
SECTION 2 

Symmetrization 
and Conditioning 

In this section we begin the task of bounding IP'~(supt ISn(·,t)- Mn(t)l) for a 
general convex, increasing function ~ on JR+. The idea is to introduce more ran­
domness into the problem and then work conditionally on the particular realization 
of the {fi}· This is somewhat akin to the use of randomization in experimental 
design, where one artificially creates an extra source of randomness to ensure that 
test statistics have desirable behavior conditional on the experimental data. 

As a convenience for describing the various sources of randomness, suppose that 
the underlying probability space (n, A, IP') is a product space, 

n = nl ® ... ® nn ® n~ ® ... ® n~ ® s, 
equipped with a product measure 

1P' = IP'1 ® · · · ® 1P'n ® IP'{ ® · · · ® IP'~ ® IP'a-. 

Here n~ = ni and IP'f = IP'i. The set S consists of all n-tuples u = (a1, ... , an) with 
each ai either +1 or -1, and lP' a- is the uniform distribution, which puts mass 2-n 
on each n-tuple. 

Let the process fi (.' t) depend only on the coordinate Wi in ni; with a slight 
abuse of notation write fi(wi, t). The n~ and IP'f are included in order to generate 
an independent copy j,(w~, t) of the process. Under lP' a-, the ai are independent sign 
variables. They provide the randomization for the symmetrized process 

S~(w, t) = L ad,(w,, t). 
i$;n 

We will find that this process is more variable than Sn, in the sense that 

(2.1) IP'~(sup ISn(·, t)- Mn(t)l) ~ IP'~(2 sup IS~(·, t)l) 
t t 

The proof will involve little more than an application of Jensen's inequality. 
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To take advantage of the product structure, rewrite the lefthand side of (2.1) as 

IP1 0 · · · 01Pn <P (supj~)/i(wi, t) -JP>; fi(w~, t)J!). 
t i~n 

We can replace the !Pf by IP{0 · · · 01P~, then pull that product measure outside the 
sum, without changing the value of this expression. The argument of <P, and hence 
the whole expression, is increased if we change 

sup liP{ 0 · · · 01P~ ···I to IP{ 0 · · · 01P~ sup I·· ·I· 
t t 

Jensen's inequality then gives the upper bound 

IP1 0 · · · 01Pn 01P{ 0 · · · 01P~ <P (supj_L)i(wi, t)- fi(w~, t)!). 
t i~n 

The last expression would be unaffected if we interchanged any Wi with its w~, 
because !Pi = JP>[. More formally, the 2n-fold product measure is invariant under 
all permutations of the coordinates generated by interchanges of an Wi with its w~. 
For each u inS, the 2n-fold expectation would be unchanged if the integrand were 
replaced by 

<P (supll:>"ilh(wi, t)- fi(w~, t)J!), 
t i~n 

which, because <P is convex and increasing, is less than 

These two terms have the same 2n-fold expectation. Averaging over all choices of u, 
Wi, and w~, we arrive at a (2n+ 1 )-fold expectation that is equal to the right hand side 
of the symmetrization inequality (2.1). Notice that the auxiliary w~ randomization 
has disappeared from the final bound, whieh involves only w = ( w1 , ... , Wn) and u. 

For each w, the sample paths of the processes trace out a subset 

:fw = { (ft(w, t), ... , fn(w, t)): t E T} 

of ~n. Consolidating the product lP 1 0 · · · 0 lP n into a single lP w, and reexpressing 
inequality (2.1) in terms of the usual inner product on JRn, we get a neater looking 
bound. 

(2.2) THEOREM. For each convex, increasing <P, 

IP<P(sup IBn(·, t)- Mn(t)l) ~ IPwiPu <P (2 sup lu · fl). 
t ~~ 

D 

The inner expectation, with respect to lP,., involves a very simple process indexed 
by a (random) subset :fw of JRn. The fact that T indexes the points of the sets 9"nw 
now becomes irrelevant. The sets themselves summarize all we need to know about 
the {fi(w, t)} processes. If we absorb the factor 2 into the function <P, the problem 
has now become: find bounds for lP,. <P (sup!tlu · fl) for various convex <P and various 
subsets :7 of JRn. 



8 EMPIRICAL PROCESSES 

REMARKS. There are many variations on the symmetrization method in the 
empirical process literature. In the original paper ofVapnik and Cervonenkis (1971) 
the symmetrized process was used to bound tail probabilities. I learned about the 
simplifications arising from the substitution of moments for tail probabilities by 
reading the papers of Pisier (1983) and Gine and Zinn (1984). Symmetrization via 
moments also works with more complicated processes, for which tail probabilities 
are intractable, as in the papers of Nolan and Pollard (1987, 1988) on U-processes. 
In their comments on Pollard (1989), Gine and Zinn have traced some of the earlier 
history of symmetrization, with particular reference to the theory of probability in 
Banach spaces. 
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