
Chapter 2

Data Analysis

2.1. Density Estimation and Survival Analysis

The most straightforward application of BNP priors for statistical inference is in
density estimation problems. Consider the generic density estimation problem, with
data yi, i = 1, . . . , n, that is believed to be generated as an i.i.d. sample from some
unknown distribution G. A BNP model can be used as a prior for G to complete
the model

yi | G ∼ G G ∼ p(G).(2.1)

We could use, for example, a DP prior to specify p(G) as G ∼ DP(M,G0), or a
PT prior G ∼ PT(Π,A). Many BNP models are conjugate under i.i.d. sampling.
In other words, p(G | y1, . . . , yn) is in the same family as the prior, with updated
parameters. This is true, for example, for the DP prior or the PT prior.

A limitation of many popular BNP models p(G) for random probability measures
is the discrete nature of G. This is the case, for example for the DP prior. A simple
fix is the use of mixture models, convoluting the discrete RPM with a continuous
kernel f(x; μ), e.g. N(x; μ, 1),

yi | F ∼ F (yi), F (y) =

∫
f(y; θ) dG(θ) and G ∼ p(G)

Such models are known as DP mixtures (DPM) etc. The model is illustrated in
Figure 2.1. The point masses are the discrete probability measure G. Each point
mass is smeared out with a kernel f(x; μ). The convolution of G and the kernel
creates the continuous probability measure F . Posterior inference usually proceeds
in an equivalent hierarchical model with latent variables θi ∼ G, i = 1, . . . , n. The
mixture is rewritten as

yi ∼f(yi; θi) θi | G ∼ G G ∼ p(G).(2.2)

Posterior inference is still almost conjugate. If p(G) was conjugate under i.i.d. sam-
pling, then the complete conditional posterior p(G | θ1, . . . , θn) for G given the
imputed latent variables θi remains in the same family. And conditional on G the
latent variables θi are usually easy to impute. We will discuss detail strategies in
§3.3.

A special case of density estimation arises in survival analysis as density esti-
mation with event time data, usually involving censoring. Survival analysis is a
very traditional application of BNP in the early literature. Some BNP models for
random probability measures remain conjugate even under (right) censoring. For
example, a PT prior can be specified such that the posterior process for the un-
known distribution remains a PT, even in the presence of censoring.
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Fig 2.1. Dirchlet Process mixture prior. The discrete random probability measure G is convoluted
with a smooth kernel to create a continuous distribution F .

2.2. Regression

Consider a generic regression problem with dependent variable yi, covariates xi,
i = 1, . . . , n, and an assumed model yi = f(xi) + εi with εi ∼ pε(εi). As long as
both, the regression function f(·) and the residual distribution pε(·), are indexed by
finitely many parameters, inference reduces to a traditional parametric regression
problem. The problem becomes a non-parametric regression when the investigator
wants to relax the parametric assumptions of either of the two model elements.
This characterization of non-parametric regression allows for three cases.

2.2.1. Non-Parametric Residuals

The model can be generalized by going non-parametric on the residual distribution,
assuming εi ∼ G and a non-parametric prior p(G), while keeping the regression
mean function parametric as fθ(·) for a finite dimensional parameter vector θ.
We refer to this case as a non-parametric error model. Essentially this becomes
density estimation for the residual error. Of course the residuals εi are not usually
observable. Hence, the problem reduces to one of density estimation conditional
on assumed values for the parameters θ. A typical implementation using Markov
chain Monte Carlo posterior simulation would include a transition probability that
updates the currently imputed RPM G conditional on currently imputed values
of θ. Conditional on θ the problem of updating inference on G reduces to density
estimation for the residuals εi = yi−fθ(xi). And vice versa, conditional on imputing
G, updating θ reduces to a regression problem with a known residual distribution.
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(a) Interpolating Gaussian process (b) Smoothing Gaussian process

Fig 2.2. An example of nonlinear regression using Gaussian processes. Points correspond to the
observed data, the solid line corresponds to the posterior mean, and the grey bands (in panel (b))
are 95% credible intervals. The left panel corresponds to a model where τ2 = 0, so that the model
acts as an interpolator. The model on the right panel allows for τ2 > 0, so that the predictor
arising from the model behaves as a smoother.

2.2.2. Non-Parametric Mean Function

Alternatively one could relax the parametric assumption on the mean function and
complete the model with a non-parametric prior f(·) ∼ p(f). We refer to this as
a non-parametric regression mean function. As discussed in §1.3, popular choices
for p(f) are Gaussian process priors or priors based on basis expansions, such as
wavelet based priors or neural network models.

Example 4 (Nonparametric mean function with GP prior) We illustrate
the use of Gaussian process models in nonparametric regression using a widely stud-
ied dataset originally analyzed by Silverman (1985). The data are the measurements
of head acceleration in a simulated motorcycle accident used to test crash helmets.
The regression function is clearly non-linear, and even a piecewise linear function
would have a difficulty fitting this data. The left panel of Figure 2.2 presents the
regression function obtained from an interpolation model, corresponding to τ2 = 0
in (1.9). The right panel shows the fit obtained from a smoothing mode τ2 > 0. In
both cases, the parameters τ2, σ2 and λ where learned from the data using a Markov
chain Monte Carlo algorithm.

Example 5 (Nonparametric regression using wavelets) Barnes et al. (2003)
consider data from cepheid stars, i.e., pulsating stars. Figure 2.3 plots observed ra-
dial velocities yi against phase xi, together with a non-linear regression estimate
f(·) based on an BNP model. The model used a basis expansion for the unknown
phase-velocity curve. The basis is a wavelet basis. We discussed the prior for this
example before, in Example 3. Figure 1.5 shows draws from the prior f ∼ p(f).
We now add a prior to select wavelet coefficients, with p(βj� = 0) = 1 − αj+1.
Smaller α imposes more prior shrinkage and reduces the prior probability for high
frequency features. Conditional on the selected wavelet coefficients we continue to
use the dependent prior introduced before. Figure 2.3 shows inference under α = 0.5
and α = 0.7.
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(a) α = 0.5 (b) α = 0.7

Fig 2.3. Phase-velocity curve f(x) for cepheid stars. The figures show the posterior estimated
phase-velocity curve E(f | data) (thick central line), and pointwise central HPD 50% (light grey)
and 95% (dark grey) intervals for f(x). The circles shows the data points. Inference is under an
BNP model p(f) using a basis expansion of f with wavelets and p(βj� = 0) = 1 − αj=1. Recall
from Example 3 that ρ defines the level of prior dependence.

2.2.3. Fully Non-Parametric Regression

Finally, one could go non-parametric on both assumptions. We refer to this as a
fully nonparametric regression. The sampling model becomes p(yi | xi) = Gx, with
a prior on the family of conditional RPMs, p(Gx, x ∈ X). Many commonly used
BNP priors for G = {Gx} are variations of dependent DP priors.

Example 6 (Fully nonparametric regression) Klein and Moeschberger (1997,
chapter 1.11) show data from a clinical trial. The data are survival times for patients
with tongue cancers. The study investigated the effect of aneuploidy (abnormal num-
ber of chromosomes) of the tumor cells. Let Gx(·) denote the distribution of survival
times for patients with aneuploid (x = 1) and (normal) diploid (x = 0) tumor cells.
Figure 2.4 shows the Kaplan-Meier estimator of Gx, x ∈ {0, 1}, together with an
BNP estimate. The BNP estimate is under a DDP prior on {Gx, x = 0, 1}.

2.3. Mixed Effects Models

BNP priors are often used for model features that are important for appropriate
modeling of the observed data, but that are not of interest in themselves. A typical
example are random effects distributions in mixed effects models. Random effects
are a convenient and common approach to represent the dependence structure in
the observed data. Sometimes random effects also have a meaningful interpretation
as a property specific to sampling units. For example, when the experimental units
are patients in a clinical study, then patient-specific random effects represent the
heterogeneity of the patient population, which needs to be accounted for.

In many analyses the distributional assumptions for such random effects distribu-
tions are driven entirely by technical convenience and simplicity, using for example
a multivariate normal distribution. However, there is often no good scientific reason
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Fig 2.4. Survival times for tongue cancer patients. The figure shows a Kaplan-Meier estimate
(step function) and an NP Bayes estimate (smooth curves) for the survival functions Gx for
patients with anaploid (x = 1) and diploid (x = 0) tumors. The bands around the BNP estimates
show pointwise ± 1.0 posterior standard deviation bounds. The BNP estimate is based on a DDP
prior for {Gx, x = 0, 1}.

to assume a particular parametric form. Quite to the contrary, patient populations
are known to be highly heterogeneous, including outliers, subpopulations and other
features that are inconsistent with a multivariate normal model.

This is where BNP priors come in. Let zi denote a generic random effect specific
to the i-th experimental unit. When an investigator wants to avoid a strict para-
metric assumptions, he or she could instead use zi ∼ G with a BNP prior G ∼ p(G).
The types of priors used for p(G) are again similar to the density estimation prob-
lem, with the difference that in a mixed effects model the random effects zi are only
latent.

Example 7 (Semiparametric mixed effects model) Malec and Müller (2008)
consider a mixed effects model for mammography utilization in the U.S. The data
are mammography usage by county and demographic group. The model includes a
regression on some county level covariates and county-specific random effects zi.
The random effects are 6-dimensional. Figure 2.5a shows posterior estimated rates
of mammography by state. Figure 2.5b shows the estimated random effects distri-
bution.

2.4. Clustering and Classification

Some statistical inference problems involve a partition of a population of exper-
imental units into clusters. For example, hospitals might be clustered into more
homogeneous subgroups, disease subtypes might be grouped by comparable prog-
nosis, states could be grouped by comparable patterns of use of preventive care,
etc. Probability models for random partitions can be used to define appropriate
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(a) Estimated mammography
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E(G | data)

Fig 2.5. Mammography utilization. Estimated rate of mammography utilization by state (a). The
histogram shows the estimated use under the semi-parametric Bayesian model. The solid line
(with many spikes) shows for comparison the observed sample averages. The dotted line shows an
estimate known as synthetic estimate. States are ordered by estimated mammography utilization
under the BNP model. Panel (b) shows a bivariate marginal of the estimated random effects
distribution E(G | data) for county-specific random effects zi (BETA in the plot).

inference models for these applications (recall our discussion of product partition
models from §1.2.3).

Example 8 (Clustering of morphological data.) We consider data from
Lubischew (1962) who reports measurements on five external characteristics (lengths
etc.) of male insects of three species of leaf beetles. We use the 5-dimensional data
set, ignoring the species labels. Figure 2.6 shows model-based clustering and classifi-
cation for this 5-dimensional data set. The plotting symbols show the measurements
(showing two of the five dimensions).

We fit model (2.2) with θi = (μi,Σi) and f(x; μi,Σi) = N(x; μi,Σi). The discrete
nature of G ∼ DP implies a positive probability of ties among the θi. Let θ

�
j denote

the unique values. The model implies a prior probability model on a partition of
the beetles into clusters Sj = {i : θi = θ�j } defined by these ties. We will come
back to this model several times in the upcoming discussion. The implied prior on
the partition of the experimental units, beetles in this case, is known as the Pólya
urn. Figure 2.6 shows clusters Sj by different plotting symbols, together with the
posterior predictive distribution for a future beetle (contours). In these contours we
can recognize the cluster specific (μ�

j ,Σ
�
j ) as the location μ�

j and orientation Σ�
j of

three ellipses.

2.5. Computation

The flexible nature of BNP inference comes at a price. Implementation of poste-
rior inference for some models can be a bit more involved than similar paramet-
ric models. However, actual use of BNP models for data analysis is usually less
complicated than what it might seem at first glance. One reason is that inference
usually proceeds in a reduced model, after marginalizing with respect to the in-
finite dimensional quantitity. For example, in a density estimation problem (2.2)
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Fig 2.6. Clustering of beetles by 5 morphological measurements (only two are shown). The plot-
ting symbols show a partition of the beetles into three clusters. The contours show the posterior
predictive distribution for a future beetle. We can recognize cluster-specific locations μ�

j and co-
variance matrices Σ�

j , j = 1, . . . , 3.

with a DP prior, G ∼ DP(·), the marginal model p(θ,y) of all latent variables
θ = (θ1, . . . , θn) and all data y = (y1, . . . , yn) is available in closed form. This
allows for relatively straightforward computation for posterior predictive inference
and many other relevant inference summaries.

In Appendix A we show actual implementations in R for inference under DP
mixture and PT priors.

Another important feature that makes the use of BNP models practi-
cally feasible is the availability of public domain programs. One popular pro-
gram is the R package DPpackage (Jara et al., 2011) that implements infer-
ence for PT priors, DP models, Bernstein polynomials, dependent DP mod-
els and many variations of these models. The program can be downloaded
from http://www.mat.puc.cl/∼ajara/Softwares.html. The BNPDensity pack-
age (Barrios et al., 2011) implements density estimation using semi-parametric mix-
tures with a non-parametric normalized generalized gamma (NGG) prior on the
mixing measure (James et al., 2009). Another R package that implements inference
for some BNP models is BayesM (Rossi et al., 2005).
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