sampling.
The proof of (5.2) is similar to the proof of Theorem 1.2 in [11], and we skip the
technical detail.

6. Extension

In this section, we extend our studies to certain non-Gaussian settings, or the
Generalized-Gaussian settings. The Generalized Gaussian (Subbotin) distribution
GNγ(µ) has density function φγ(x − µ) where

φγ(x) =
1

Cγ
exp

(
−|x|γ

γ

)
, Cγ = 2Γ

(
1
γ

)
γ

1
γ −1. (6.1)

This class of distributions was introduced by M. T. Subbotin 1923 ([31]) and has
been discussed in [27, p. 195]. The Gaussian is one member of this family: namely,
the one with γ = 2. The case γ = 1 corresponds to the Double Exponential
(Laplace) distribution, which is a well-understood and widely-used distribution.
The case γ < 1 is of interest in image analysis of natural scenes, where it has
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been found that wavelet coefficients at a single scale can be modelled as following
a Subbotin distribution with γ ≈ 0.7. This suggests that various problems of image
detection, such as in watermarking and steganography, could reasonably use the
model above. A direct extension of the Gaussian mixture model (2.2)–(2.3) is the
following:

H0 : X̄
(k)
j

i.i.d∼ GNγ(0), 1 ≤ j ≤ n, 1 ≤ k ≤ m (6.2)

H(n,m)
1 : X̄

(k)
j

i.i.d∼ (1 − 1/n)GNγ(0) + (1/n)GNγ(µ),
1 ≤ j ≤ n, 1 ≤ k ≤ m, (6.3)

where we choose the calibrations in a similar way to that in the Gaussian setting:

µ = µn,γ,s =
(
γs log(n)

)1/γ
, m = nr, 0 < s < 1, 0 < r < 1. (6.4)

Similar to the Gaussian case, for r and s in this range, this is again a very sub-
tle problem. Recall that we mentioned in Section 1, the Gaussian Mixture model
provides an important bridge for studying the (Gaussian) multiple-looks model,
and which is also easier to study. For this reason, in this section, we will focus
on the extension of Gaussian mixture model only. It would be interesting to work
on a direct extension of Model (1.4)–(1.5), or non-Gaussian multiple-looks model;
heuristically, based on Theorems 6.1 and 6.2 below, parallel results for Theorems 1.2
and 1.4 should still hold if we replace the Gaussian noise setting by the Generalized-
Gaussian noise setting.

In this section, we will drop the subscript γ whenever there is no confusion.

6.1. Log-likelihood ratio and limit law

In this section, parallely to the Gaussian case, we discuss the limit law of the
log-likelihood ratio statistic. Let g(z|µ) = g(z|µ, γ) ≡ e(|z|γ−|z−µ|γ)/γ , then the log-
likelihood ratio of testing Model (6.2)–(6.3) is LRn,m = LRn,m,s,γ =∑m

k=1

∑n
j=1 LR

(k)
j , where

LR(k)
j = LR(k)

j,s,γ = log
(
1 − 1/n + (1/n)g

(
X̄

(k)
j |µ, γ

))
; (6.5)

We now discuss the cases γ > 1 and 0 < γ ≤ 1 separately.
First for the case γ > 1. This case includes the Gaussian (γ = 2) as a special

case. Adapting to the notations in [26, Chapter 3], let

s0(γ) =
(
2

1
γ−1 − 1

)γ
/
(
2

γ
γ−1 − 1

)
,

a1(γ) =
[
1 − (1/2)1/(γ−1)

]1−γ
,

b1(γ) =
[
1 − 2

1
γ−1

]
/
[
(1 − 2

1
1−γ

] 1
γ−2 ,

and xs = xs(γ) be the unique solution of the equation

xγ − (x − 1)γ =
1
s
, x > 1;

notice here γ = 2 corresponds to the Gaussian case: a1(2) = 1, b1(2) = −1, s0(2) =
1/3, and xs(2) = (1 + s)/(2s), which are the same as we derived before. The main
result for the case γ > 1 is the following theorem:
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Theorem 6.1. For parameter 0 < s < 1, let µn = µn,s,γ ≡ (γ · s · log n)1/γ ,

m∗ = m∗(n, s, γ)

≡
{

(1/Cγ) ·
[
2π/

(
(1 − γ)b1(γ)

)]1/2 · µ1−γ/2
n · n1−a1(γ)·s, 0 ≤ s ≤ s0(γ),

Cγ · µγ−1
n · ns·(xs(γ))γ

, s0(γ) < s < 1,

and LRn,m∗ ≡ LRn,m∗,s,γ , then as n → ∞:

1. When 0 < s < s0(γ),

LRn,m∗
w=⇒ N

(
−1

2
, 1

)
, under H0,

LRn,m∗
w=⇒ N

(
1
2
, 1

)
, under Hn,m∗

1 .

2. When s = s0(γ),

LRn,m∗
w=⇒ N(−1/4, 1/2), under H0,

LRn,m∗
w=⇒ N(1/4, 1/2), under Hn,m∗

1 .

3. When s0(γ) < s < 1,

LRn,m∗
w=⇒ ν0

s,γ , under H0, LRn,m∗
w=⇒ ν1

s,γ , under H(n,m∗)
1 .

where ν0
s,γ and ν1

s,γ are distributions with characteristic functions eψ0
s,γ and

eψ1
s,γ respectively, and with ws,γ = xs(γ)/[ 1

s·(xs(γ)−1)γ−1 − 1],

ψ0
s,γ(t) =

∫ ∞

−∞

[
eit log(1+ez) − 1 − itez

]
e−[1+ws,γ ]·z dz, (6.6)

ψ1
s,γ(t) = ψ0

s,γ(t) +
∫ ∞

−∞

[
eit log(1+ez) − 1

]
e−ws,γ ·z dz. (6.7)

In Section 6.3, we will discuss several issues about the laws ν0
s,γ and ν1

s,γ ; it was
validated in [26, Chapter 2] that both ν0

s,γ and ν1
s,γ are in fact infinitely divisible.

We now discuss the case 0 < γ ≤ 1, this case include Laplace (γ = 1) as a
special case; the main result for this case is the following theorem:

Theorem 6.2. For 0 < γ ≤ 1 and 0 < s < 1, let

µn = µn,s,γ ≡ (γs log n)
1
γ , m∗ = m∗(n, s, γ) ≡

{
21/γ · n1−s, γ < 1,

(3/2) · n1−s, γ = 1,

(6.8)
and LRn,m∗ ≡ LRn,m∗,s,γ , then as n → ∞:

LRn,m∗
w=⇒ N

(
− 1

2
, 1

)
, under H0,

LRn,m∗
w=⇒ N

(
1
2
, 1

)
, under Hn,m∗

1 .

Theorems 6.1 and 6.2 are proved in [26, Chapter 3]. As γ = 2 corresponds to the
Gaussian case, the study in Section 2 is a special case of Theorem 6.1; however, in
comparison, technically we need much more subtle analysis to prove Theorem 6.1
than Theorem 2.1.

In this paper, we skip the proof for Theorem 6.1 and Theorem 6.2.
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6.2. Detection boundary

Similar to the Gaussian case, Theorem 6.1 implies that there is a threshold effect
for the detection problem of (6.2)–(6.3). Dropping some lower order term when
necessary, m∗ would be reduced into a clean form: m∗ = nρ∗

γ (s), where

ρ∗γ(s) = 1 − s, 0 < γ ≤ 1,

ρ∗γ(s) =

{
1 − a1(γ) · s, 0 < s ≤ s0(γ),
s · xγ

s (γ), s0(γ) < s < 1,
γ > 1.

Similarly, in the s-r plane, the curve r = ρ∗γ(s) separates the square {(s, r) : 0 <
s < 1, 0 < r < 1} into two regions: a detectable region above the curve, and an
undetectable region below the curve; we called r = ρ∗γ(s) the detection boundary.

Theorem 6.3. For γ > 0, let µn = µn,s,γ = (γ · s log(n))1/γ , m = nr, and
LRn,m ≡ LRn,m,s,γ.

1. When r > ρ∗γ(s), consider the likelihood ratio test (LRT) that rejects H0 when
LRn,m > 0, then the sum of Type I and Type II errors tends to 0:

PH0{Reject H0} + PH(n,m)
1

{Accept H0} → 0, n → ∞.

2. When r < ρ∗γ(s),

lim
n→∞

∥∥F
(n,m)
0 − F

(n,m)
1

∥∥
KS

= 0,

where F
(n,m)
0 and F

(n,m)
1 are the cdf’s of LRn,m under H0 and H(n,m)

1 respec-
tively. As a result, the sum of Type I and Type II errors for any test tends
to 1:

PH0{Reject H0} + PH(n,m)
1

{Accept H0} → 1, n → ∞.

The proof of Theorem 6.3 is similar to that of Theorem 1.2, and we skip it.
In [11], we have studied in detail the performance of Higher Criticism statistic

for Model (6.2)–(6.3), and showed the Higher Criticism is also optimal adaptive
for Model (6.2)–(6.3) with any fixed γ > 0. It is interesting to notice that for
any fixed γ > 1, the detection boundary is a partly linear (0 < s < s0(γ)) and
partly curved (s0(γ) < s < 1). Again, this implies that the detection problem is
essentially different for those parameters (s, r) near the linear part and those near
the curved part. Asymptotically, when (s, r) is close to the curved part, statistics
based on those a few largest observations would be able to effectively detect, while
when (s, r) is close to the linear part, statistics based on a few largest observations
will completely fail, and only the newly proposed statistic Higher Criticism, or the
Berk–Jones statistic, which is asymptotically equivalent to the Higher Criticism in
some sense [5, 11], is still able to efficiently detect. See [11] for more discussion.

Moreover, notice that when γ > 1 approaches 1, the curved part of the detection
boundary continues to shrink and eventually vanishes, leaves only the linear part. So
when 0 < γ ≤ 1, statistics based on the largest a few observations would completely
fail for all 0 < s < 1. However, Higher Criticism and Berk-Jones statistics would
still be efficient.

In Figure 5, we plot r = ρ∗γ(s) for γ = 3, 2, 1.5, and γ ≤ 1. Notice that γ = 2
corresponds to the Gaussian case and ρ∗2 ≡ ρ∗.
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Figure 2: Illustration of ws,γ as a function of s for fixed γ. From left to right, three
curves correspond to ws,γ over intervals [s0(γ), 1] for γ = 3, 2 and 1.5.

6.3. Remarks on the infinitely divisible laws

In this section, we addressed several issues about the infinitely divisible laws ν0
s,γ

and ν1
s,γ .

The distribution of ν0
s,γ or ν1

s,γ is uniquely determined by the value of ws,γ . By
elementary analysis, for fixed γ, when s ranges between s0(γ) and 1, ws,γ strictly
decreases from 1 to 0. In Figure 2, we graph ws,γ as a function of s with γ = 1.5, 2, 3.
Notice that γ = 2 corresponds to the Gaussian case, and

ws,2 = (1 − s)/(2s).

As 0 < ws,γ < 1, it is easy to check that eψ0
s,γ and eψ1

s,γ are absolute integrable;
thus by the inversion formula ([12] for example), both ν0

s,γ and ν1
s,γ have a bounded

continuous density function. In Figure 3, we graph the density functions for ν0
s,γ or

ν1
s,γ , with ws,γ = 0.4, 0.5, 0.6 separately; recall that the density function is uniquely

determined by ws,γ . Figure 3 suggests that, heuristically, the smaller the ws,γ , the
better separation between ν0

s,γ and ν1
s,γ , it would be interesting to validate this,

but we skip further discussion. Notice here that the density functions correspond
to ws,γ = 0.5 are the same as those in Figure 1, where ws,γ = 0.5 since we take
s = 1/2, γ = 2.

Last, we claim that ν0
s,γ has a finite first moment as well as a finite second

moment, and so does ν1
s,γ . In fact, elementary analysis shows that the second deriv-

atives of both eψ0
s,γ and eψ1

s,γ exist, so the claim follows directly from the well-known
theorem, that the existence of the second derivatives of characteristic functions im-
plies the existence of the second moments, see ([12, p. 104]). Moreover, the first
moment of ν0

s,γ and ν1
s,γ are:∫ [

log
(
1+ ez

)
− ez

]
e−(1+ws,γ)z dz,

∫ [(
1+ ez

)
· log

(
1+ ez

)
− ez

]
e−(1+ws,γ)z dz,

and are negative and positive respectively; the second moment of them are:∫ [
log2

(
1 + ez

)]
e−(1+ws,γ)z dz,

∫ [(
1 + ez

)
· log2

(
1 + ez

)]
e−(1+ws,γ)z dz.

It would be interesting to study that, whether higher order moments exist for
ν0

s,γ or ν1
s,γ . Here we skip further discussion.
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Figure 3: Density functions for ν0
γ,s and ν1

s,γ . The distributions of ν0
s,γ and ν1

s,γ

only depends on ws,γ . Left: from top to bottom, density functions for ν0
s,γ with

ws,γ = 0.4, 0.5, 0.6. Right: from bottom to top, density functions for ν1
s,γ with

ws,γ = 0.4, 0.5, 0.6.

7. Discussions

7.1. Re-parametrization and detection boundary

In Section 6, we calibrated the amplitude of the signal µ and the number of frames
m through parameters s and r by:

µn,s,γ = (γ · s · log n)1/γ , m = nr, 0 < s < 1, 0 < r < 1.

This particular calibration is very convenient for discussing the limit law of the log-
likelihood ratio: in order to make the log-likelihood ratio converge to non-degenerate
distribution, the critical value of m = m∗ may contain a log term, namely in the
case s > s0(γ). When we attempt to develop a different (but equivalent) calibration,
this log term may complicate the notation system quite a bit. However, the above
calibration is not convenient for the discussion of the detection boundary. Recall
that the detection boundary for the Generalized-Gaussian Mixture model (6.2)–
(6.2) in the s–r plane is r = ρ∗γ(s), where:

ρ∗γ(s) = 1 − s, 0 < γ ≤ 1,

ρ∗γ(s) =

{
1 − a1(γ) · s, 0 < s ≤ s0(γ),
s · xγ

s (γ), s0(γ) < s < 1,
γ > 1;

unfortunately, here xs(γ) is the solution of xγ − xγ−1 = 1/s, which doesn’t have
an explicit formula. In addition to providing a completely explicit formula for the
detection boundary, the following calibration we will introduce might also be more
familiar. As before, let N = n·m be the total number of observations, and εN denote
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Figure 4: Left Panel: detection regions for the Model (1.4)–(1.5) as well as Gaussian
mixture model (2.2)–(2.3), the detection boundary separates the detectable region
(above) from the undetectable region (bottom). Right panel: detection regions in
the β − α plane by the re-parametrization in Section 7.1. The detection boundary
separates the detectable region from the undetectable region. The mapping of the
re-parametrization maps the line segment {(s, r) : s = 1, 0 < r < 1} in the left
panel to the line segment {α = β : 1/2 < β < 1}, which separates the estimable
region (top) from the non-estimable region. When (α, β) falls into the estimable
region, it is possible not only to detect the presence of nonzero means, but also to
estimate those means.

the fraction of observations containing a signal, so m = N · εN , and n = 1/εN ; we
now introduce parameters (β, α) and let:

εN = N−β, µN = µN,α = (γα log n)1/γ ;

this re-parametrization is equivalent to a simple transformation:

β = 1/(1 + r), α = s/(1 + r), 1/2 < β < 1, 0 < α < 1; (7.1)

elementary algebra enables us to rewrite the detection boundary r = ρ∗γ(s) as:

α = ρ̄∗γ(β) ≡
{ [

21/(γ−1) − 1
]γ−1 · (β − 1/2), 1/2 < β ≤ 1 − 2−γ/(γ−1),(

1 − (1 − β)1/γ
)γ

, 1 − 2−γ/(γ−1) < β < 1.

Figure 4 can help to understand the re-parametrization. In fact, the above
transform is a one-to-one mapping, which maps the squared region in the s - r
plane {(s, r) : 0 < s < 1, 0 < r < 1} (left panel) to the region in the β-α
plane which formed by cutting the triangular region on the top off the square
{(β, α) : 0 < α < 1, 0 < β < 1} (right panel). Moreover, the new sub-regions
above/below the curve α = ρ̄∗γ(β) is the image of the detectable/undetectable re-
gions. See Figure 4 for more illustration. For Model (1.4)–(1.5), a problem closely
related to the detection problem we have discussed in this paper is the estimation
problem: with the same calibration, what is the critical value of m such that the
signals can be reliably estimated? Surprisingly, though multiple-looks is helpful for
the detection, it is not at all helpful for estimation; and in order that the signal be
estimable, we have to set the parameter s > 1, or µ ≥

√
2 logn; this range of s is

not showed in the left panel of Figure 4. But by (7.1), s > 1 ⇐⇒ α > β, so in other
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Figure 5: Left panel: Detection boundaries in the s-r plane for Model (6.2)–(6.3),
with γ ≤ 1, and γ = 1.5, 2, 3 from top to bottom. A small dot separates each curve
into two parts, the solid part of the curves are line segments. Right panel: The same
detection Boundaries in the β-α plane after the re-parametrization defined in (7.1).

words, in order that the signal be estimable, we need to pick (α, β) from the trian-
gular region on the top of the right panel in Figure 4; we call this triangular region
the estimable region. A similar problem was discussed in [1], with Model (2.2)–(2.3)
instead of Model (1.4)–(1.5).

7.2. Discussions on Model (1.4)–(1.5)

We now address several issues about the multiple-looks model, Model (1.4)–(1.5).
First, in astronomy, there is a Poisson version of the multiple-looks model. As it

is of interests to study directly the Poisson model rather than the Gaussian model
in this paper, the Gaussian model is more convenient to study, and reveals insights
about the Poisson model.

Second, in Model (1.4)–(1.5), we have assumed that each X
(k)
j has equal variance

either it contains a signal or not. It is interesting to consider a more general case,
in which we assume that, the pixels containing signals have equal variances σ2 >
1, while all other pixels have equal variance 1. Our study in this paper can be
generalized to this case easily, and the parameter σ should have some scaling effect
on the detection boundary r = ρ∗(s).

Last, it is interesting to study what happens if we relax some assumptions of
Model (1.4)–(1.5). For example, instead of assuming that exactly one pixel per frame
possibly contains a signal, we could consider a harder problem that, in each frame,
there is more than one pixel possibly containing a signal with equal mean, while
the position of such pixels are (independently or not) sampled from {1, 2, . . . , n},
but independently from frame to frame. Heuristically, if the number of those pixels
containing a signal are relatively small, we should be able to show that, this model
also can be converted approximately into a Gaussian mixture model by random
shuffling; notice that the study of the resulting Gaussian mixture model should be
similar to that in Section 2.

7.3. Relation to other work

There are two points of contact with earlier literature. The first one is with Bur-
nashev and Begmatov [8], who studied the limit law of log-likelihood ratio with a
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setting which can be translated into ours with large n but m = 1. They showed that,
for n iid sample zi ∼ N(0, 1), with approximate normalization, Avej{eµnzj−µ2

n/2}
weakly converges to a stable distribution as n → ∞. It is interesting to notice here
that, the non-Gaussian weak limits in Theorems 2.1 and 6.1 are infinitely divisible,
but not stable. It would be interesting to study whether the non-Gaussian limit in
Theorem 4.1 is stable or not.

The second point of contact is with the beautiful series of papers by Ingster
[19, 20], and [21]. Ingster studied extensively the Gaussian mixture model (2.2)–
(2.3), ranging from the limit law of the log-likelihood ratio as well as the minimax
estimation of signals lying in an �p

n ball. These papers revealed the same limiting be-
havior of log-likelihood ratio (and so the threshold effect) as discussed in Section 2.
Our approach in Section 2 was developed independently.

In this paper, our starting point was the multiple-looks model (1.4)–(1.5), which
is different than the model studied by Ingster. We found that we could treat the
multiple-looks model by proving that, after a re-expression of the problem, we
obtained convergence in variation norm to the Gaussian mixture model (2.2)–(2.3),
which we then analyzed. Hence, although we obtained eventually the same results
as Ingster, our application and motivation were different. We think the alternative
viewpoint adds something to the discussion. Moreover, the extension to the studies
on generalized-Gaussian mixtures in Section 6 has not been studied before, and
various effects of the parameter γ are interesting.

8. Appendix

In this section, we will prove Theorem 4.1. Consider the following three sub-regions
of the square {(s, τ} : 0 < s < 1, 0 < τ < 1}.
ωa: 0 < s ≤ 1/4 and 0 < τ < ρ∗(s), or 1/4 < s ≤ 1/3 and 0 < τ < 2 − 6s,

ωb: 1/4 < s < 1/3 and τ = 2 − 6s,

ωc: 1/3 < s < 1 and 0 < τ < 2(1 −
√

s)2, or 1/4 < s < 1/3 and τ > 2 − 6s;

recall LR(k)
j = log(1− (1/n) + (1/n) · eµnX̄

(k)
j

−µ2
n/2), we have the following lemma:

Lemma 8.1. If µn = µn,s =
√

2s logn, �n = �n,τ = nτ/2, and with τ = τ(s, r)
defined in Theorem 4.1, then when n → ∞,

E0

[
eit·�n·LR(k)

j
]

=




1 − n−(2−2s)+τ · (t2 + o(1))
2

, (s, τ) ∈ ωa,

1 − n−(2−2s)+τ (t2 + o(1))
4

, (s, τ) ∈ ωb,

1 +
1

µn ·
√

2π
· n[ 1−τ/4

4s τ− (1+s)2

4s ]+τ/4 ·
(
ψ̃0

s,τ (t) + o(1)
)
, (s, τ) ∈ ωc,

and

E1

[
eit·�n·LR(k)

j
]

=




1 − n−(1−2s)+τ/2 · (t2 + o(1))
2

, (s, τ) ∈ ωa,

1 − n−(1−2s)+τ/2 · (t2 + o(1))
4

, (s, τ) ∈ ωb,

1 +
1

µn ·
√

2π
n[ 1−τ/4

4s
τ− (1−s)2

4s
]−τ/4 ·

(
ψ̃∗

s,τ (t) + o(1)
)
, (s, τ) ∈ ωc,
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with E0 and E1 denote the expectation with respect to the law of z ∼ N(0, 1) and
z ∼ N(µn, 1) respectively; here ψ̃0

s,τ (t) is defined in Theorem 4.1, and ψ̃∗
s,τ (t) =

1√
2π

∫ ∞
−∞(eitez − 1)e−

1−s−τ/2
2s z dz.

Proof. As the proof for two equations are similar, we only prove the first one.
Similar to that in Section 2.1, namely (2.9)–(2.14):

E0

[
eit·�n·LR(k)

j
]

= 1 +
1
µn

e−
(1+s)2

8s2 µ2
n

∫ [
eit·�n·log(1+ez) − 1 − it · �n · ez

]
φ(z/µn) dz

+ O
(
�2
n/n2

)
; (8.1)

by substitution ez′
= �n · ez, we rewrite∫ [

eit·�n·log(1+ez) − it · �n · ez − 1
]
e−

1+s
2s zφ

(
z

µn

)
dz (8.2)

= n
1+s−τ/4

4s τ

∫ [
eit·�n·log(1+ez/�n) − it · ez − 1

]
e−

1+s−τ/2
2s z · φ

(
z

µn

)
dz. (8.3)

Observe that (1+s−τ/2)/(2s) > 1 for (s, τ) ∈ ωa∪ωb∪ωc, and moreover, according
to (s, τ) in ωa, ωb, and ωc, (1+s−τ/2)/(2s) > 2, = 2 and < 2; by similar arguments
as in the proof of Lemma 2.1, we derive:∫ [

ei·�n·t log(1+ez/�n) − itez − 1
]
e−

1+s−τ/2
2s zφ

(
z

µn

)
dz

=




−
[(

t2 + o(1)
)
/2

]
· µn · n−(1−3s−τ/2)2/(4s), (s, τ) ∈ ωa,

−
[(

t2 + o(1)
)
/4

]
· µn, (s, τ) ∈ ωb,

1√
2π

(
ψ̃0

s,τ (t) + o(1)
)
, (s, τ) ∈ ωc;

inserting this back into (8.3), Lemma 8.1 follows.

We now proceed to prove Theorem 4.1. With τ = τ(s, r) as defined in Theo-
rem 4.1, observe by the calibrations in Theorem 4.1, (s, τ) ∈ ωa ⇔ (s, r) ∈ Ωa,
(s, τ) ∈ ωb ⇔ (s, r) ∈ Ωb, and (s, τ) ∈ ωc ⇔ (s, r) ∈ Ωc, so by Lemma 8.1 and
elementary analysis,

�n · LRn,m =
m∑

k=1

[
n∑

j=1

(
�n · LR(k)

j

)] w=⇒




N(0, 1), (s, r) ∈ Ωa,

N(0, 1/2), (s, r) ∈ Ωb,
ν̃0

s,τ , (s, r) ∈ Ωc,

under the H0 as well as under H(n,m)
1 ; moreover, with (s, r, τ) in such range, we

argue in a similar way as the study in Section 3 that, there is only negligible
difference between LRn,m and LRn,m; combining these gives Theorem 4.1.
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