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Abstract: We present a theory of point and interval estimation for nonlinear
functionals in parametric, semi-, and non-parametric models based on higher
order influence functions (Robins (2004), Section 9; Li et al. (2004), Tchetgen
et al. (2006), Robins et al. (2007)). Higher order influence functions are higher
order U-statistics. Our theory extends the first order semiparametric theory of
Bickel et al. (1993) and van der Vaart (1991) by incorporating the theory of
higher order scores considered by Pfanzagl (1990), Small and McLeish (1994)
and Lindsay and Waterman (1996). The theory reproduces many previous
results, produces new non-

√
n results, and opens up the ability to perform op-

timal non-
√

n inference in complex high dimensional models. We present novel
rate-optimal point and interval estimators for various functionals of central
importance to biostatistics in settings in which estimation at the expected

√
n

rate is not possible, owing to the curse of dimensionality. We also show that our
higher order influence functions have a multi-robustness property that extends
the double robustness property of first order influence functions described by
Robins and Rotnitzky (2001) and van der Laan and Robins (2003).

1. Introduction

Over the past 3 years, we have developed a theory of point and interval estimation
for nonlinear functionals ψ (F ) in parametric, semi-, and non-parametric models
based on higher order likelihood scores and influence functions that applies equally
to both

√
n and non-

√
n problems (Robins [16], Section 9, Li et al. [9], Tchetgen

et al. [21], Robins et al. [18]). The theory reproduces results previously obtained
by the modern theory of non-parametric inference, produces many new non-

√
n

results, and most importantly opens up the ability to perform non-
√

n inference in
complex high dimensional models, such as models for the estimation of the causal
effect of time varying treatments in the presence of time varying confounding and
informative censoring. See Tchetgen et al. [22] for examples of the latter.

Higher order influence functions are higher order U-statistics. Our theory extends
the first order semiparametric theory of Bickel et al. [3] and van der Vaart [25] by
incorporating the theory of higher order scores and Bhattacharrya bases considered
by Pfanzagl [11], Small and McLeish [20] and Lindsay and Waterman [8].
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The purpose of this paper is to demonstrate the scope and flexibility of our
methodology by deriving rate-optimal point and interval estimators for various func-
tionals that are of central importance to biostatistics. We now describe some of these
functionals. We suppose we observe i.i.d copies of a random vector O = (Y, A, X)
with unknown distribution F on each of n study subjects. In this paper, we largely
study non-parametric models that place no restrictions on F , other than bounds
on both the Lp norms and on the smoothness of certain density and conditional
expectation functions. The variable X represents a random vector of baseline co-
variates such as age, height, weight, hematocrit, and laboratory measures of lung,
renal, liver, brain, and heart function. X is assumed to have compact support and a
density fX (x) with respect to the Lebesgue measure in Rd, where, in typical appli-
cations, d is in the range 5 to 100. A is a binary treatment and Y is a response, higher
values of which are desirable. Then, in the absence of confounding by additional un-
measured factors, the functional ψ (F ) = E {E [Y |A = 1, X]}−E {E [Y |A = 0, X]}
is the mean effect of treatment in the total study population. Our results for
E {E [Y |A = 1, X]} − E {E [Y |A = 0, X]} follow from results for the functional
ψ (F ) = E {E [Y |A = 1, X]} based on data (AY, A, X) rather than (Y, A, X). If Y
is missing for some study subjects, and A is now the indicator that takes the value
1 when Y is observed and zero otherwise, then the functional E {E [Y |A = 1, X]}
is the marginal mean of Y under the missing at random assumption that the prob-
ability P [A = 0|X, Y ] = P [A = 0|X] that Y is missing does not depend on the
unobserved Y .

Returning to data O = (Y, A, X), the functional

ψ (F ) = E {cov (Y, A|X)} /E [var {A|X}]
= E [w (X) {E [Y |A = 1, X] − E [Y |A = 0, X]}] ,

with w (X) = var {A|X} /E [var {A|X}] is the variance weighted average treatment
effect. Our results for E {cov (Y, A|X)} /E [var {A|X}] are derived from results for
the functionals ψ (F ) = E {cov (Y, A|X)} and ψ (F ) = E

[
{E (Y |X)}2

]
.

We note that Robins and van der Vaart’s [19] construction of an adaptive confi-
dence set for a regression function E (Y |X = x) depended on being able to construct
a confidence interval for ψ (F ) = E

[
{E (Y |X)}2

]
. They constructed an interval

for E
[
{E (Y |X)}2

]
when the marginal distribution of X was known. In this pa-

per, we construct a confidence interval for E
[
{E (Y |X)}2

]
when the marginal of

X is unknown and, in Section 5, use it to obtain an adaptive confidence set for
E (Y |X = x).

The functional E {cov (Y, A|X)} is the functional E {var (Y |X)} in the special
case in which Y = A w.p.1. Minimax estimation of var (Y |X) has recently been
discussed by Wang et al. [27] and Cai et al. [6] in the setting of non-random X.

The function γ (x) = E [Y |A = 1, X = x] − E [Y |A = 0, X = x] is the effect of
treatment on the subgroup with X = x. It is important to estimate the function
γ (x), in addition to the average treatment effect in the total population, because
treatment should be given, since beneficial, to those subjects with γ (x) > 0 but
withheld, since harmful, from subjects with γ (x) < 0. We show that one can
obtain adaptive confidence sets for γ (x) if one can set confidence intervals for the
functional ψ (F ) = E

[
γ (X)2

]
. We construct intervals for E

[
γ (X)2

]
under the

additional assumption that the data O = (Y, A, X) came from a randomized trial.
In a randomized trial, in contrast to an observational study, the randomization
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probabilities, P (A = 1|X) = E (A|X) are known by design. We plan to report
confidence intervals for E

[
γ (X)2

]
with E (A|X) unknown elsewhere.

All of the above functionals ψ (F ) have a positive semiparametric information
bound (SIB) and thus a (first order) efficient influence function with a finite vari-
ance. In fact all the functionals ψ (F ) have efficient influence function

(1.1) IF (b (F ) , p (F ) , ψ (F )) ≡ if (O, b (X, F ) , p (X, F ) , ψ (F )) ,

where b (x, F ) , p (x, F ) are functions of certain conditional expectations, and, for
any b∗ (x) , p∗ (x),

EF [IF (b∗, p∗, ψ (F ))] = EF [h1 (O) {b∗ (X) − b (X; F )} {p∗ (X) − p (X; F )}]

where h1 (O) is a known function. We refer to functionals in our class as doubly-
robust to indicate that IF (b (F ) , p (F ) , ψ (F )) continues to have mean zero when
either (but not both) p (F ) is misspecified as p∗ or b (F ) is misspecified as b∗.
The functions b (x, F ) , p (x, F ) , IF (O, b (X, F ) , p (X, F ) , ψ (F )), and h1 (O) differ
depending on the functional ψ (F ) of interest.

As the functionals ψ (F ) are all closely related, we shall use E {cov (Y, A|X)}
as a prototype in this introduction. For ψ (F ) ≡ E {cov (Y, A|X)}, b (X; F ) =
EF (Y |X), p (X; F ) = EF (A|X),

IF (b (F ) , p (F ) , ψ (F )) = {Y − b (X; F )} {A − p (X; F )} − ψ (F ) ,

and h1 (O) ≡ 1.
Whenever a functional ψ (F ) has a non-zero SIB, given sufficiently stringent

bounds on Lp norms and on smoothness, it is possible to use the estimated first order
influence function to construct regular estimators and honest asymptotic confidence
intervals whose width shrinks at the usual parametric rate of n−1/2. We recall that,
by definition, regular estimators are n1/2-consistent. When X is high dimensional,
the a priori smoothness restrictions on p (X; F ) and b (X; F ) necessary for point
or interval estimators of E {cov (Y, A|X)} to achieve the parametric rate of n−1/2

are so severe as to be substantively implausible. As a consequence, we replace the
usual approach based on first order influence functions by one based on higher order
influence functions.

To provide quantitative results, we require a measure of the maximal possible
complexity (e.g. smoothness) of p (·; F ) and b (·; F ) believed substantively plausible.
We use Hölder balls for concreteness, although our methods extend to other mea-
sures of complexity. A function h (·) lies in the Hölder ball H(β, C), with Hölder
exponent β > 0 and radius C > 0, if and only if h (·) is bounded in supremum norm
by C and all partial derivatives of h(x) up to order �β� exist, and all partial deriva-
tives of order �β� are Lipschitz with exponent (β − �β�) and constant C. We make
the assumption that b (·, F ) , p (·, F ) lie in given Hölder balls H(βb, Cb), H(βp, Cp).
Furthermore, it turns out we must also make assumptions about the complexity
of the function g (X; F ) ≡ EF [h1 (O) |X] fX (X), which we take to lie in a given
H(βg, Cg). For ψ (F ) = E {cov (Y, A|X)} , g (X; F ) = fX (X).

Using higher order influence functions, we construct regular estimators and hon-
est (i.e uniform over our model) asymptotic confidence intervals for functionals
ψ (F ) in our class whose width shrinks at the usual parametric rate of n−1/2 when-
ever β/d ≡ βb+βp

2 /d > 1/4 and βg > 0. This result cannot be improved on, since
even when g (x) is known a priori, β/d > 1/4 is necessary for a regular estimator
to exist.



338 J. Robins, L. Li, E. Tchetgen and A. van der Vaart

When β/d ≤ 1/4 and g (x) is known a priori, we have shown using arguments
similar to those of Birge and Massart [5] that the minimax rate of convergence for an

estimator and minimax rate of shrinkage of a confidence interval is n− 4β/d
4β/d+1 ≥ n− 1

2 .
When g (x) is unknown, we construct point and interval estimators with this same

rate of n− 4β/d
4β/d+1 whenever

(1.2) βg/d > β/d
2 (Δ + 1) (1 − 4β/d)

(Δ + 2) (1 + 4β/d) − 4 (β/d) (1 − 4β/d) ( Δ + 1)
,

where Δ =
∣∣∣βp

βb
− 1

∣∣∣. For example, if Δ = 0, β/d = 1/8, we require βg/d exceed

1/22 to achieve the rate n− 4β/d
4β/d+1 . When the previous inequality does not hold and

Δ = 0, we have constructed, in a yet unpublished paper, estimators that converge
at rate

log (n) n
− 1

2+
βg/d

1+2βg/d

(m∗+1)2

2β/d , with(1.3)

m∗ ≡ �
([

β

d

(
4
β

d
+
(

1 − 4
β

d

)
1 + 2βg/d

βg/d

)]1/2

− (1 + 2β/d)

)
	.

We conjecture that this rate is minimax, up to log factors. In this paper, however,
the estimators we construct are inefficient when the previous inequality fails to
hold, converging at rates less than the conjectured minimax rate of Equation (1.3).

Let us return to the case where Y = A w.p.1. Then ψ (F ) = E {var (Y |X)} and
p (·) = b (·) so Δ = 0. Now, for fixed β, Equation (1.3) converges to log (n) n−2β/d as
βg → 0, which agrees (up to a log factor) with the minimax rate of n−2β/d given by
Wang et al. [27] and Cai et al. [6] under the semiparametric homoscedastic model
var (Y |X) = σ2 with equal-spaced non-random X. This result might suggest that
X being random rather than equal-spaced can result in faster rates of convergence
only when the density of X has some smoothness, as quantified here by βg > 0.
But this suggestion is not correct. Recall that we obtained the rate log (n) n−2β/d

for ψ (F ) = E {var (Y |X)} as βg → 0 under a non-parametric model. In Section
4, we construct a simple estimator of σ2 under the homoscedastic model with X
random with unknown density that, for β/d < 1/4, β < 1, and without smoothness

restrictions on fX (x), converges at the rate n− 4β/d
4β/d+1 , which is faster than the

equal-spaced non-random minimax rate of n−2β/d.
The paper is organized as follows. In Section 2, we define the higher order (es-

timation) influence functions of a functional ψ (F ) for F contained in a model M
and prove two fundamental theorems – the extended information equality theorem
and the efficient estimation influence function theorem. Further, in the context of a
parametric model whose dimension increases with sample size, we outline why es-
timators based on higher order influence can outperform those based on first order
influence functions in high-dimensional models. In Section 3, we introduce the class
of functionals we study in the remainder of the paper and describe their impor-
tance in biostatistics. The theory of Section 2, however, is not directly applicable
to these functionals because they have first order but not higher order influence
functions. We show that higher order influence functions fail to exist precisely be-
cause the Dirac delta function is not an element of the Hilbert space L2 of square
integrable functions. We describe two approaches to overcoming this difficulty. The
first approach is based on approximating the Dirac delta function by a projection
operator onto a subspace of L2 of dimension k (n), where k (n) can be as large as
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the square of the sample size n. The second approach is based on approximating the
functional ψ (F ) by a truncated functional ψ̃k(n) (F ). The truncated functional has
influence functions of all orders, is equal to ψ (F ) if either a k (n) dimensional work-
ing parametric model (with k (n) < n2) for the function b (·) or the function p (·)
in Equation (1.1) is correct, and remains close to ψ (F ) even if both working mod-
els are misspecified. We then use higher order influence function based estimators
of ψ̃k(n) (F ) as estimators of ψ (F ). These estimators ψ̂m,k(n) are asymptotically
normal with variance and bias for ψ (F ) depending both on the choice of the di-
mension k (n) of the working models and on the order m of the influence function of
ψ̃k(n) (F ). We show that these same estimators ψ̂m,k(n) can also be obtained under
the approximate Dirac delta function approach. We derive the optimal estimator
ψ̂mopt,kopt(n) (βb, βp, βg) in the class as a function of the Hölder balls in which the
functions b, p, and g are assumed to lie. Finally we conclude Section 3 by show-
ing that the estimators ψ̂m,k(n) have a multi-robustness property that extends the
double-robustness property of the first order influence function estimator ψ̂1.

In Section 4, we consider whether the estimators ψ̂mopt,kopt(n) (βb, βp, βg) are
rate-minimax. We show that whenever β/d ≡ βb+βp

2 /d > 1/4 and βg > 0,
ψ̂mopt,kopt(n) (βb, βp, βg) is not only rate minimax but is semiparametric efficient.
Further, by letting the order m = m (n) of the U-statistic depend on sample size,
we construct a single estimator ψ̂m(n),k(n) that is semiparametric efficient for all
β/d > 1/4 even when g (·) cannot be estimated at an algebraic rate. We show,
however, that when β/d < 1/4, ψ̂mopt,kopt(n) (βb, βp, βg) does not in general con-
verge at the minimax rate. In Section 4.1, however, we construct a new estimator
ψ̂eff
KJ

(βg, βb, βp) that converges at the minimax rate of n− 4β/d
4β/d+1 whenever Eq. (1.2)

holds. In Section 5, we use the results obtained in earlier sections to construct adap-
tive confidence intervals for a regression function E [Y |X = x] when the marginal of
X is unknown and for the treatment effect function and optimal treatment regime
in a randomized clinical trial. In Section 6.1, we discuss how to obtain higher or-
der U-statistic point estimators and confidence intervals for functionals τ (F ) that
are implicitly defined as the solution to an equation ψ (τ, F ) = 0. In Section 6.2,
we define higher order testing influence functions and efficient scores and describe
their relationship to the higher order estimation influence functions and efficient
influence functions of Section 2. Finally, in Section 6.3, we discuss the relation-
ship between the higher order U-statistic point estimators of an implicitly defined
functional τ (F ) and higher order testing influence functions.

Before proceeding, several additional comments are in order. In this paper, we
investigate the asymptotic properties of our higher order U-statistic point and in-
terval estimators. The reader is referred to Li et al. [9] for an investigation of the
finite sample properties of our procedures through simulation. Furthermore due to
space limitations we only provide proofs for selected theorems. Proofs of the re-
maining theorems can be found in an accompanying technical report. In addition,
precise regularity conditions are sometimes omitted from both the statements and
the proofs of various theorems. This reflects the fact that the goal of this paper is
to provide a broad overview of our theory as it currently stands.

Different subject matter experts will clearly disagree as to the maximum possible
complexity of p (x; F ), b (x; F ) and g (x; F ). Thus it is important to have methods
that adapt to the actual smoothness of these functions. Elsewhere, we plan to
provide point estimators that optimally adapt to unknown smoothness. In contrast
to point estimators, however, for honest confidence intervals, the degree of possible
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adaption to unknown smoothness is small. Therefore we propose that an analyst
should report a mapping from a priori smoothness assumptions encoded in the
exponents and radii of Hölder balls (or in other measures of complexity) to the
associated optimal 1 − α honest confidence intervals proposed in this paper. Such
a mapping is finally only useful if substantive experts can approximately quantify
their informal opinions concerning the shape and wiggliness of p, b, and g using the
measure of complexity on offer by the analyst. It is an open question which, if any,
complexity measure is suitable for this purpose.

Finally, most of our mathematical results concern rates of convergence. We offer
only a few results on the constants in front of those rates. This is not because the
constant is less important than the rate in predicting how a proposed procedure will
perform in the moderate sized samples occurring in practice. Rather, at present, we
do not possess the mathematical tools necessary to obtain useful results concerning
constants. A more extended discussion of the issue is found in Section 3 of Li et al.
[9].

In the following, we use Xn � Yn to mean Xn = Op (Yn) and Yn = Op (Xn);

Xn ∼ Yn to mean Xn

Yn

P→ 1; and Xn 
 Yn (Xn � Yn) to respectively mean Yn

Xn

P→ 0(
Xn

Yn

P→ 0
)

as n → ∞.

2. Theory of higher order influence functions

Given n i.i.d observations O ≡ On≡{Oi, i = 1, . . . , n} from a model

M (Θ) = {F (·; θ), θ ∈ Θ} ,

we consider inference on a nonlinear functional ψ (θ). In general, ψ (θ) can be infinite
dimensional but for now we only consider the one dimensional case. In the following
all quantities can depend on the sample size n, including the support of O, the
parameter space Θ, and the functional ψ (θ). We generally suppress the dependence
on n in the notation. We will be particularly interested in models in which the
parameter θ is infinite dimensional and θ, Θ, and ψ (·) do not depend on n. We also
briefly discuss models in which subvectors of θ are finite-dimensional parameters
whose dimension k (n) = n1+ρ increases as power 1 + ρ (often ρ > 0) of n and thus
θn, Θn, and ψn (·) depend on n.

Our first task is to define higher order influence functions. Before proceeding
we recall some facts about U−statistics. Consider a function bm (o1, o2, . . . , om) ≡
b (o1, o2, . . . , om) where we often suppress b’s subscript m. For integers i1, i2, . . . , im
lying in {1, . . . , n}, we define

Bm,i1,...,im≡bm (Oi1 , Oi2 , . . . , Oim) ≡ b (Oi1 , Oi2 , . . . , Oim)

and

Vn [bm ]≡ (n − m)!
n!

∑
i1 �=i2... �=im

Bm,i1,...,im .

In an abuse of notation, we will consider the following expressions to be equiva-
lent

Vn [Bm ]≡Vn [Bm,,i1,...,im ]≡Vn [bm ] .

Thus Vn [bm ] is an mth order U-statistic with kernel bm (o1, o2, . . . , om). We do not
assume that bm (o1, o2, . . . , om) is symmetric. We will write Vn [Bm] as Bn,m. So,
suppressing the dependence on n, Bm≡V [Bm].
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Any Bm has a unique (up to permutation) decomposition Bm =
∑m

s=1 D
(b)
s (θ)

under any F (.; θ) as a sum of degenerate U-statistics D
(b)
s (θ), where degeneracy of

D
(b)
s (θ) means that D

(b)
s (θ) = d

(b)
s (Oi1 , Oi2 , . . . , Ois ; θ) satisfies

Eθ

[
d(b)

s

(
oi1 , . . . , oil−1 , Oil

, oil+1 . . . , ois ; θ
)]

= 0, l = 1, . . . , s,

where upper and lower case letters, respectively, denote random variables and their
possible realizations.

Let Um (θ) be the Hilbert space of all U−statistics of order m with mean zero
and finite variance with inner product defined by covariances with respect to the
n-fold product measure Fn (·; θ). Note that any U -statistic Bs of order s, s < m, is
also an mth order U− statistic with D

(b)
l (θ) identically zero for m ≥ l > s .

Since any two degenerate U− statistics of different orders are uncorrelated,
the Um (θ)-Hilbert space projection of Bm on Ul (θ) is

∑l
s=1 D

(b)
s (θ) for l < m.

Thus a U−statistic Bm is degenerate ⇔ Bm = D
(b)
m (θ) ⇔ Πθ [Bm|Um−1 (θ)] =

0 ⇔ Bm ∈ Um−1 (θ)⊥m,θ , where Πθ [·|·]≡Πθ,m [·|·] is the projection operator of the
Hilbert space Um (θ) (with the dependence on m suppressed when no ambiguity
can arise) and, for any linear subspace R of Um (θ), R⊥m,θ is its orthocomplement
in the Hilbert space Um (θ). Given any Bm = V [Bm], D

(b)
m (θ) is explicitly given by

V [dm,θ {Bm}] where dm,θ maps Bm ≡ b (Oi1 , Oi2 , . . . , Oim) to

dm,θ {Bm} = b (Oi1 , Oi2 , . . . , Oim)(2.1)

+
m−1∑
t=0

(−1)m−t
∑

ir1 �=ir2 ... �=irt

Eθ

(
b (Oi1 , Oi2 , . . . , Oim) |Oir1

, Oir2
, . . . , Oirt

)
.

Given a function g (ζ), ζ≡{ζ1, . . . , ζr}T , define for m = 0, 1, 2, . . . ,

g\lm
(ζ)≡g\l1,...,lm (ζ)≡ ∂mg (ζ)

∂ζl1 . . . ∂ζlm

with ls ∈ {1, . . . , r}, where the \ symbol denotes differentiation by the variables
occurring to its right and the overbar lm denotes the vector (l1, . . . , lm). Given a
sufficiently smooth r-dimensional parametric submodel θ̃ (ζ) mapping ζ ∈ Rr injec-
tively into Θ, define for θ in the range of θ̃ (·), ψ\lm

(θ)≡
(
ψ ◦ θ̃

)
\l1,...,lm

(ζ) |
ζ=θ̃−1{θ}

and f\lm
(On; θ)≡

(
f ◦ θ̃

)
\l1,...,lm

(ζ) |
ζ=θ̃−1{θ}, where f (On;θ) ≡

∏
i f(Oi; θ) is

the density of On with respect to a dominating measure. That is ψ\lm
(θ) and

f\lm
(On,θ) are higher order derivatives of ψ (·) and f (On;·) under a parametric

submodel θ̃ (ζ), where the model θ̃ has been suppressed in the notation. An sth

order score associated with the submodel θ̃ (ζ) is defined to be

S̃s,ls
(θ) ≡ f\ls

(On;θ) /f (On;θ) ,

where S̃s,ls
(θ) is a U-statistic of order s. To understand why S̃s,ls

(θ) is a U−statistic

we provide formulae for an arbitrary score S̃s,ls
(θ) in terms of the subject specific

scores
Sl1...lm,j (θ)≡f/l1...lm,j (Oj ; θ) /fj (Oj ; θ)
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j = 1, . . . , n for s = 1, 2, 3. Suppressing the θ-dependence, results in Waterman and
Lindsay [8] imply

S̃1,l1
=
∑

j

Sl1,j ,

S̃2,l2
=
∑

j

Sl1l2,j +
∑
s �=j

Sl1,jSl2,s,

S̃3,l3
=

∑
j

Sl1l2l3,j +
∑
s �=j

Sl1l2,jSl3,s + Sl3l2,jSl1,s + Sl1l3,jSl2,s

+
∑

s �=j �=t

Sl1,jSl2,sSl3,t.

Note these equations express each S̃m,lm
as a sum of degenerate U-statistics.

We now define a mth order estimation influence function IFm,ψ(·) (θ)≡IFm,ψ (θ) ≡
IFm (θ) for ψ (θ) where we suppress the dependence on ψ when no ambiguity will
arise.

Definition 2.1. A U-statistic IFm (θ) of order m and finite variance is said to be
an mth order estimation influence function for ψ (θ) if (i) Eθ [IFm (θ)] = 0, θ ∈ Θ
and (ii) for s = 1, 2, . . . ,m and every suitably smooth and regular (see Appendix)
r dimensional parametric submodel θ̃ (ζ) , r = 1, 2, . . . , m,

ψ\ls
(θ) = Eθ

[
IFm (θ) S̃s,ls

(θ)
]
.

Estimation influence functions need not always exist, but when they do they are
useful for deriving point estimators of ψ with small bias and for deriving confidence
interval estimators centered on an estimate of ψ. We will generally refer to esti-
mation influence functions simply as influence functions. We remark that IFm (θ)
is an influence function under the above definition if and only if it is one under
the modified version in which the dimension of the parametric submodel θ̃ (ζ) is
unrestricted. A key result is the following theorem which is related to results of
Small and McLeish [20].

Theorem 2.2 (Extended information equality theorem). Given a mth order
influence function IFm (θ), for any smooth, regular submodel θ̃ (ζ) and s ≤ m,

∂sEθ

[
IFm

(
θ̃ (ζ)

)]
/∂ζl1 · · · ∂ζls

|
ζ=θ̃−1{θ} = −ψ\ls

(θ)

Thus, if the functionals Eθ [IFm (θ∗)] and − [ψ (θ∗) − ψ (θ)] have bounded Fréchet
derivatives with respect to θ∗ to order m + 1 for a norm ||·||,

Eθ [IFm (θ + δθ)] = − [ψ (θ + δθ ) − ψ (θ)] + O
(
||δθ ||m+1

)
since the functions Eθ [IFm (θ∗)] and − [ψ (θ∗) − ψ (θ)] of θ∗ have the same Taylor
expansion around θ up to order m.

The proof is in the Appendix. Define the mth order tangent space Γm (θ) at θ
for the model M (Θ) to be the subspace of Um (θ) formed by taking the closed
linear span of all scores of order m or less as we vary over all regular parametric
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submodels θ̃ (ς) (whose range includes θ) of our model M (Θ). We say a model is
(locally) nonparametric for mth order inference if Γm (θ) = Um (θ).

Given any mth order estimation influence function IFm (θ), define the mth order
efficient estimation influence function to be

IFeff
m (θ) = Πθ [IFm (θ) |Γm (θ)] ,

where Πθ [·|·]≡Πθ,m [·|·] is the Um (θ)−projection operator. In the appendix, we
prove the following:

Theorem 2.3 (Efficient estimation influence function theorem).

1. IF
eff
m (θ) is unique in the sense that for any two mth order influence functions

Πθ

[
IF(1)

m (θ) |Γm (θ)
]

= Πθ

[
IF(2)

m (θ) |Γm (θ)
]

a.s.

2. IFeff
m (θ) is a mth order estimation influence function and has variance less than

or equal to any other mth order estimation influence function.
3. IFm (θ) is a mth order estimation influence function if and only if

IFm (θ) ∈
{

IF
eff
m (θ) + Um (θ) ; Um (θ) ∈ Γ

⊥m,θ

m (θ)
}

where Γ
⊥m,θ

m (θ) is the ortho-complement of Γm (θ) in Um (θ).
4. If IFm (θ) exists then IF

eff
s (θ) exists for s < m and Πθ [IFm (θ) |Γs (θ)] =

IF
eff
s (θ).

5. If the model M (Θ) is (locally) nonparametric, then

(a) there is at most one mth order estimation influence function IFm (θ) for
ψ (θ),

(b)
IFm (θ) = IFm−1 (θ) + IFmm (θ)

where
IFm−1 (θ) = Πm,θ [IFm (θ) |Um−1 (θ)]

and IFmm (θ) is a degenerate mth order U-statistic and thus

Eθ [IFm−1 (θ) IFmm (θ)] = 0.

(c) (i) Suppose, for a given m ≥ 2, IFm−1 (θ) exists and a kernel
ifm−1,m−1

(
oi1 , . . . , oim−1 ; θ

)
of IFm−1,m−1 (θ) has a first order influence func-

tion with kernel if1,ifm−1,m−1(oi1 ,...,oim−1 ;·) (Oim ; θ) for all

oi1 , . . . , oim−1 in a set Om−1 which has probability 1 under F (m−1) (·, θ). Then
IFm (θ) exists and

(2.2) mIFm,m (θ) = V

(
dm,θ

[
if1,ifm−1,m−1(Oi1 ,...,Oim−1 ;·) (Oim ; θ)

])
where the operator dm,θ is given in Equation (2.1).

(ii) Conversely, if IFm exists then the symmetric kernel ifsym
m−1,m−1 (oi1 , . . . ,

oim−1 ; θ
)

of IFm−1,m−1 (θ) has a first order influence function for all
oi1 , . . . , oim−1 in a set Om−1 which has probability 1 under F (m−1) (·, θ). Fur-
ther

m−1dm,θ

[
if1,ifsym

m−1,m−1(Oi1 ,...,Oim−1 ;·) (Oim ; θ)
]

= ifsym
m,m (Oi1 , . . . , Oim ; θ) .
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Remark 2.4. Pfanzagl [11] previously proved part 5.c(i) for m = 2. Our theorem
offers a generalization of his result. Note, in part (i) of 5(c), we can always take the
kernel to be the symmetric kernel.

Remark 2.5. Provided one knows how to calculate first order influence functions,
one can obtain IF2 (θ) , . . . , IFm (θ) recursively using part (5.c). An example of such
a calculation is given in Section 3.2.2 below. Thus part (5.c) has the interesting
implication that even though higher order influence functions are defined in terms
of their inner products with higher order scores S̃m,lm

, nevertheless, in (locally)
nonparametric models, one can derive all the higher order influence functions of a
functional ψ (θ) without even knowing how to compute the scores S̃m,lm

for any

m > 1. In fact, one need not even be aware of the structure of the scores S̃m,lm
in

terms of the subject-specific higher order scores Sl1...ls,j (θ). In contrast, in para-
metric or semiparametric models whose tangent space Γm (θ) does not equal the
set Um (θ) of all mth order U−statistics, one can often (but not always) still obtain
an inefficient influence IFm (θ) by applying part (5.c) of the Theorem. However,
calculation of the efficient influence function IFeff

m (θ) = Πθ [IFm (θ) |Γm (θ)] by pro-
jection generally requires explicit knowledge of the scores S̃m,lm

to derive Γm (θ).
For this reason, it can be considerably more difficult to analyze certain parametric
models (with dimension increasing with sample size) than to analyze (locally) non-
parametric models. We will consider derivation of and projections onto Γm (θ) in a
forthcoming paper. In the current paper, however, we do calculate IF eff

2 (θ) in one
model that is not (locally) nonparametric so as to provide some sense of the issues
that arise. Specifically in Section 4, we calculate IF eff

2 (θ) for a truncated version
of the functional E

[
{E [Y |X]}2

]
in a model that assumes the marginal distribution

of X is known.

Remark 2.6 (Implications of Theorem 2.3 for the variance of unbiased
estimators). Suppose we have n iid draws O = (O1, . . . , On) from F (o; θ), θ ∈
Θ, and a U-statistic ψ̂m of order m ≤ n with varθ

[
ψ̂m

]
< ∞ for θ ∈ Θ satisfying

Eθ

[
ψ̂m

]
= ψ (θ) for all θ ∈ Θ. That is, ψ̂m is unbiased for ψ (θ). We will use

Theorem (2.3) to generalize a number of well-known results on minimum variance
unbiased estimation to arbitrary models.

By Eθ

[
ψ̂m

]
= ψ (θ), we immediately conclude that, viewing ψ̂m as a kth order U-

statistic, ψ̂m−ψ (θ) is a kth order estimation influence function for ψ (θ) for n ≥ k ≥
m. By Theorem 2.3, varθ

[
ψ̂m

]
≥ varθ

[
IF

eff
m (θ)

]
. We refer to varθ

[
IF

eff
m (θ)

]
as

the mth order Bhattacharyya variance bound at θ for the parameter ψ (θ) in model
M (Θ), as this definition, in a precise analogy to Bickel et al. [3]’s generalization of
the Cramer-Rao variance bound, generalizes Bhattacharyya’s [2] variance bound to
arbitrary semi- and non- parametric models. Indeed our first order Bhattacharyya
bound is precisely Bickel et al.’s [3] generalization of the Cramer-Rao variance
bound.

We shall refer to an mth order U-statistic estimator ψ̂m as mth order “unbiased
locally efficient” at θ∗ for ψ (θ) in model M (Θ) if it is unbiased for ψ (θ) under the
model with variance at θ∗ equal to the mth order Bhattacharyya bound at θ∗. If
ψ̂m is “unbiased locally efficient” at θ∗ for all θ∗ ∈ Θ, we say it is ‘unbiased globally
efficient’. By Theorem 2.3, varθ

[
IF

eff
k (θ)

]
≥ varθ

[
IF

eff
m (θ)

]
for n ≥ k > m. As
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a consequence if an mth order ‘unbiased locally efficient’ estimator ψ̂m,eff exists
at θ∗ then, for n ≥ k ≥ m, IF

eff
k (θ∗) = IF

eff
m (θ∗) so the mth and kth order

Bhattacharyya bounds are equal at θ∗ and ψ̂m,eff is also kth order ‘unbiased locally
efficient’ at θ∗.

From the fact that for an unbiased estimator ψ̂m, ψ̂m − ψ (θ) is an mth or-
der influence function, we conclude that the variance of ψ̂m attains the bound
varθ∗

[
IF

eff
m (θ∗)

]
at θ∗ if and only if ψ̂m − ψ (θ∗) = IF

eff
m (θ∗). It follows that ψ̂m

is ‘unbiased globally efficient’ if and only if ψ̂m − ψ (θ) = IF
eff
m (θ) for all θ ∈ Θ.

We thus have proved the following theorem in the ⇒ direction. The ⇐ direction is
immediate.

Theorem 2.7. In a model M (Θ), there exists an mth order unbiased globally
efficient U-statistic estimator of ψ (θ), if and only if, for all θ ∈ Θ, IFeff

m (θ)+ψ (θ)
is a function ψ̂m,eff of the data O, not depending on θ. In that case, ψ̂m,eff is the
unique unbiased globally efficient estimator.

In a locally nonparametric model all unbiased mth order estimators are unbiased
globally efficient, as there is a unique mth order influence function. For example, the

usual unbiased estimator σ̂2 =
∑n

i=1

{
Xi −

∑n
j=1 Xj/n

}2

/ (n − 1) of the variance

of a random variable X is a second order U-statistic and thus is a kth order unbiased
globally efficient U-statistic for k ≥ 2 in the locally nonparametric model consisting
of all distributions under which σ̂2 has a finite variance.

In Section 4 we use the results from this remark to compare the relative efficien-
cies of competing rate-optimal unbiased estimators in a model which is not locally
nonparametric.

We now describe the main heuristic idea behind using higher order influence
functions. Technical details are suppressed. Consider the estimator

(2.3) ψ̂m = ψ
(
θ̂
)

+ IFeff
m

(
θ̂
)

based on a sample size n, where θ̂ is an initial rate optimal estimator of θ from a
separate independent training sample. That is we assume that our actual sample
size is N and we randomly split the N observations into two samples: an analysis
sample of size n and a training sample of size N − n where (N − n) /N = c∗,
1 > c∗ > 0. We obtain our initial estimate θ̂ from the training sample data.
Sample splitting has no effect on optimal rates of convergence, although in the
form described here does affect ‘constants’. Throughout the paper, we derive the
properties of our estimators conditional on the data in the training sample. In a
later section, we describe how one can sometimes obtain an optimal constant by
choosing (N − n) /N = N−ε, ε > 0 rather than c∗.

Remark 2.8. Note that sample splitting is avoided in most statistical applications
by using modern “empirical process theory” to prove that ‘plug-in’ estimators such
as ψ̂m =

{
ψ (θ) + IF

eff
m (θ)

}
θ=θ̂

that estimate θ from the same sample used to cal-

culate IFeff
m (·) have nice statistical properties. However empirical process theory

is not applicable in our setting because we are interested in function classes whose
size (entropy) is so large that they fail to be Donsker. For this reason we initially
believed that explicit sample splitting would be difficult to avoid in our method-
ology. However, in Robins et al. [18], we describe a new method that effectively
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allows one to use all the data for estimator construction.

Expanding and evaluating conditionally on the training sample (or equivalently
on θ̂), we find by Theorem 2.2 that the conditional bias

Eθ

[
ψ̂m − ψ (θ) |θ̂

]
= ψ

(
θ̂
)
− ψ (θ) + Eθ

[
IFeff

m

(
θ̂
)
|θ̂
]

is Op

(
||θ̂ − θ||m+1

)
which decreases with m provided ||θ̂ − θ|| < 1.

In Theorem 3.22 below, we show that if

supo∈O

∣∣∣f (o; θ̂
)
− f (o; θ)

∣∣∣ → 0

as ||θ̂ − θ|| → 0 , where f (o; θ) is the density of O under θ and O has probability
one under all θ ∈ Θ, then

varθ

[
ψ̂m|θ̂

]
≡ varθ

[
IF

eff
m

(
θ̂
)
|θ̂
]

= var
θ̂

[
IF

eff
m

(
θ̂
)](

1 + Op(||θ̂ − θ||)
)

Now, by Theorem 2.3, var
θ̂

[
IFeff

m

(
θ̂
)]

increases with m. Further,

var
θ̂

[
IF

eff
1

(
θ̂
)]

� 1/n, since, conditional on θ̂, IF
eff
1

(
θ̂
)

is the sample average of
iid random variables.

To proceed further we shall need to be more explicit about the model M (Θ).
For now, we consider finite-dimensional parametric models whose dimension k (n)
increases with sample size. That is θ ≡ θn depends on n and the dimension of
Θ ≡ Θn is k (n). Suppose k (n) � nγ , γ ≥ 0. Let θ̂n be the maximum likelihood
estimator of θ. If k (n) increases slower than the sample size (i.e., γ < 1), then,
a) under regularity conditions, ||θ̂n − θn|| = Op

(
{k (n) /n}1/2

)
= Op

(
n− 1

2 (1−γ)
)

with || · || the usual Euclidean norm in Rk(n) ; and b) var
θ̂

[
IFeff

m

(
θ̂
)]

, although
increasing with m, remains order 1/n; as a consequence, if m is chosen greater
than the solution m∗ to n−m∗+1

2 (1−γ) = n−1/2, the bias of ψ̂m will be op

(
n−1/2

)
,

the rate of convergence will be the usual parametric rate of n−1/2, and thus, for
n sufficiently large, the squared bias of ψ̂m will be less than the variance. As a
consequence, as discussed in Section 3.2.5, we can construct honest (i.e uniform
over θn ∈ Θn) asymptotic confidence intervals centered at ψ̂m∗ with width of order
n−1/2. Here is a concrete example.

Example. Suppose O = (Y, X) with Y Bernoulli and with X having a density
with respect to the uniform measure μ (·) on the unit cube [0, 1]d in Rd. Suppose
ψ = E

[
(E [Y |X])2

]
. Let {zl (·)} ≡ {zl (x) ; 1, 2, . . .} be a countable, linearly inde-

pendent, sequence of either spline, polynomial, or compact wavelet basis functions
dense in L2 (μ). Set zk (x) = (z1 (x) , . . . , zk (x))T . We assume

E (Y |X = x) ∈
{

b
(
x; ηk∗(n)

)
≡
[
1 + exp

(
−ηT

k∗(n)zk∗(n) (x)
)]−1

;
ηk∗(n) ∈ Nk∗(n)

}
,

fX (x) ∈
{

f
(
x; ωk∗∗(n)

)
≡ c

(
ωk∗∗(n)

)
exp

[
ωT

k∗∗(n)zk∗∗(n) (x)
]
;

ωk∗∗(n) ∈ Wk∗∗(n)

}
,
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where c
(
ωk∗∗(n)

)
is a normalizing constant and Nk∗(n) and Wk∗∗(n) are open

bounded subsets of Rk∗(n) and Rk∗∗(n). Hence, Θn = Nk(n) ×Wk(n) has dimension

k (n) = k∗ (n) + k∗∗ (n) and ψ (θ) = ψn (θn) =
∫

b2
(
x; ηk∗(n)

)
f
(
x; ωk∗∗(n)

)
dμ (x).

He [7] and Portnoy [12] prove that, under regularity conditions, ||θ̂n − θn|| =
Op

(
{k (n) /n}1/2

)
when k (n) = nγ � n. Below we shall see that

var
θ̂

[
IF

eff
m

(
θ̂
)
|θ̂
]
� 1/n for nγ � n.

Consider next models whose dimension k (n) � nγ increases faster than n (i.e.,
γ > 1). In such models, the MLE θ̂n is generally inconsistent and indeed there may
exist no consistent estimator of θn. In that case, ||θ̂n−θn|| fails to be op (1) and the

conditional bias Eθ

[
ψ̂m − ψ (θ) |θ̂

]
may not decrease with m. In order to guarantee

consistent estimators of θn exist, it is necessary to place further a priori restrictions
on the complexity of Θn. Typical examples of complexity-reducing assumptions
would be an ε−sparseness assumption that only k (n)ε

, 0 < ε < 1, of the k (n)
parameters are non-zero or a smoothness assumption that specifies that the rate
of decrease of the jthcomponent of θn is equal to 1/j raised to a given (positive)
power. Even after imposing such complexity-reducing assumptions, ψ (θ) ≡ ψn (θn)
may not be estimable at rate n−1/2.

For instance consider the previous example but now with γ∗ and γ∗∗ exceeding
1, so k∗∗ (n) = nγ∗∗ 
 n, k∗ (n) = nγ∗ 
 n and k (n) = k∗∗ (n) + k∗ (n) � nγ 

n with γ = max (γ∗∗, γ∗∗). Consider the norms∥∥∥ηk∗(n)

∥∥∥ =
{∫

b2
(
x; ηk∗(n)

)
dμ (x)

}1/2

,

∥∥ωk∗∗(n)

∥∥
p

=
{∫

f
(
x; ωk∗∗(n)

)p
dμ (x)

}1/p

and

‖θ‖p =
∥∥∥ηk∗(n)

∥∥∥+
∥∥ωk∗∗(n)

∥∥
p
.

Suppose, under a particular smoothness assumption, optimal rate estimators η̂k∗(n)

and ω̂k∗∗(n) of ηk∗(n) and ωk∗∗(n) satisfy
∥∥∥η̂k∗(n) − ηk∗(n)

∥∥∥ = Op (n−γη ) and∥∥∥ω̂k∗∗(n) − ωk∗∗(n)

∥∥∥
p

= Op (n−γω ) for some γη > 0, γω > 0 and all p ≥ 2. Hence,

||θ̂ − θ||p = Op (max {n−γη , n−γω}). For γ > 1, based on arguments given later, we

expect that var
θ̂

[
ψ̂m − ψ (θ) |θ̂

]
� n(γ−1)(m−1)

n and

Eθ

[
ψ̂m − ψ (θ) |θ̂

]
= Op

(∥∥∥η̂k∗(n) − ηk∗(n)

∥∥∥2 ∥∥∥ω̂k∗∗(n) − ωk∗∗(n)

∥∥∥m−1

m−1

)
= Op

(
n−2γη−(m−1)γω

)
= Op

(
||θ̂ − θ||m+1

m−1

)
.

To find the estimator ψ̂m
best

in the class ψ̂mwith optimal rate of convergence,
let m∗ = 1 + 1−4γη

(γ−1)+2γω
be the value of m that equates the order n−4γη−2(m−1)γω

of the squared bias and the order n(γ−1)(m−1)

n of the variance. Then m
best

= �m∗� if
the order n−4γη−2(m−1)γω +n(γ−1)(m−1)−1of the mean squared error at �m∗� is less
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than or equal to that at �m∗	. Otherwise, m
best

= �m∗	. The rate of convergence of
ψ̂m

best
will often be slower than n−1/2. Note m

best
= 1 whenever γ > 2, regardless

of γη and γω.
By using the estimator ψ̂�m∗� rather than ψ̂m

best
, we can guarantee that the

variance asymptotically dominates bias and construct honest (i.e uniform over θn ∈
Θn) asymptotic confidence intervals centered at ψ̂�m∗�. Of course, the sample size
n at which, for all θn ∈ Θn, the finite sample coverage of the intervals discussed
above is close to the asymptotic (i.e. nominal) coverage is generally unknown and
could be very large. For this reason, a better, but unfortunately as yet technically
out of reach, approach to confidence interval construction is discussed in Section
3.2.5.

In contrast to the case of parametric models of increasing dimension, in the infi-
nite dimensional models which we consider in the following section, the functionals
ψ (θ) of interest have first order influence functions IF1 (θ) but do not have higher
order influence functions. As a consequence, an initial ’truncation’ step is needed
before we can apply the approach outlined in the preceding paragraph.

Finally, even in the case of parametric models with k (n) 
 n and complexity
reducing assumptions imposed, , when the minimax rate for estimation of ψ (θ) is
slower than n−1/2, the optimal estimator ψ̂m

best
in the class ψ̂m will generally not

be rate minimax. See Section 3.2.6 and Sections 4.1.1 for additional discussion.

3. Inference for a class of doubly robust functionals

3.1. The class of functionals

In this Section we consider models in which the parameter θ is infinite dimensional
and θ, Θ, and ψ (·) do not depend on n. We make the following three assumptions
(Ai)–(Aiii):

(Ai) The data O includes a vector X, where, for all θ ∈ Θ, the distribution of
X is supported on the unit cube [0, 1]d ( or more generally a compact set) in Rd and
has a density f (x) with respect to the Lebesgue measure. Further Θ = Θ1 × Θ2

where θ1 ∈ Θ1 governs the marginal law of X and θ2 ∈ Θ2 governs the conditional
distribution of O|X.

(Aii) The parameter θ2 contains components b = b (·) and p = p (·), b : [0, 1]d →
R and p : [0, 1]d → R, such that the functional ψ (θ) of interest has a first order
influence function IF1,ψ (θ) = V

[
IF1,ψ

(θ)
]
, where

IF1,ψ (θ) = H (b, p) − ψ (θ) ,(3.1)
with H (b, p) ≡ h (O, b (X) , p (X))

≡ b (X) p (X)h1 (O) + b (X)h2 (O) + p (X) h3 (O) + h4 (O)(3.2)
≡ BPH1 + BH2 + PH3 + H4,

and the known functions h1 (·) , h2 (·) , h3 (·) , h4 (·) do not depend on θ.
(Aiii) (a) Θ2b × Θ2p ⊆ Θ2 where Θ2b and Θ2p are the parameter spaces for

the functions b and p. Furthermore the sets Θ2b and Θ2p are dense in L2 (FX (x))
at each θ∗1 ∈ Θ1.

or
(b) b∗ (·) = p∗ (·), h3 (O) = h2 (O) w.p.1, and Θ2b ⊆ Θ2 is dense in L2 (FX (x))

at each θ∗1 ∈ Θ1.
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Remark 3.1. (Aiiib) can be viewed as a special case of (Aiiia) as discussed in
Example 1a below, so we need only prove results under assumption (Aiiia).

Assumptions (Ai)–(Aiii) have a number of important implications that we sum-
marize in a Theorem and two Lemmas.

Theorem 3.2 (Double-robustness). Assume (Ai)–(Aiii) hold, and recall p and
b are elements of θ. Then

Eθ [H (b , p∗)] = Eθ [H (b∗, p)] = Eθ [H (b, p)] = ψ (θ)

for all (p∗, b∗) ∈ Θ2p × Θ2b, θ ∈ Θ.

Proof. Eθ [H (b∗, p)] − Eθ [H (b, p)] = Eθ [{H1p (X) + H2} {b (X) − b∗ (X)}] and
Eθ [H (b , p∗)]−Eθ [H (b, p)] = Eθ [{H1b (X) + H3} {p (X) − p∗ (X)}]. The theorem
then follows from part 1) of the following lemma.

Theorem 3.2 states that H (·, ·) has mean ψ (θ) under F (·; θ) even when p is
misspecified as p∗ or b is misspecified as b∗. We refer to the functional ψ (θ) as
doubly robust because of this property. The next lemma shows that H (b∗, p∗) is not
unbiased if both b and p are simultaneously misspecified. That is, Eθ [H (b∗, p∗)] �=
ψ (θ).

Lemma 3.3. Assume (Ai)–(Aiii) hold. Then

1. Eθ [{H1B + H3} |X] = Eθ [{H1P + H2} |X] = 0
2. Eθ [H (b∗, p∗)] − Eθ [H (b, p)] = Eθ [(B − B∗) (P − P ∗) H1]

and ψ (θ) ≡ Eθ [H (b, p)] = Eθ [−BPH1 + H4]

Proof. Part (1): By assumptions (Ai) and (Aiiia) we have paths θ̃l (t) , l = 1, 2, . . . ,

in our model with θ̃l (0) = θ and pl (t) = pl (x; t) = p (x) + tcl (x) , bl (x; t) =
b (x) , Fl (x; t) = F (x) for l = 1, 2, . . . , where the sequence cl (·) is dense in
L2 [FX (x)]. Let Sl (θ) be the score for path θ̃l (t) at t = 0. Then by ψ

(
θ̃l (t)

)
=

E
θ̃l(t)

[H (b, pl (t))]

dψ
(
θ̃l (t)

)
/dt|t=0 = Eθ [{H1B + H3} cl (X)]

+ Eθ [H (b, p)Sl (θ)] .

By IF1,ψ (θ)=H (b, p) − ψ (θ),

dψ
(
θ̃l (t)

)
/dt|t=0 = Eθ [H (b, p) Sl] .

Thus E [{H1B + H3} cl (X)] = 0. But {cl (·)} is dense in L2 [F0 (X)] so

E [H1B + H3|X] = 0.

An analogous argument proves Eθ [{H1P + H2} |X] = 0. Part (2): Eθ [H (b∗, p∗)]−
Eθ [H (b, p)] =

Eθ [(B∗P ∗ − BP ) H1 + (B∗ − B)H2 + (P ∗ − P )H3]
= Eθ [(B∗P ∗ − BP ) H1 − (B∗ − B)PH1 − (P ∗ − P ) BH1]
= Eθ [(B − B∗) (P − P ∗) H1] ,

where the second equality is by part 1). Choosing P ∗ = B∗ = 0 w.p.1 completes
the proof of the theorem since then Eθ [H (b∗, p∗)] = Eθ [H4].

Below we will need the following partial converse to Lemma 3.3.
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Lemma 3.4. Let Θ2b, Θ2p, Θ1 and Θ and H (b, p) be as defined in (Ai)–(Aiiia).
Suppose that

Eθ [{H1B + H3} |X] = Eθ [{H1P + H2} |X] = 0

and ψ (θ) = Eθ [H (b, p)]. Then V [H (b, p) − ψ (θ)] is the first order influence func-
tion of ψ (θ).

Proof. The influence function of the functional Eθ [H (b∗, p∗)] for known functions
b∗, p∗ is V [H (b∗, p∗) − Eθ [H (b∗, p∗)]]. Thus by the linearity of first order influ-
ence functions, the Lemma is true if and only if for each θ0 ∈ Θ, the functional
τ (b, p) = Eθ0 [H (b, p)] with θ0 fixed has influence function equal to 0 w.p.1 at
(b, p) = (b0, p0) ⊂ θ0. That the influence function is equal to 0 follows from the fact
that, under the assumptions of the Lemma, for sets {cl (·)} and {dl (·) } dense in
L2 [F0 (X)],

dEθ0 [H (b0 (X) + tcl (X) , p0 (X) + tdl (X))] /dt|t=0

= Eθ [{H1b0 (X) + H3} dl (X)] + Eθ [{H1p0 (X) + H2} cl (X)] = 0.

Results of Ritov and Bickel [14] and Robins and Ritov [15] imply it is not possible
to construct honest asymptotic confidence intervals for ψ (θ) whose width shrinks
to 0 as n → ∞ if b (·) and p (·) are too rough. Therefore we also place a priori
bounds on their roughness. Our bounds will be based on the following definition.

Definition 3.5. A function h(·) with domain [0, 1]d is said to belong to a Hölder
ball H(β, C), with Hölder exponent β > 0 and radius C > 0, if and only if h (·) is
uniformly bounded by C, all partial derivatives of h(·) up to order �β� exist and
are bounded, and all partial derivatives ∇�β	 of order �β� satisfy

sup
x,x+δx∈[0,1]d

∣∣∣∇�β	h(x + δx) −∇�β	h(x)
∣∣∣ ≤ C||δx||β−�β	.

We note that the Lp, 2 < p < ∞ and L∞ rates of convergence for estimation of

a marginal density or conditional expectation h (·) ∈ H(β, C) are O
(
n− β

2β+d

)
and

O

((
n

log n

)− β
2β+d

)
respectively. We refer to an estimator attaining these rates as

rate optimal.
We make the following fourth assumption:
(Aiv) We assume b (·) , p (·), and g(·) lie in given Hölder balls H(βb, Cb), H(βp,

Cp), H(βg, Cg) where

(3.3) g (x) ≡ E {H1|X = x} f (x) .

Furthermore we assume g (X) > σg > 0 w.p.1. Finally we assume, as can always
be arranged by a suitable choice of estimator, that the initial training sample esti-
mators b̂ (.) , p̂ (.), and ĝ (·) are rate optimal, have more than max{βb, βg, βp} deriva-
tives, and have L∞ norm bounded by a constant c∞. Further infx∈[0,1]d ĝ (x) > σg..
The reason for the restrictions on g (·) will become clear below.

The restrictions (Ai)–(Aiv) are the only restrictions common to all functionals
and models in the class. Additional model and/or functional specific restrictions
will be given below.

To motivate our interest in such a class of functionals and models we provide
a number of examples. In each case, one can use Lemma 3.4 to verify that the
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influence function of ψ (θ) is as given. All but Examples 3 and 4 are examples of
(locally) nonparametric models.

Example 1. Suppose O=(A, Y, X) with A and Y univariate random variables.

Example 1a (Expected product of conditional expectations). Let ψ (θ) =
Eθ [p (X ) b (X )] where b (X ) = Eθ [Y |X] , p (X ) = Eθ [A|X]. In this model

IF1,ψ (θ) = p (X ) b (X ) − ψ (θ)
+ p (X ) {Y − b (X)} + b (X ) {A − p (X)}

so H1 = −1, H2 = A, H3 = Y, H4 = 0.
We also consider the special case of this model where A = Y with probability

one (w.p.1). Then, as in assumption (Aiiib), b (X ) = p (X ) w.p.1, H2 = H3 w.p.1.
Then ψ (θ) = Eθ

[
b2 (X )

]
. In Section 5, we show how our confidence interval for

Eθ

[
b2 (X )

]
can be used to obtain an adaptive confidence interval for the regression

function b (·).

Example 1b (Expected conditional covariance).

ψ (θ) = Eθ [AY ] − Eθ [p (X ) b (X )] = Eθ [covθ {Y, A|X}]

has influence function

AY − {p (X ) b (X ) + p (X ) {Y − b (X)} + b (X ) {A − p (X)}} − ψ (θ) ,

so H1 = 1, H2 = −A, H3 = −Y, H4 = AY .
Example 1c below shows that a confidence interval and point estimators for

Eθ [covθ {Y, A|X}] can be used to obtain confidence intervals and point estimator
for the variance weighted average treatment effect in an observational study.

Example 1c (Variance-weighted average treatment effect). Suppose, in an
observational study, O = {Y ∗, A, X}, A is a binary treatment taking values in
{0, 1}, Y ∗ is a univariate response and X is a vector of pretreatment covariates.
Consider the parameter τ (θ) given by:

(3.4) τ (θ) =
Eθ [ covθ(Y ∗, A|X)]

Eθ [ varθ(A|X)]
=

Eθ [ covθ(Y ∗, A|X)]
Eθ [ π (X) {1 − π (X)}] ,

where π (X) = pr (A = 1|X) is often referred to as the propensity score. We are
interested in τ (θ ) for several reasons. First, in the absence of confounding by
unmeasured factors, τ (θ) is the variance-weighted average treatment effect since
τ (θ) can be rewritten as Eθ [wθ(X)γ (X; θ) ] where wθ(X) = varθ(A|X)

Eθ [varθ(A|X)] and

γ (x; θ) = Eθ(Y ∗|A = 1, X = x) − Eθ(Y ∗|A = 0, X = x)

is the average conditional treatment effect at level x of the covariates. Second, under
the semiparametric model

(3.5) γ (X; θ) = υ (θ) w.p.1

that assumes the treatment effect does not depend on X, τ (θ ) = υ (θ). In Re-
mark 4.2, we briefly consider inference on τ (θ) under model (3.5). However since
the model (3.5) may not hold and therefore the parameter υ (θ) may be undefined,
our main goal is to make inference on τ (θ) without imposing (3.5).
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Now if for any τ ∈ R, we define ψ (τ, θ) to be

ψ (τ, θ) = Eθ [{Y ∗ (τ) − Eθ (Y ∗ (τ) |X)} {A − Eθ (A|X)}] ,

with Y ∗ (τ) = Y ∗ − τA, it is easy to verify that τ (θ) may also be characterized
as the solution τ = τ (θ) to the equation ψ (τ, θ) = 0. Thus inference on τ (θ )
is easily obtained from inference on ψ (τ, θ). In particular a (1 − α) confidence
set for τ (θ) is the set of τ such that a (1 − α) CI interval for ψ (τ, θ) contains
0. Therefore, with no loss of generality, we consider the construction of a (1−α) CI
for ψ (τ̃ , θ) for a fixed value τ = τ̃ , and write Y = Y ∗ (τ̃) and ψ (θ) = ψ (τ̃ , θ). Thus
ψ (θ) = Eθ [covθ {Y, A|X}] and we are in the setting of Example 1b.

In Section 6, we show the rates at which the width of the confidence sets for
ψ (τ̃ , θ) and for τ (θ) shrink with n are equal.

Example 2a (Missing at random). Suppose O = (AY, A , X ) where Y is an
outcome that is not always observed, A is the binary missingness indicator, X is
a d-dimensional vector of always observed continuous covariates, and let b (X) =
E(Y |A = 1, X), π (X) = P (A = 1|X) be the propensity score, and p (X) = 1/π (X).
We suppose π (X) > σ > 0 and define

(3.6) ψ (θ) = Eθ

[
AY

π (X)

]
= Eθ [b (X)] .

Interest in ψ (θ) lies in the fact that ψ (θ) is the marginal mean of Y under
the missing (equivalently, coarsening) at random (MAR) assumption that P (A =
1|X, Y ) = π (X). In this model IF1,ψ (θ) = Ap (X) (Y − b(X)) + b(X) − ψ (θ) so
H1 = −A, H2 = 1, H3 = AY, H4 = 0.

Note that if one has assumed a priori that fX (·) and p (X) lay in Hölder balls
with respective exponents βfX

and βp, then βg would be min (βfX
, βp), since

g (X) = −fX (X) /p (X).

Example 2b (Missing not-at random). Consider again the setting of Example
2a but we no longer assume MAR. Rather we assume

P (A = 1|X, Y ) = {1 + exp {− [γ (X) + αY ]}}−1

may depend on Y , where now γ (X) is an unknown function and α is a known
constant (to be later varied in a sensitivity analysis). In this case the marginal
mean of Y is given by ψ (θ) = Eθ (AY [1 + exp {− [γ (X) + αY ]}]). Robins and
Rotnitzky [17] proved this model places no restrictions on F (o) and derived

IF1,ψ (θ) = A {1 + exp {−αY } p (X)} {Y − b (X )} + b (X) − ψ (θ)

where, now,

b (X ) = E [Y exp {−αY } |A = 1, X] /E [exp {−αY } |A = 1, X] ,

and p (X) = exp {−γ (X)}. Thus

H1 = − exp {−αY }A, H2 = {1 − A} , H3 = AY exp {−αY } ,

and H4 = AY . When α = 0 this provides an alternate parametrization of Exam-
ple 2a.

Example 3 (Marginal structural models and the average treatment ef-
fect). Consider the set-up of Example 1c including the non-identifiable assumption
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of no unmeasured confounders, except now A is discrete with possibly many levels
and f (a|X) > δ > 0 w.p.1. A marginal structural model assumes EfX

{Eθ(Y ∗|
A = a, X)} = d (a, υ (θ)), where d (a, υ) is a known function and υ (θ) is an un-
known vector parameter of dimension d∗. When A is dichotomous with a ∈ {0, 1}
and d (a, υ) = υ1 + υ2a, then υ2 (θ) is the average treatment effect parameter. Let
f∗ (a) be any density with the same support as A and let s∗ (a) be a d∗-vector func-
tion, both chosen by the analyst. Then υ (θ) is identified as the (assumed) unique
value of υ satisfying

ψυ (θ) ≡ Eθ

[
s (O, A, υ)

f∗ (A)
f (A|X)

]
= 0,

where s (O, a, υ) = {Y ∗ − d (a, υ)} s∗ (a). Thus a (1 − α) confidence set for υ (θ) is
the set of vectors υ such that a (1 − α) CI for ψυ (θ) contains 0. Therefore, with
no loss of generality, we consider the construction of a (1− α) CI for the d−vector
functional ψ (θ) ≡ ψ

υ̃
(θ) for a fixed value υ̃ and define h (O, A ) ≡ s (O, a, υ̃) and

b (a, X ) ≡ Eθ [h (O, a ) |A = a, X]. Then ψ
υ̃

(θ) has influence function

IF1 (θ) =
f∗ (A)

f (A|X)
{h (O, A ) − b (A, X )} +

∫
b (a, X ) dF ∗ (a) − ψ (θ) .

Next define p (a, X) = 1/f (a|X) , ψ (θ, a) = EfX
[b (a, X )]. Then IF1 (θ) is the

integral

IF1 (θ) =
∫

dF ∗ (a) IF1 (a, θ) ,

IF1 (a, θ) = H1 (a) p (a, X) b (a, X )
+ H2 (a) b (a, X ) + H3 (a) p (a, X ) − ψ (θ, a) ,

H1 (a) = −I (A = a) , H2 (a) = 1, H3 (a) = I (A = a)h (O, a ) .

It follows that IF1 (θ) is a integral over a ∈ A of influence functions IF1 (a, θ)
for parameters ψ (θ, a) in our class with H4 (a) = 0. Thus we can estimate ψ (θ)
by

∫
dF ∗ (a) ψ̂ (a), where ψ̂ (a) is an estimator of ψ (θ, a). If the support of A is

of greater cardinality than d∗, the model is not locally nonparametric. Different
choices for s∗ (a) and f∗ (a) for which

{
∂/∂υT

}
Eθ

[
s (O, A, υ) f∗(A)

f(A|X)

]
is invertible

may result in difference influence functions. All yield the same rate of convergence,
although the constants differ. See Remark 2.5 above. Extension of our methods to
continuous A will be treated elsewhere.

Example 4 (Confidence intervals for the optimal treatment strategy in
a randomized clinical trial). Consider a randomized clinical trial with data
O = {Y, Y ∗, A, X}, A is a binary treatment taking values in {0, 1}, Y ∗ and Y are
univariate responses, X is a vector of pretreatment covariates. In a randomized
trial, the randomization probabilities π0 (X) = P (A = 1|X) are known by design.
Let b (x) = Eθ(Y ∗|A = 1, X = x) − Eθ(Y ∗|A = 0, X = x ) and p (x) = Eθ(Y |A =
1, X = x) − Eθ(Y |A = 0, X = x ) be the average treatment effects at level X = x
on Y ∗ and Y . We assume Y and Y ∗ have been coded so that positive treatment
effects are desirable. Let ψ (θ) = E [b (X) p (X)]. Because the model is not locally
nonparametric there exists more than a single first order influence function. Indeed,
for any given function c (·),

IF1,ψ (θ, c) =b (X) p (X) − ψ (θ) + [b (X) {Y − Ap (X)} + p (X) {Y ∗ − Ab (X)}]
× {A − π0 (X)}σ−2

0 (X) + c (X) {A − π0 (X)} ,
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with σ2
0 (X) = π0 (X) {1 − π0 (X)} is an influence function in our class [provided it

is square integrable] with

H1 = 1 − 2A {A − π0 (X)}σ−2
0 (X) ,

H2 = {A − π0 (X)}σ−2
0 (X) Y,

H3 = {A − π0 (X)}σ−2
0 (X) Y ∗,

H4 = c (X) {A − π0 (X)} .

As c (·) is varied, one obtains all first order influence functions. We do not discuss
the efficient choice of c (·) in this paper.

Our interest lies in the special case where Y = Y ∗ w.p.1 (so there is but one
response of interest) and thus, as in assumption Aiiib), b = p, H2 = H3 and we
construct confidence interval for ψ (θ) = E

[
b2 (X)

]
. In Section 5 we describe how we

can use a confidence interval for ψ (θ) = E
[
b2 (X)

]
to obtain confidence intervals for

the treatment effect function b (x) and, most importantly, for the optimal treatment
strategy dopt (x) = I [b (x) > 0] under which a subject with covariate value x is
treated if and only if the treatment effect b (x) is positive ( i.e., dopt (x) = 1).

3.2. Higher order influence functions for our model

3.2.1. Dirac kernels, truncation bias, and a truncated parameter

In all of our examples the functions p (·) and b (·) are functions of conditional
expectations given the continuous random variable X. It is well known that the
associated point-evaluation functional p (x) and b (x) do not have first order influ-
ence functions. It then follows from part 5c of Theorem 2.3 and the dependence of
IF1,ψ (θ) = V [if1,ψ (Oi1 ; θ)] on b (·) and p (·) evaluated at the point X that, in none
of our examples, does ψ (θ) have a second (or higher) order influence function.

As a precise understanding of the reason for the nonexistence of higher order
influence functions for ψ (θ) is fundamental to our approach, we now use part 5c of
Theorem 2.3 to prove that IF2,ψ (θ) does not exist by showing that the functional
if1,ψ (o; θ) does not have a first order influence function V

[
if1,if1,ψ(o;·) (O; θ)

]
. Let

FX and fX = fX (·) denote the marginal CDF and density of X. In this proof, we
do not assume that p(·) and b(·) are functions of conditional expectations. Rather
we only assume that our functional satisfies assumptions Ai)-Aiv)

Consider paths (parametric submodels) θ̃l (t) such that θ̃l (0) = θ satisfying

pl (t ) ≡ pl (x, t ) ≡ p (x) + tcl (x) ,

bl (t ) ≡ bl (x, t ) ≡ b (x) + tal (x) ,

where the sequences cl (·) and al (·) , l = 1, 2, . . . , are each dense in L2 [FX (x)]. Let

sl (O; θ) = sl (O|X; θ) + sl (X; θ) ,

sl (O|X; θ), and sl (X; θ) denote the overall, conditional, and marginal scores

∂lnf
(
O; θ̃l (0)

)
/∂t, ∂lnf

(
O|X; θ̃l (0)

)
/∂t, ∂lnfX

(
X; θ̃l (0)

)
/∂t.

By linearity, if1,ψ (o; θ) has an influence function only if the functionals b (x) and
p (x) have one as well. Now by differentiating the identity

E
θ̃l(t)

[{H1bl (X, t ) + H3} |X = x] = 0
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with respect to t and evaluating at t = 0, we have

−Eθ [{{H1b (X ) + H3}} sl (O|X) |X = x] = Eθ [H1|X = x] al (x) .

However, by definition, b (x) has an influence function V
[
if1,b(x) (O; θ)

]
at θ only if

for l = 1, 2, . . . , both ∂bl (x, t ) /∂t|t=0 = al (x) equals Eθ

[
if1,b(x) (O; θ) sl (O; θ)

]
and Eθ

[
if1,b(x) (O; θ)

]
= 0. Thus if if1,b(x) (O; θ) exists, it must satisfy

− Eθ [{H1b (X ) + H3} sl (O|X) |X = x]

= Eθ [H1|X = x] Eθ

[
if1,b(x) (O; θ) sl (O; θ)

]
.

Without loss of generality, suppose H1 ≥ 0 w.p.1. Now if we could find a ‘kernel’
KfX ,∞ (x, X) such that

r (x) = EfX
[KfX ,∞ (x, X ) r (X )]

≡
∫

KfX ,∞ (x, x∗) r (x∗) fX (x∗) dx∗ for all r (·) ∈ L2 (FX)(3.7)

then

if1,b(x) (O ; θ) ≡ −
[

{Eθ [H1|X = x]}−1/2
KfX ,∞ (x, X )

×{Eθ [H1|X]}−1/2 {H1b (X ) + H3}

]
would be an influence function since

Eθ [H1|X = x] Eθ

[
−{Eθ [H1|X = x]}−1/2

KfX ,∞ (x, X)×
{Eθ [H1|X]}−1/2 {H1b (X ) + H3} sl (O; θ)

]

= E [H1|X = x]1/2
Eθ

[
−KfX ,∞ (x, X) {Eθ [H1|X]}−1/2

×{H1b (X ) + H3} {sl (O|X) + sl (X)}

]
= E [H1|X = x]1/2

EfX

{
Eθ

[
−KfX ,∞ (x, X) {Eθ [H1|X]}−1/2 ×

{H1b (X ) + H3} sl (O|X) |X

]}
= −Eθ [(H1b (X) + H3) sl (O|X) |X = x] .

By an analogous argument

if1,p(x) (O; θ) = −
[

{Eθ [H1|X = x]}−1/2
KfX ,∞ (x, X)

×{Eθ [H1|X]}−1/2 {H1p (X ) + H2}

]
would be an influence function.

Indeed since the sequences {cl (·)} and {al (·)} are dense the existence of such
a kernel is also a necessary condition for if1,b(x) (O; θ) and if1,p(x) (O; θ) to exist
and thus for if1,ψ (o; θ) to exist. A kernel satisfying Equation (3.7) is referred to
as the Dirac delta function with respect to the measure dFX (x) and would clearly
have to satisfy

(3.8) KfX ,∞ (xi1 , xi2) = 0 if xi2 �= xi1

were it to exist. Of course a kernel satisfying Equation (3.7) is known not to exist in
L2 [FX ]×L2 [FX ]. We conclude that if1,ψ (o; θ) does not have an influence function
and therefore IF2,2,ψ (θ) does not exist.

A formal approach

To motivate how one might overcome this difficulty, we note that kernels satisfying
Equation (3.7) exist as generalized functions or kernels (also known as Schwartz
functions or distributions). We shall ‘formally’ derive higher order influence func-
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tions that appear to be elements of the space of generalized functions. However,
we use these calculations only as motivation for statistical procedures based on or-
dinary kernels living in L2 [FX ] × L2 [FX ]. Thus it does not matter whether these
formal calculations could be made rigorous with appropriate redefinitions. Rather
we can simply regard the following as results obtained by applying a “formal calcu-
lus” to part 5c of Theorem 2.3 that adds to the usual calculus additional identities
licensed by Equations (3.7) and (3.8).

We will need the fact that, for any function v (x; θ), Eq. (3.8) implies that

v (x; θ) KfX ,∞ (x, X) = v (X; θ) KfX ,∞ (x, X) .

We now show that

IF2,2,ψ (θ) ≡ V [IF2,2,ψ,i1,i2 (θ)] = Πθ,2

[
V

[
if1,if1,ψ(Oi1 ;·) (Oi2 ; θ) /2

]
|U⊥2,θ

1 (θ)
]

would formally have U-statistic kernel

IF2,2,ψ,i1,i2 (θ) = −
[

εb,i1 (θ)Eθ [H1|Xi1 ]
− 1

2 KfX ,∞ (Xi1 , Xi2)
Eθ [H1|Xi2 ]

− 1
2 εp,i2 (θ)

]
,(3.9)

with εb,i1 (θ) = {Bi1H1,i1 + H3,i1} , εp,i2 (θ) = {H1,i2Pi2 + H2,i2} .

To show Equation (3.9) note, by

∂H (b, p) /∂P = ∂ {BPH1 + BH2 + PH3 + H4} /∂P = BH1 + H3

and
∂H (b, p) /∂B = PH1 + H2,

we have

if1,if1,ψ(Oi1 ;·) (Oi2 ; θ) = Q2,b,i2
(θ) + Q2,p,i2

(θ) − IF1,ψ,i2 (θ) ,

where

Q2,p,i2
(θ) ≡ {Bi1H1,i1 + H3,i1} if1,p(Xi1) (Oi2 ; θ)

= −{Bi1H1,i1 + H3,i1}Eθ [H1|Xi1 ]
− 1

2

× KfX ,∞ (Xi1 , Xi2)Eθ [H1|Xi2 ]
− 1

2 {Pi2H1,i2 + H2,i2}

= −εb,i1 (θ) Eθ [H1|Xi1 ]
− 1

2 KfX ,∞ (Xi1 , Xi2) Eθ [H1|Xi2 ]
− 1

2 εp,i2 (θ)
Q2,b,i2

(θ) ≡ {Pi1H1,i1 + H2,i1} if1,b(Xi1) (Oi2 ; θ)

= −εb,i2 (θ) Eθ [H1|Xi2 ]
− 1

2 KfX ,∞ (Xi2 , Xi1) Eθ [H1|Xi1 ]
− 1

2 εp,i1 (θ) .

Thus, by part 5(c) of Theorem 2.3,

IF2,2,ψ (θ) = Πθ,2

[
1
2

{
Q2,p,i2

(θ) + Q2,b,i2
(θ) + IF1,ψ,i2

}
|U⊥2,θ

1 (θ)
]

=
1
2

{
Q2,p,i2

(θ) + Q2,b,i2
(θ)

}
= Q2,p,i2

(θ) ≡ V [RHS of Equation (3.9)]

since IF1,ψ,i2 is a function of only one subject’s data and Q2,p,i2
(θ) and Q2,b,i2

(θ)
are the same up to a permutation that exchanges i2 with i1.

To obtain IF3,3,ψ,im
(θ), one must derive the influence function

if1,if2,2,ψ(Oi1 ,Oi2 ;·) (Oi3 ; θ) of if2,2,ψ (Oi1 , Oi2 ; θ). The formula for IF3,3,ψ,im
(θ) is

given in Equation (3.13). A detailed derivation is given in our technical report.
Here we simply note that the only essentially new point is that we now require the
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influence function of KfX ,∞ (Xi1 , Xi2), which, as shown next, is given by

(3.10) IF1,KfX ,∞(Xi1 ,Xi2) = −
{

KfX ,∞ (Xi1 , Xi3)KfX ,∞ (Xi3 , Xi2)
−KfX ,∞ (Xi1 , Xi2)

}
.

To see that if Equation (3.7) held, Equation (3.10) would hold, note that for any
path θ̃ (t) with θ̃ (0) = fX(·), h (x) = E

θ̃(t)

[
K

θ̃(t),∞ (x, Xi1) h (Xi1)
]
. Differentiating

with respect to t and evaluating at t = 0 , we have

0 = Eθ [KfX ,∞ (x, X) h (X) S (θ)] + E
θ

[{
∂

∂t
K

θ̃(t),∞ (x, Xi1)|t=0

}
h (Xi1)

]
.

Hence it suffices to show that

− Eθ [KfX ,∞ (x, X) h (X) S (θ)]
= E

θ
[{Eθ {−KfX ,∞ (x, Xi2)KfX ,∞ (Xi2 , Xi1)Si2 (θ) |Xi1}}h (Xi1)] .

But, by Equation (3.7),

E
θ
[{Eθ {−KfX ,∞ (x, Xi2)KfX ,∞ (Xi2 , Xi1)Si2 (θ) |Xi1}}h (Xi1)]

= E
θ
[−KfX ,∞ (x, Xi1) Si1 (θ)h (Xi1)] .

Feasible estimators

These “formal” calculations motivate a “truncated Dirac” approach to estimate
ψ (θ). Let {zl (·)} ≡ {zl (X) ; 1, 2, . . .} be a countable sequence of known basis func-
tions with dense span in L2 (FX) and define zk (X)T = (z1 (X) , . . . , zk (X)). Define

KfX ,k (Xi1 , Xi2) ≡ zk (Xi1)
T
{

EfX

[
zk (X ) zk (X)T

]}−1

zk (Xi2)

to be the projection kernel in L2 (FX) onto the subspace

lin {zk (X)} ≡
{
ηT zk (x ) ; η ∈ Rk, ηT zk (x ) ∈ L2 (FX)

}
spanned by the elements of zk (X). That is, for any h (x),

ΠfX
[h (X) |lin {zk (x)}]

= EfX
[KfX ,k (x, X) h (X)]

= zk (x)T
{

EfX

[
zk (X ) zk (X)T

]}−1

EfX
[zk (X ) h (X)] .

Then we can view KfX ,k (xi1 , xi2) as a truncated at k approximation to KfX ,∞ (xi1 ,
xi2) that is in L2 [FX ] × L2 [FX ] and satisfies Equation (3.7) for all r (x) ∈
lin {zk (X)}. Then a natural idea would be to substitute

IF
(k)
2,2,ψ,i1,i2

(
θ̂
)
≡

⎛⎝ −εb,i1

(
θ̂
)

E
θ̂
[H1|Xi1 ]

− 1
2 K

f̂X ,k
(Xi1 , Xi2)

×E
θ̂
[H1|Xi2 ]

− 1
2 εp,i2

(
θ̂
) ⎞⎠

with, for example,

εb,i1

(
θ̂
)

= E
θ̂
[H1|Xi1 ]

− 1
2

{
B̂i1H1,i1 + H3,i1

}
for the generalized function IF2,2,ψ,i1,i2

(
θ̂
)

based on Equation (3.9) resulting in
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the feasible second U -statistic estimator

ψ̂
(k)
2 = ψ

(
θ̂
)

+ IF1,ψ

(
θ̂
)

+ IF
(k)
2,2,ψ(θ)

(
θ̂
)

where

IF
(k)
2,2,ψ

(
θ̂
)
≡ V

[
IF

(k)
2,2,ψ,i1,i2

(
θ̂
)]

.

To avoid having to do a matrix inversion it would be convenient, when possible,

to choose zk (X ) = ϕk (X ) /
{

f̂X (X)
}1/2

where ϕ1 (X) , ϕ2 (X) , . . . is a complete

orthonormal basis with respect to Lebesgue measure in Rd. Then E
f̂X

[zk (X)×
zk (X)T

]
= Ik×k so

K
f̂X ,k

(Xi1 , Xi2) = zk (Xi1 )T
zk (Xi2 ) =

KLeb,k (Xi1 , Xi2){
f̂X (Xi1) f̂X (Xi2)

}1/2
,

where

KLeb,k (Xi1 , Xi2) ≡ ϕk (Xi1 )T
ϕk (Xi2 ) .

This choice corresponds to having taken

KfX ,∞ (Xi1 , Xi2) = KLeb,∞ (Xi1 , Xi2) / {fX (Xi1) fX (Xi2)}
1/2

in our formal calculations where KLeb,∞ (Xi1 , Xi2) is the Dirac delta function with
respect to Lebesgue measure. In that case with G ≡ g (X) ≡ fX (X)Eθ [H1|X] and
Ĝ ≡ ĝ (X) ≡ f̂X (X)E

θ̂
[H1|X],

IF2,2,ψ,i1,i2 (θ) = −εb,i1 (θ) g (Xi1)
− 1

2 KLeb,∞ (Xi1 , Xi2) g (Xi2)
− 1

2 εp,i2 (θ)(3.11)

IF
(k)
2,2,ψ,i1,i2

(
θ̂
)

= −εb,i1

(
θ̂
)

ĝ (Xi1)
− 1

2 KLeb,k (Xi1 , Xi2) ĝ (Xi2)
− 1

2 εp,i2

(
θ̂
)(3.12)

Unfortunately, we show later that this choice for zk has good statistical properties
only when fX is known to lie in a Holder ball with exponent exceeding max {βb, βp} .
In our technical report we show one can proceed by induction to formally obtain
that for m = 3, 4, . . . ,

IFm,m,ψ,im
(θ)

= εb,i1 (θ) ς (Xi1)
− 1

2

⎡⎢⎢⎣
∑m−2

j=0 c(m, j)×
j∏

s=1

H1,is+1

ς(Xis+1)
KfX ,∞

(
Xis , Xis+1

)
×KfX ,∞

(
Xij+1 , Xim

)
⎤⎥⎥⎦ ς (Xim)−

1
2 εp,im (θ)

(3.13)

where ς (X) = E [H1|X] and c(m, j) =
(
m−2

j

)
(−1)(j+1)

, which we then use to

obtain IF
(k)

m,m,ψ,im

(
θ̂
)

and ψ̂
(k)
m = ψ̂

(k)
2 +

∑m
j=3 IF

(k)
j,j,ψ(θ̂).
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Statistical properties

We shall prove below that the estimator ψ̂
(k)
m has variance

varθ

[
ψ̂(k)

m

]
�
(

1
n

max

[
1,

(
k

n

)m−1
])

,

when {zl (X) ; l = 1, 2, . . .} is a compact wavelet basis. (Robins et al. [18] proves
this result for more general bases). We also prove that the bias

Eθ

[
ψ̂(k)

m

]
− ψ (θ) = TBk (θ) + EBm (θ) ,

of ψ̂
(k)
m is the sum of a truncation bias term of order

TBk (θ) = Op

(
k−(βb+βp)/d

)
(for a basis {zl (X) ; l = 1, 2, . . .} that provides optimal rate approximation for
Hölder balls) and an estimation bias term of order

EBm (θ) = Op

⎛⎝{
P − P̂

}{
B − B̂

}(G − Ĝ

Ĝ

)m−1
⎞⎠

= Op

(
n
− (m−1)βg

2βg+d − βb
2βb+d− βp

2βp+d

)
.

Note this estimation bias is OP

(∥∥∥θ − θ̂
∥∥∥m+1

)
. It gets its name from the fact that,

unlike the truncation bias, it would be exactly zero if the initial estimator θ̂ hap-
pened to equal θ. Thus, the U-statistic estimator ψ̂

(k)
m for our functional ψ (θ) (which

does not admit a second order influence function) differs from the U-statistic esti-
mators ψ̂m of Eq. (2.3) for functionals that admit second order influence functions

in that, owing to truncation bias, the total bias of ψ̂
(k)
m is not Op

(∥∥∥θ − θ̂
∥∥∥m+1

)
.

The choice of k determines the trade-off between the variance and truncation bias.
As k → ∞ with n fixed, varθ

[
ψ̂

(k)
m

]
→ ∞ and TBk (θ) → 0. Thus, we can heuristi-

cally view the non-existent estimator ψ̂m = ψ̂
(k=∞)
m as the choice of k that results in

no truncation bias (and therefore a total bias of Op

(∥∥∥θ − θ̂
∥∥∥m+1

)
) at the expense

of an infinite variance. Writing k = k (n) = nρ, the order of the asymptotic MSE of
ψ̂

(k)
m is minimized at the value of ρ for which order of the variance equals the order

of the sum of the truncation and estimation bias.

Remark 3.6. The models of Examples 1-4 exhibit a spectrum of different likelihood
functions and therefore a spectrum of different first order and higher order scores.
Nonetheless, because the first order influence functions of the functionals ψ (θ)
share a common structure, we were able to use part 5c of Theorem 2.3 to formally
derive IFm,m,ψ,im

(θ) and, thus, the feasible IF
(k)

m,m,ψ,im

(
θ̂
)

in Examples 1-4 in a
unified manner without needing to consult the full likelihood function for any of
the models. See Remark (2.5) above for a closely related discussion.
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A critical non-uniqueness

We have as yet neglected a critical non-uniqueness in our definition of IF
(k)
m,m,ψ(θ)

(
θ̂
)

and thus ψ̂
(k)
m that poses a significant problem for our “truncated Dirac” approach.

For instance, when m = 3, the two generalized U -statistic kernels IF3,3,ψ,i1,i2,i3 (θ)
of Equation (3.13) and

IF ∗
3,3,ψ,i1,i2,i3 (θ) ≡ εb,i1 (θ)

ς (Xi1)
1
2

[
H1,i2

ς(Xi2)
KfX ,∞ (Xi1 , Xi2)

−Eθ [KfX ,∞ (Xi1 , Xi2) |Xi1 ]

]

× KfX ,∞ (Xi1 , Xi3)
εp,i3 (θ)

ς (Xi3)
1
2

are precisely equal, by Eq. (3.8); nonetheless, upon truncation, they result in dif-
ferent feasible kernels;

IF
(k)
3,3,ψ,i1,i2

(
θ̂
)

=
ε̂b,i1 (θ)

ς̂ (Xi1)
1
2

[ H1,i2

ς̂(Xi2)
K

f̂X ,k
(Xi1 , Xi2)K

f̂X ,k
(Xi2 , Xi3)

−K
f̂X ,k

(Xi1 , Xi3)

]
× ε̂p,i3 (θ)

ς̂ (Xi3)
1
2

and

IF
(k),∗
3,3,ψ,i1,i2,i3

(
θ̂
)
≡ ε̂b,i1 (θ)

ς̂ (Xi1)
1
2

⎡⎣ H1,i2

ς̂(Xi2)
K

f̂X ,k
(Xi1 , Xi2)

−E
θ̂

[
K

f̂X ,k
(Xi1 , Xi2) |Xi1

] ⎤⎦
× K

f̂X ,k
(Xi1 , Xi3)

ε̂p,i3 (θ)

ς̂ (Xi3)
1
2

with possibly different orders of bias. For simplicity, we consider the case where
H1 = 1 as in Examples 1b. Let δB ≡ B − B̂, δP ≡ P − P̂ , δf = δg ≡ f

f̂
− 1, and

Zk ≡ zk (X) ≡
{

Ê
[
ϕk (X)ϕk (X)T

]}−1/2

ϕk (X) ,

then,

Eθ

[
IF

(k),∗
3,3,ψ,i1,i2,i3

(
θ̂
)]

= Eθ

⎡⎢⎢⎢⎣
δBi1×

E
θ̂

[(
f(Xi2)
f̂(Xi2)

− 1
)

zk (Xi2)
T

]
zk (Xi1)

Eθ

[
δPi3zk (Xi3)

T
]
zk (Xi1)

⎤⎥⎥⎥⎦

= E
θ̂

⎡⎢⎢⎢⎢⎢⎢⎣

(
f(Xi1)
f̂(Xi1)

− 1 + 1
)

δBi1×

E
θ̂

[(
f(Xi2)
f̂(Xi2)

− 1
)

zk (Xi2)
T

]
zk (Xi1)

E
θ̂

[(
f(Xi3)
f̂(Xi3)

− 1 + 1
)

δPi3zk (Xi3)
T

]
zk (Xi1)

⎤⎥⎥⎥⎥⎥⎥⎦
= E

θ̂

[
δBi1Eθ̂

[
δf (Xi2)Z

T

k,i2

]
Zk,i1Eθ̂

[
δPi3Z

T

k,i3

]
Zk,i1

]
+ Op

({
B − B̂

}{
P − P̂

}{
G − Ĝ

}2
)
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and

Eθ

[
IF

(k)
3,3,ψ,i1,i2,i3

(
θ̂
)]

= E
θ̂

⎡⎣ Eθ

[
δBi1zk (Xi1)

T
]
zk (Xi2)

(
f(Xi2)
f̂(Xi2)

− 1
)

×zk (Xi2)
T

Eθ [δPi3zk (Xi3)]

⎤⎦

= E
θ̂

⎡⎢⎢⎢⎣
E

θ̂

[
(δf (Xi1) + 1) δBi1Z

T

k,i1

]
×Zk,i2

(
f(Xi2)
f̂(Xi2)

− 1
)

×Z
T

k,i2Eθ̂

[
(δf (Xi3) + 1) δPi3Zk,i3

]
⎤⎥⎥⎥⎦

= E
θ̂

⎡⎣ E
θ̂

[
δBi1Z

T

k,i1

]
Zk,i2

(
f(Xi2)
f̂(Xi2)

− 1
)

×Z
T

k,i2Eθ̂

[
δPi3Zk,i3

]
⎤⎦

+ Op

({
B − B̂

}{
P − P̂

}{
G − Ĝ

}2
)

.

That is,

Eθ

[
IF

(k),∗
3,3,ψ,i1,i2,i3

(
θ̂
)]

− Eθ

[
IF

(k)
3,3,ψ,i1,i2,i3

(
θ̂
)]

= E
θ̂

[
δBi1Eθ̂

[
δf (Xi2) Z

T

k,i2

]
Zk,i1Eθ̂

[
δPi3Z

T

k,i3

]
Zk,i1

]
− E

θ̂

⎡⎣ E
θ̂

[
δBi1Z

T

k,i1

]
Zk,i2δf (Xi2)

×Z
T

k,i2Eθ̂

[
δPi3Zk,i3

]
⎤⎦

+ Op

({
B − B̂

}{
P − P̂

}{
G − Ĝ

}2
)

= E
θ̂

[
δBΠ

θ̂

[
δP |Zk

]
Π

θ̂

[
δf (X) |Zk

]]
− E

θ̂

[
Π

θ̂

[
δP |Zk

]
δf (X) Π

θ̂

[
δB|Zk

]]
+ Op

({
B − B̂

}{
P − P̂

}{
G − Ĝ

}2
)

= E
θ̂

⎡⎢⎣ Π
θ̂

[
δP |Zk

]
×{

Π⊥
θ̂

[
δB|Zk

]
Π

θ̂

[
δf (X) |Zk

]
−Π

θ̂

[
δB|Zk

]
Π⊥

θ̂

[
δf (X) |Zk

] } ⎤⎥⎦
+ Op

({
B − B̂

}{
P − P̂

}{
G − Ĝ

}2
)

where Π
θ̂

[
h (X) |Zk

]
and Π⊥

θ̂

[
h (X) |Zk

]
respectively denote the projection un-

der F
(
·; θ̂

)
in L2

(
F̂
)

of h (X) on the k dimensional linear subspace lin {zk (X)}
spanned by the components of the vector zk (X) and the projection on the ortho-
complement of this subspace. Since the basis {ϕl (X) ; l = 1, 2, . . .} provides optimal
rate approximation for Hölder balls, it is easy to verify that the difference is of order

Op

⎛⎝ n
− βp/d

1+2βp/d
− βg/d

1+2βg/d k−βb/d + n
− βp/d

1+2βp/d
− βb/d

1+2βb/d k−βg/d

+n
− βp/d

1+2βp/d
− βb/d

1+2βb/d
− 2βg/d

1+2βg/d

⎞⎠ ,
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which we expect to be sharp for many bases, although not for Haar. For concrete-
ness, we shall look at an example. Suppose βb/d = βp/d = 0.3 and βg/d = 0.1,
thus, by choosing k = n

5
6 , ψ̂

(k)
3 converges to ψ (θ) at rate n− 1

2 . In contrast, the
order,

min
k

(
n
− βp/d

1+2βp/d
− βg/d

1+2βg/d k−βb/d + n
− βp/d

1+2βp/d
− βb/d

1+2βb/d k−βg/d +

√
1
n

max
(

1,
k2

n2

))
,

of the optimal root mean squares error of ψ̂
(k),∗
3 that uses IF

(k),∗
3,3,ψ,i3

(
θ̂
)

is n−0.477 

n−0.5. Thus, for many orthonormal bases, ψ̂

(k),∗
3 converges to ψ (θ) at a slower rate

than ψ̂
(k)
3 which uses IF

(k)

3,3,ψ,i3

(
θ̂
)
. Nothing in our development up to this point

provides any guidance as to which of the many equivalent generalized U-statistic
kernels should be selected for truncation. To provide some guidance, we introduce
an alternative approach to the estimation of ψ (θ) based on truncated parameters
that admit higher order influence functions. The class of estimators we derive using
this alternative approach includes members algebraically identical to the estimators
ψ̂

(k)
m but does not include estimators equivalent to less efficient estimators such as

ψ̂
(k),∗
3 .

An approach based on truncated parameters

We introduce a class of truncated parameters ψ̃k (θ) that (i) depend on the sample
size through a positive integer index k = k (n) (which we refer to as the truncation
index and will be optimized below), (ii) have influence functions IF

m,ψ̃k
(θ) of all

orders m, (iii) equal ψ (θ) on a large subset Θsub,k of Θ and (iv) the initial estimator

θ̂ is an element of Θsub,k so that the plug-ins ψ
(
θ̂
)

and ψ̃k

(
θ̂
)

are equal. To prepare
we introduce a simplified notation. For functions h (o, ·) or r (·) of θ, we will often
write h

(
o, θ̂

)
and r

(
θ̂
)

as ĥ (o) and r̂, and E
θ̂

[·] as Ê [·]. Similarly , we often
write h (o, θ) and r (θ) as h (o) and r, and Eθ [·] as E [·]. Further we shall introduce
slightly different definitions of truncation and estimation bias.

Define the estimator ψm,k

(
θ̂
)

≡ ψ
(
θ̂
)

+ IF
m,ψ̃k

(
θ̂
)

or, equivalently, ψ̂m,k ≡

ψ̂+ÎF
m,ψ̃k

. Then the conditional bias E
[
ψ̂m,k|θ̂

]
−ψ of ψ̂m,k is TBk +EBm, where

the truncation bias TBk = ψ̃k − ψ is zero for θ ∈ Θsub,k and does not depend

on m and the estimation bias EBm,k = E
[
ψ̂m,k|θ̂

]
− ψ̃k is OP

(
||θ̂ − θ||m+1

)
by

Theorem 2.2. Since, as we show later, the order of EBm,k does not depend on k, we
will abbreviate EBm,k as EBm, suppressing the dependence on k. Under minimal

conditions, the conditional variance of ψ̂m,k is of the order of var
[
IF

m,ψ̃k

]
whenever

k ≡ k (n) ≥ n. The rate of convergence of ψ̂m,k to ψ can depend on the choice of ψ̃k.
Nevertheless, many different choices ψ̃k result in estimators ψ̂m,k that achieve what
we conjecture to be the optimal rate for estimators of the form ψ̂m,k. We choose,
among all such ψ̃k, the class that minimizes the computational complexity of ψ̂m,k.
Specifically for all ψ̃k in our chosen class and all j, IF

jj,ψ̃k
consists of a single term

rather than a sum of many terms. We conjecture this appealing property does not
hold for any ψ̃k outside our class. We now describe this choice. The parameter ψ̃k is
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defined in terms of k (n)−dimensional ’working’ linear parametric submodels for
p (·) and b (·) depending on unknown parameters αk and ηK through the basepoints
p̂ (·) and b̂ (·), where p̂ (·) and b̂ (·) are initial estimators from the training sample.
Specifically let ṗ (X) and ḃ (X) be arbitrary known functions chosen by the analyst
satisfying Eqs. (3.14)-(3.16) below.

ṗ (X) ḃ (X)E [H1|X] ≥ 0 w.p.1,(3.14) ∣∣∣∣∣∣∣∣ ṗ (X)
ḃ (X)

∣∣∣∣∣∣∣∣
∞

< C∗,

∣∣∣∣∣
∣∣∣∣∣ ḃ (X)
ṗ (X)

∣∣∣∣∣
∣∣∣∣∣
∞

< C∗,(3.15)

ṗ (X)
ḃ (X)

has at least �max {βb, βp}	 derivatives.(3.16)

Particular choices of ṗ (X) and ḃ (X) can make the form of IF
m,ψ̃k

(
θ̂
)

more aes-

thetic. The choice has no bearing on the rate of convergence of the estimator ψ̂m,k

to ψ (θ). Often there are fairly natural choices for ṗ (·) and ḃ (·). See Remark 3.9
below for examples. Let αk, ηk be k−vectors of unknown parameters and consider
the ‘working’ linear models

p∗ (X, αk) ≡ p̂ (X) + ṗ (X)αT
k zk (X) ≡ P̂ + ṖαT

k Zk,(3.17)

b∗ (X, ηk) = b̂ (X) + ḃ (X) ηT
k zk (X) = B̂ + ḂηT

k Zk.(3.18)

We define the parameters η̃k (θ) and α̃k (θ) respectively to be the solution to

0 = Eθ [∂H (b∗ (X, ηk) , p∗ (X, αk)) /∂αk]

= Eθ

[
{H1b

∗ (X, ηk) + H3} ṖZk

]
,(3.19)

0 = Eθ [∂H (b∗ (X, ηk) , p∗ (X, αk)) /∂ηk]

= Eθ

[
{H1p

∗ (X, αk) + H2} ḂZk

]
.(3.20)

The solution to (3.19) and (3.20) exist in closed form as

η̃k (θ) = −Eθ

[
ḂṖH1ZkZ

T

k

]−1

Eθ

[
ZkṖ

{
H1B̂ + H3

}]
,(3.21)

α̃k (θ) = −Eθ

[
Ṗ ḂH1ZkZ

T

k

]−1

Eθ

[
ZkḂ

{
H1P̂ + H2

}]
.(3.22)

Next define b̃ (θ) = b̃ (·, θ) = b∗
(
·, η̃k (θ)

)
and p̃ (θ) = p̃ (·, θ) = p∗

(
·, α̃k (θ)

)
and

ψ̃k (θ) = Eθ

[
H
(
b̃ (θ) , p̃ (θ)

)]
.

Note the models p∗ (·, αk) and b∗ (·, ηk) are used only to define the truncated
parameter ψ̃k (θ). They are not assumed to be correctly specified. In particular,
the training sample estimates p̂, b̂ need not be based on the models p∗ (·, αk),
b∗ (·, ηk). We now compare our truncated parameter ψ̃k (θ) with ψ (θ) and calculate
the truncation bias. It is important to keep in mind that b, p are components of the
unknown θ while ṗ, ḃ, p̂, b̂ are regarded as known functions.
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Theorem 3.7. If our model satisfies (Ai)–(Aiii) and

θ ∈ Θsub,k = {θ; p (·) = p∗ (·, αk) for some αk or b (·) = b∗ (·, ηk) for some ηk}∩Θ

then ψ̃k (θ) = ψ (θ).
Further TBk (θ) = ψ̃k (θ) − ψ (θ) = Eθ

[{
B̃ (θ) − B

}{
P̃ (θ) − P

}
H1

]
.

Proof. Immediate from Theorem 3.2 and Lemma 3.3.

We know from the above Theorem that TBk (θ) = 0 for θ ∈ Θsub,k. However to
control the truncation bias in forming confidence intervals for ψ (θ) we will need to
know how fast supθ∈Θ {TBk (θ)} decreases as k increases. The following theorem
is a key step towards determining an upper bound.

Theorem 3.8. Suppose ḃ (X) and ṗ (X) are chosen so that ḂṖE [H1|X] ≥ 0 w.p.1.
Let

Q ≡ q (X) =
{

ḂṖE [H1|X]
}1/2

and Π
[
h (Z) |QZk

]
and Π⊥ [

h (X) |QZk

]
be, respectively, the projection in

L2 (FX (x)) of h (X) on the k dimensional linear subspace lin
{
QZk

}
spanned by

the components of the vector QZk = q (X) zk (X) and the projection on the ortho-
complement of this subspace. Then if Ai) − Aiii) are satisfied,

TBk = E

[
Π⊥

[(
P − P̂

Ṗ

)
Q|QZk

]
Π⊥

[(
B − B̂

Ḃ

)
Q|QZk

]]
.

Remark 3.9. To simplify various formulae it is often convenient and aesthetically
pleasing to have Q̂ = 1. We can choose Ḃ and Ṗ to guarantee Q̂ = 1 w.p.1. For the
functional ψ (θ) = Eθ [b (X) p (X)] of Example 1a, H1 = −1 w.p.1. Thus choosing
Ḃ and Ṗ equal to 1 and −1, respectively, w.p.1 makes Q̂ = 1 w.p.1. In the missing
data Example 2a, the function H1 = −A so Ê [H1|X] = 1/P̂ and thus the choice
Ḃ = −1, Ṗ = P̂ makes Q̂ = 1 w.p.1. Note since inference on ψ (θ) is conditional
on the training sample data, we view the initial estimator p̂ (·) of p (·) from the
training sample as known and thus an analyst is free to choose Ṗ to be P̂ .

Examples continued. In Example 1a, recall ψ = E [BP ]. Choose Ḃ = −Ṗ = 1
w.p.1 so Q̂ = Q = 1, and take B̂ ∈ lin

{
Zk

}
. Then

B̃ = B̂ + Π
[(

B − B̂
)
|Zk

]
= Π

[
B|Zk

]
,

P̃ = Π
[
P |Zk

]
,

TBk = E
{[

Π⊥ [
B|Zk

]
Π⊥ [

P |Zk

]]}
,

ψ̃k = ψ − TBk = E
{
Π
[
B|Zk

]
Π
[
P |Zk

]}
.

Thus ψ̃k appears to be the natural choice for a truncated parameter.

In Example 2a with ψ = E [B], Ḃ = −1, Ṗ = P̂ = 1/π̂, Q̂ = 1, Q =
{

P̂ /P
}1/2

={
π

π̂

}1/2

, π̂ ≡ π̂ (X) , π ≡ π (X), we obtain

TBk = E

⎡⎢⎢⎣ Π⊥
[
π̂
(

1
π − 1

π̂

){
π

π̂

}1/2

|
{

π

π̂

}1/2

Zk

]
×Π⊥

[{
π

π̂

}1/2 (
B − B̂

)
|
{

π

π̂

}1/2

Zk

]
⎤⎥⎥⎦ .
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Thus the truncated parameter ψ̃k = ψ − TBk does not seem to be a particular
natural or obvious choice. The complexity of ψ̃k is not simply due to the fact that
we chose Ṗ = P̂ rather than Ṗ = 1 as we now demonstrate.

In Example 2a with Ḃ = −1, Ṗ = 1 , Q̂ = π̂1/2, Q = π1/2,

TBk = E

⎡⎢⎣ Π⊥
[(

1
π − 1

π̂

)
π1/2|π1/2Zk

]
×

Π⊥
[{

π

π̂

}1/2 (
B − B̂

)
|π1/2Zk

] ⎤⎥⎦ .

Nonetheless we will see that, for either choice of
(
Ḃ, Ṗ

)
, the parameter ψ̃k will

result in estimators with good properties.

Remark 3.10. Henceforth, given (βp, βb, βg), {ϕl (X) , l = 1, 2, . . .} will always de-
note a complete orthonormal basis with respect to Lebesgue measure in Rd or
in the unit cube in Rd that provides optimal rate approximation for Hölder balls
H (β∗, C) , β∗ ≤ �max (βp, βb, βg)	, i.e.

(3.23) suph∈H(β∗,C)infς
l

∫
Rd

(
h (x) −

k∑
l=1

ς
l
ϕ

l
(x)

)2

dx = O
(
k−2β∗/d

)
.

The basis consisting of d-fold tensor products of univariate orthonormal polyno-
mials satisfies (3.23) for all β∗. The basis consisting of d-fold tensor products of a
univariate Daubechies compact wavelet basis with mother wavelet ϕw (u) satisfying∫

R1
umϕw (u) du = 0, m = 0, 1, . . . , M

also satisfies (3.23) for β∗ < M + 1.

Theorem 3.11. Suppose that (Ai)–(Aiv) are satisfied, that ḃ (X) and ṗ (X) satisfy
(3.14) − (3.16) and that we take

(3.24) zk (X) = ϕ
k,f̂

(X)
{

Ê [H1|X] ḃ (X) ṗ (X)
}−1/2

,

where

ϕ
k,f̂

(X) ≡
{

Ê
[
ϕk (X)ϕk (X)T

]}−1/2

ϕk (X) .

Then
supθ∈Θ

{
TB2

k (θ)
}

= Op

(
k−2(βb+βp)/d

)
Remark 3.12. Note if we have chosen ḃ (·) and ṗ (·) so that Q̂ = 1 wp1 then
zk (X) = ϕ

k,f̂
(X) simplifies. The preceeding theorem does not hold with ϕk (X) /{

f̂ (X)
}1/2

replacing ϕ
k,f̂

(X) unless fX is known to lie in a Holder ball with
exponent exceeding max {βb, βp} .

3.2.2. Derivation of the higher order influence functions of the truncated
parameter

We begin by proving that the first order influence functions of ψ̃k and ψ are identical
except with b̃ (θ) , p̃ (θ) , ψ̃k (θ) replacing b, p, ψ (θ).
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Theorem 3.13.
IF

1,ψ̃k
(θ) = V

[
IF

1,ψ̃k,i1
(θ)

]
with

IF
1,ψ̃k

(θ) = H
(
b̃ (θ) , p̃ (θ)

)
− ψ̃k (θ) .

Proof. Since ψ̃k (θ) = Eθ

[
H
(
b̃ (θ) , p̃ (θ)

)]
,

IF
1,ψ̃k

(θ) = H
(
b̃ (θ) , p̃ (θ)

)
− ψ̃k (θ)

+ E
[
∂H

(
b∗
(
X, η̃k (θ)

)
, p∗

(
X, α̃k (θ)

))
/∂ηT

k

]
IF

1,̃ηk(·) (θ)

+ E
[
H
(
b∗
(
X, η̃k (θ)

)
, p∗

(
X, α̃k (θ)

))
/∂αT

k

]
IF

1,α̃k(·) (θ) .

But, by definition of η̃k (θ) and α̃k (θ), both expectations are zero.

Note that η̃k (θ) and α̃k (θ) are not maximizers of the expected log-likelihood
for αk and ηk. This choice was deliberate. Had we defined η̃k (θ) and α̃k (θ) as the
maximizers of the expected log-likelihood, then IF

1,ψ̃k
(θ) would have had addi-

tional terms since the expectations in the preceding proof would not be zero. The
existence of these extra terms would translate to many extra terms in IF

m,ψ̃k
(θ)

for large m leading to computational difficulties. Similarly had we chosen mod-
els p∗ (X, αk) ≡ Φ

(
P̂ + ṖαT

k Zk

)
and b∗ (X, ηk) = Φ

(
B̂ + ḂηT

k Zk

)
with Φ (·) a

non-linear inverse-link function, IF
m,ψ̃k

(θ) would also have had many extra terms
without an improvement in the rate of convergence.

The following is proved in the Appendix.

Theorem 3.14. IF
m,ψ̃k

= IF
1,ψ̃k

+
∑m

j=2 IF
jj,ψ̃k

where IF
jj,ψ̃k

=V

[
IF

jj,ψ̃k,ij

]
is a jth order degenerate U−statistic given by

IF
22,ψ̃k,i2

= −

⎧⎪⎨⎪⎩
[(

H1P̃ + H2

)
ḂZ

T

k

]
i1

{
E
[
Ṗ ḂH1ZkZ

T

k

]}−1

×
[
Zk

(
H1B̃ + H3

)
Ṗ
]

i2

⎫⎪⎬⎪⎭ ,

IF
jj,ψ̃k,ij

= (−1)j−1
[(

H1P̃ + H2

)
ḂZ

T

k

]
i1

×

⎡⎢⎢⎢⎣
j∏

s=3

{
E
[
Ṗ ḂH1ZkZ

T

k

]}−1

{(
Ṗ ḂH1ZkZ

T

k

)
is

− E
[
Ṗ ḂH1ZkZ

T

k

]}
⎤⎥⎥⎥⎦

×
{

E
[
Ṗ ḂH1ZkZ

T

k

]}−1 [
Zk

(
H1B̃ + H3

)
Ṗ
]

i2
.

3.2.3. The Estimator ψ̂m,k ≡ ψ̂ + ÎF
m,ψ̃k

and its Estimation Bias

We can now calculate the estimator ψ̂m,k ≡ ψ̂ + ÎF
m,ψ̃k

by substitution of θ̂ for θ

in IF
m,ψ̃k

≡ IF
m,ψ̃k

(θ) to obtain the following.
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Theorem 3.15. Suppose (3.24) holds and define ς̂ (X) = Ê [H1|X]. Then ψ̂m,k =
ψ̂ + ÎF

1,ψ̃k
+
∑m

j=2 ÎF
jj,ψ̃k

where

ψ̂ + ÎF
1,ψ̃k

= B̂P̂H1 + B̂H2 + P̂H3 + H4,

ÎF
22,ψ̃k,i2

= −
[(

H1P̂ + H2

)
ḂZ

T

k

]
i1

[
Zk

(
H1B̂ + H3

)
Ṗ
]

i2

= −

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[(

H1P̂ + H2

)(
Ḃ
Ṗ

)1/2 ϕT

k,f̂
(X)

ς̂(X)1/2

]
i1

×
[(

H1B̂ + H3

) {
Ḃ
Ṗ

}−1/2 ϕ
k,f̂

(X)

ς̂(X)1/2

]
i2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

ÎF
jj,ψ̃k,ij

= (−1)j−1

⎧⎪⎪⎨⎪⎪⎩
[(

H1P̂ + H2

)
ḂZ

T

k

]
i1

[
j∏

s=3

{ (
Ṗ ḂH1ZkZ

T

k

)
is

−Ik×k

}]
×
[
Zk

(
H1B̂ + H3

)
Ṗ
]

i2

⎫⎪⎪⎬⎪⎪⎭

= (−1)j−1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(
H1P̂ + H2

)(
Ḃ
Ṗ

)1/2 ϕT

k,f̂
(X)

ς̂(X)1/2

]
i1

×

⎡⎢⎣ j∏
s=3

⎧⎪⎨⎪⎩
(

H1

ϕ
k,f̂

(X)ϕT

k,f̂
(X)

ς̂(X)

)
is

−Ik×k

⎫⎪⎬⎪⎭
⎤⎥⎦

×
[(

H1B̂ + H3

) {
Ḃ
Ṗ

}−1/2 ϕ
k,f̂

(X)

ς̂(X)1/2

]
i2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Proof. By Lemma 3.3 E
θ̂

[{
H1B̂ + H3

}
ṖZk

]
= E

θ̂

[{
H1P̂ + H2

}
ḂZk

]
= 0.

Thus by Eqs. (3.21) and (3.22) η̃k

(
θ̂
)

= α̃k

(
θ̂
)

= 0 so B̃
(
θ̂
)

= B̂ and P̃
(
θ̂
)

= P̂ .

Further, by Eq. (3.24) , Ê
[
Ṗ ḂH1ZkZ

T

k

]
= Ê

[
Ṗ ḂÊ [H1|X]ZkZ

T

k

]
= Ê

[
Q̂2Zk×

Z
T

k

]
= Ik×k .

Remark 3.16. The reader can easily check that when Ḃ = Ṗ = 1 and H1 ≥ 0 wp
1, ÎF

22,ψ̃k,i2
is precisely the same as IF

(k)
2,2,ψ,i1,i2

(
θ̂
)

of equation (3.12) in Section

3.2.1. By expanding the product
m∏

s=3

{(
H1

ϕ
k,f̂

ϕT

k,f̂

ς̂(Z)

)
is

− Ik×k

}
, the equality of

ÎF
mm,ψ̃k,im

and IF
(k)

m,m,ψ,im

(
θ̂
)

can be demonstrated for all m. Note that ÎF
jj,ψ̃k,ij

depends on Ṗ and Ḃ only through their ratio.

Example 1a (Continued). ψ = E [BP ] , Ḃ = −Ṗ = 1 w.p.1, Q̂ = 1, H1 =
−1, Zk = ϕ

k,f̂
(X) so Ê

[
ZkZ

T

kis

]
= Ik×k. Then

Ṗ
{

H1B̂ + H3

}
= −

(
Y − B̂

)
, Ḃ

{
H1P̂ + H2

}
= A − P̂
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and thus

ÎF
22,ψ̃k,i2

=
[(

A − P̂
)

Z
T

k

]
i1

[
Zk

(
Y − B̂

)]
i2

,

ÎF
jj,ψ̃k,ij

= (−1)j
[(

A − P̂
)

Z
T

k

]
i1

[
j∏

s=3

{
ZkisZ

T

kis
− Ik×k

}] [
Zk

(
Y − B̂

)]
i2

.

Example 2a (Continued). H1 = −A, Ḃ = −1, Ṗ = P̂ = 1/π̂, Q̂ = 1, ψ = E [B],

Q =
{

P̂ /P
}1/2

=
{

π

π̂

}1/2

and Zk = ϕ
k,f̂

(X), so Ê
[
ZkZ

T

kis

]
= Ik×k. Then

Ṗ
{

H1B̂ + H3

}
= A

π̂

(
Y − B̂

)
, Ḃ

{
H1P̂ + H2

}
=
(

A

π̂
− 1

)
, so

ÎF
22,ψ̃k,i2

= −
[(

A

π̂
− 1

)
Z

T

k

]
i1

[
Zk

A

π̂

(
Y − B̂

)]
i2

,

ÎF
jj,ψ̃k,ij

= (−1)j−1

[(
A

π̂
− 1

)
Z

T

k

]
i1

×
[

j∏
s=3

{
A

π̂
ZkZ

T

k − Ik×k

}
is

] [
Zk

A

π̂

(
Y − B̂

)]
i2

.

Consider Example 2a with Ḃ = −1, Ṗ = 1 , Q̂ = π̂1/2, and Zk = ϕ
k,f̂

(X),

Ê
[
Q̂2ZkZ

T

kis

]
= Ik×k, Ṗ

{
H1B̂ + H3

}
=

[
A
(
Y − B̂

)]
, Ḃ

{
H1P̂ + H2

}
=(

A

π̂
− 1

)
, so

ÎF
22,ψ̃k,i2

= −
[(

A

π̂
− 1

)
Z

T

k

]
i1

[
ZkA

(
Y − B̂

)]
i2

,

ÎF
jj,ψ̃k,ij

= (−1)j−1

[(
A

π̂
− 1

)
Z

T

k

]
i1

×
[

j∏
s=3

{
AZkZ

T

k − Ik×k

}
is

] [
ZkA

(
Y − B̂

)]
i2

.

Our next theorem, proved in the Appendix of our technical report, derives the
estimation bias EBm = E

[
ψ̂m,k

]
− ψ̃k.

Theorem 3.17. Suppose (3.14)–(3.16) and (Ai)–(Aiv) hold then

EBm = (−1)m−1

⎧⎪⎨⎪⎩ E
[
Q2

(
B−B̂

Ḃ

)
Z

T

k

]{
E
[
Q2ZkZ

T

k

]
− Ik×k

}m−1

×
{

E
[
Q2ZkZ

T

k

]}−1

E
[
ZkQ2

(
P−P̂

Ṗ

)]
⎫⎪⎬⎪⎭(3.25)

|EBm|

≤

⎧⎪⎪⎨⎪⎪⎩
∣∣∣∣∣∣∣∣{ Ḃ

Ṗ
G
}1/2

∣∣∣∣∣∣∣∣
∞

∣∣∣∣∣∣∣∣{ Ṗ
Ḃ

G
}1/2

∣∣∣∣∣∣∣∣
∞

||δg||m−1
∞ (1 + op (1))×{∫

(p (X) − p̂ (X))2 dX
}1/2

{∫ (
b (X) − b̂ (X)

)2

dX

}1/2

⎫⎪⎪⎬⎪⎪⎭(3.26)

= OP

⎛⎝(
log n

n

) (m−1)βg
d+2βg

n
−
(

βb
d+2βb

+
βp

d+2βp

)⎞⎠(3.27)
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for m ≥ 1, where δg = g(X)−ĝ(X)

ĝ(X)
.

Remark 3.18. At the cost of a longer proof we could have used Hölder’s inequal-
ity repeatedly to control δg in the Lp norm ||δg||m+1 with p = m + 1 to show

that |EBm| = OP

(
||δg||m−1

m+1

∣∣∣∣∣∣b (·) − b̂ (·)
∣∣∣∣∣∣

m+1
||p (·) − p̂ (·)||m+1

)
. Thus, |EBm| is

OP

(∣∣∣∣∣∣θ − θ̂
∣∣∣∣∣∣m+1

)
, consistent with the form of the bias given in our fundamental

Theorem 2.2.

Remark 3.19 (An alternate derivation of ψ̂m,k). The above derivation of
ψ̂m,k required that one have facility in calculating higher order influence functions
IF

m,ψ̃k
, as done in the proof of Theorem 3.14 in the Appendix. However, there exists

an alternate derivation of ψ̂m,k that does not require one learn how to calculate
influence functions. Specifically, we know from Theorems 2.2 and 2.3 that in a
(locally) nonparametric model ÎF

jj,ψ̃k
, j ≥ 2 is the unique jth order U-statistic that

is degenerate under θ̂ and satisfies

(3.28) EBj−1 + E
[
ÎF

jj,ψ̃k
|θ̂
]
≡ EBj = Op

(∣∣∣∣∣∣θ̂ − θ
∣∣∣∣∣∣j+1

)
with EB1 = E

[
ψ̂1|θ̂

]
− ψ̃k. In fact, we first derived ψ̂m,k by beginning with ψ̂1 =

ψ̂ + ÎF
1,ψ̃k

, calculating EB1 = E
[
ψ̂1|θ̂

]
− ψ̃k, and then, recursively for j = 2, . . .

finding ÎF
jj,ψ̃k

satisfying the above equation. In fact if one did not even know how

to derive IF
1,ψ̃k

, one could begin the recursion by obtaining ÎF
1,ψ̃k

as the unique

first order U-statistic with mean zero under θ̂ satisfying ψ̂ − ψ̃k + E
[
ÎF

1,ψ̃k
|θ̂
]

=

Op

(∣∣∣∣∣∣θ̂ − θ
∣∣∣∣∣∣2).

3.2.4. The variance of ψ̂m,k ≡ ψ̂ + ÎF
m,ψ̃k

using compact wavelets

In this section, we derive the order of the variance of ψ̂m,k when the orthonormal
system {ϕj (X)} used to construct our U -statistics are a compact wavelet basis.
First consider the case where X is univariate; without loss of generality, assume
that X ∼ Uniform[0, 1]. Because we are primarily interested in convergence rates,
the fact that X may not follow the uniform distribution will not affect the rate
results given below, but can influence the size of the constants. We use φj (X) in
place of ϕj (X) to indicate univariate basis functions.

Let k∗, k be integer powers of two with k > k∗. Denote by φ (X) ≡ φ
k

1 (X) the

k− dimensional basis vector whose first k∗ components φ
k∗

1 (X) are the k∗−vector
of level log2 k∗ scaled and translated versions of a compactly supported ’father’
wavelet (Mallat [10]) and whose last k − k∗ components φ

k

k∗+1 (X) are the as-
sociated compact mother wavelets between levels log2 k∗ and log2 k. In partic-
ular, one may use periodic wavelets, folded wavelets or Daubechies’ boundary
wavelets with enough vanishing moments to obtain the optimal approximation
rate of O

(
k−2β/d

)
for β = max (βg, βp, βb). The multiresolution analysis (MRA)
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property of wavelets allows us to decompose the vector space spanned by the
log2 (k)-level father wavelets Vlog2(k) into the direct sum of the subspace spanned

by log2 (k∗)-level father wavelets Vlog2(k
∗) =

{
aT φ

k∗

1 (X) : a ∈ Rk∗
}

and the span
of mother wavelets for each level between log2 (k∗) and log2 (k) − 1 which we re-
spectively write as

Wlog2(k
∗) =

{
aT φ

2k∗

k∗+1 (X) : a ∈ Rk∗
}

,

Wlog2(k0)+1 =
{

aT φ
4k∗

2k∗+1 (X) : a ∈ R2k∗
}

,

...

Wlog2(k)−1 =
{

aT φ
k
k
2 +1 (X) : a ∈ R

k
2

}
.

Then for any integer s with log2 (k∗) + 1 ≤ s, we have

Vs = Vlog2(k
∗) ⊕

⎛⎝ s−1⊕
v=log2(k

∗)

Wv

⎞⎠ .

As s → ∞, the resulting basis system is dense in L2 (X) (Mallat [10]). Since, in fact,
X is d−dimensional we require a generalization that allows for multivariate tensor
wavelet basis functions. In fact, suppose XT =

(
X1, . . . , Xd

)
is now multivariate,

and we again assume X ∼ Uniform on [0, 1]d. Given d univariate vector spaces

V1,log2(k),V2,log2(k), . . . ,Vd,log2(k)

respectively spanned by vectors φ
k

1

(
X1

)
, φ

k

1

(
X2

)
, . . . , φ

k

1

(
Xd

)
, so that for 1 ≤ r ≤

d,
Vr,log2(k

∗) ⊂ Vr,log2(k
∗)+1 ⊂ . . . ⊂ Vr,log2(k)−1 ⊂ Vr,log2(k)

and

Vr,log2(k) = Vr,log2(k
∗) ⊕

⎛⎝ log2(k)−1⊕
v=log2(k

∗)

Wr,v

⎞⎠ .

One may define d dimensional tensor vector spaces

Yd,log2(k
∗),Yd,log2(k

∗)+1, . . . ,Yd,log2(k)

such that
Yd,log2(k

∗) ⊂ Yd,log2(k
∗)+1 ⊂ . . . ⊂ Yd,log2(k),

where for s ≥ 0,
Yd,log2(k0)+s=

⊗
1≤r≤d

Vr,log2(k0)+s.

As s → ∞, the resulting tensor basis system is dense in L2 (X) (Mallat [10]).
Next, suppose that we have a set of multivariate basis functions{

ϕ
kj

1 (X) , j = 0, 1, . . . , 2m
}

such that for each kj , ϕ
kj

1 (X) spans
⊗

1≤r≤d

Vr,log2(kj,r), where
d∏

r=1
kj,r = kj . Define

|| · ||2 as the L2 norm with respect to the Lebesgue measure. The following theorem
is key to our derivation of the order of the variance of ψ̂m,k.
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Theorem 3.20. For m ≥ 0,∥∥∥∥∥∥ϕk1
1 (Xi1)

T
m∏

j=1

{
ϕ

kj

1

(
Xij+1

)
ϕ

kj+1
1

(
Xij+1

)T
}

ϕ
km+1
1

(
Xim+2

)∥∥∥∥∥∥
2

2

= E

⎛⎝m+1∏
j=1

K(1,kj)

(
Xij , Xij+1

)⎞⎠2

�
m+1∏
j=1

kj .

The following theorem is an immediate consequence of Theorem 3.20 obtained
by taking kj = k∗ = k (which implies we use the father wavelets at level log2(k) but
no mother wavelets.)

Theorem 3.21. For all θ ∈ Θ,

varθ

[
IF

1,ψ̃k
(θ)

]
� 1

n
,

varθ

[
IF

jj,ψ̃k
(θ)

]
�
(

1
n

max

{
1,

(
k

n

)j−1
})

,

varθ

[
IF

m,ψ̃k
(θ)

]
≈ var

θ̂

[
ÎF

m,ψ̃k
|θ̂
]
� 1

n
max

{
1,

(
k

n

)m−1
}

.

We now use Theorem 3.21 to derive the order of the conditional variance of ψ̂m,k

given θ̂.

Theorem 3.22. If supo∈O

∣∣∣f (o; θ̂
)
− f (o; θ)

∣∣∣ → 0 as ||θ̂−θ|| → 0, then for a fixed
m,

varθ

[
ψ̂

m,ψ̃k
|θ̂
]

= varθ

[
ÎF

m,ψ̃k
|θ̂
]

= var
θ̂

[
ÎF

m,ψ̃k
|θ̂
]
(1 + op (1))

�
(

1
n

max

{
1,

(
k

n

)m−1
})

.

The proof is in our technical report.
For a given m, the estimator ψ̂m,kopt(m) that minimizes the maximum asymptotic

MSE over the model M (Θ) defined by (Ai)–(Aiv) among the candidates ψ̂m,k uses

the value kopt (m) ≡ kopt (m, n) of k that equates the order 1
n max

{
1,
(

k
n

)m−1
}

of

var
[
ψ̂

m,ψ̃k
|θ̂
]

to the order

max
[
{TBk}2

, {EBm (θ)}2
]

=

max

⎡⎢⎣ (
log n

n

) 2(m−1)βg
d+2βg

n
−
(

2βb
d+2βb

+
2βp

d+2βp

)
,

k− 2(βb+βp)
d

⎤⎥⎦
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of the maximal squared bias. The estimator ψ̂mopt,kopt ≡ ψ̂mopt,kopt(mopt) that min-
imizes the maximum asymptotic MSE over the model M (Θ) among all candidates

ψ̂m,k is the estimator ψ̂m,kopt(m,n) which minimizes 1
n max

(
1,
(

kopt(m,n)
n

)m−1
)

.

3.2.5. Distribution theory and confidence interval construction

We derive a consistent estimator of the variance and give the asymptotic distrib-
ution of ψ̂m,k for any model and functional satisfying (Ai)–(Aiv). Let zα be the
upper α−quantile of a standard normal distribution, i.e. a N (0, 1).

Theorem 3.23. (a) Let Ŵ2

1,ψ̃k

= n−1V

[{
ÎF

1,ψ̃k,i1

}2
]
,

Ŵ2

jj,ψ̃k

=
(

n

j

)−1

V

[(
ÎF

(s)

j,j,ψ̃k(·)

)2
]

,

for j ≥ 2, and

Ŵ2

m,ψ̃k

= Ŵ2

1,ψ̃k

+
m∑

j=2

Ŵ2

jj,ψ̃k

,

where ÎF
(s)

j,j,ψ̃k(·) is the symmetric kernel of ÎF
jj,ψ̃k(·). We have,

Ê
[
Ŵ2

1,ψ̃k

]
= v̂ar

[
ÎF

1,ψ̃k
|θ̂
]
,

Ê
[
Ŵ2

jj,ψ̃k

]
= v̂ar

[
ÎF

jj,ψ̃k
|θ̂
]
,

Ê
[
Ŵ2

m,ψ̃k

]
= v̂ar

[
ÎF

m,ψ̃k
|θ̂
]
,

where v̂ar [·] = var
θ̂
[·].

(b) Conditional on the training sample,{
1
n

max

{
1,

(
kopt (m, n)

n

)m−1
}}−1/2 {

ψ̂m,kopt(m,n) − E
[
ψ̂m,kopt(m,n)|θ̂

]}
converges uniformly for θ ∈ Θ to a normal distribution with finite variance as
n → ∞. The asymptotic variance is uniformly consistently estimated by{

1
n

max

{
1,

(
k

n

)m−1
}}−1

Ŵ2

m,ψ̃kopt(m,n)
.

Thus {
ψ̂m,kopt(m,n) − E

[
ψ̂m,kopt(m,n)|θ̂

]}
/Ŵ

m,ψ̃kopt(m,n)

is converging in distribution to a standard normal distribution.
(c) Define the interval Cm,k = ψ̂m,k±zαŴ

m,ψ̃k
. Suppose kopt (m, n) = nρ

opt(m,n) .

Then for k∗ = nρ∗
, ρ∗ > ρ

opt(m,n),

supθ∈Θ

⎡⎢⎢⎣ Eθ

[
ψ̂2,k∗ |θ̂

]
√

varθ

[
ψ̂2,k∗ |θ̂

]
⎤⎥⎥⎦ = op (1)
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and
{

ψ̂m,k∗ − ψ (θ)
}

/Ŵ
m,ψ̃k∗

converges uniformly in θ ∈ Θ to a N (0, 1). More-
over, Cm,k∗ is a conservative uniform asymptotic (1 − α) confidence interval for
ψ (θ).

(d) Suppose we could derive a constant Cbias and a constant N∗ such that

sup
θ

∣∣∣Eθ

[{
ψ̂m,kopt(m,n) − ψ (θ)

}]∣∣∣
= sup

θ

∣∣{TBkopt(m,n) (θ) + EBm (θ)
}∣∣

≤ Cbias

{
1
n

max

{
1,

(
nρ

opt(m,n)

n

)m−1
}}1/2

for n > N∗. Then

BCm,kopt(m,n)

= ψ̂m,kopt(m,n) ±

⎧⎨⎩zαŴ
m,ψ̃k∗

+ Cbias

{
1
n

max

{
1,

(
nρ

opt(m,n)

n

)m−1
}}1/2

⎫⎬⎭
is a conservative uniform asymptotic (1 − α) confidence interval for ψ (θ).

Part (a) of the theorem is an easy calculation. The asymptotic normality of
ψ̂m,kopt(m,n) is based on new results on the asymptotic distribution of higher order
U -statistics with kernels depending on n to be published elsewhere (Robins et al.
[18]).

Part (c) of the theorem implies we obtain a conservative uniform asymptotic
(1 − α) confidence interval for any value of ρ∗ exceeding ρ

opt(m,n). However, for
the actual fixed sample size of our study, say n = 5000, there is no guarantee the
interval of part (c) based on given difference ρ∗ − ρ

opt(m,n), say 0.3, will provide
conservative finite sample coverage.

Because of this difficulty, a better approach, described in part (d), would be
to determine a constant Cbias that can be used to bound the maximal bias under
the model at a sample sizes exceeding N∗, with N∗ no greater than the actual
fixed sample size n of the study. Then the interval BCm,kopt(m,n) will be a honest
conservative finite sample 1−α confidence interval, provided that ψ̂m,kopt(m,n) has
nearly converged to its normal limit at sample size n. Unfortunately, as yet we do
not know how to determine the constants Cbias and N∗ of part (d) as a function of
our model and of our initial estimator θ̂. This is an important open problem.

3.2.6. Models of increasing dimension and multi-robustness

A model of increasing dimension. The previous results can also be used for
the analysis of models whose dimension increases with sample size. In fact, consider
the M (Θnη ), η known, that differs from model M (Θ) in that, rather than assum-
ing b (x) and p (x) live in particular Hölder balls, we instead assume the working
models of Eqs. (3.17) and (3.18) are precisely true for k = nη, so ψ (θ) ≡ ψ̃nη (θ)
and the dimensions of b (x) and p (x) increase as nη. Valid point and interval esti-
mation for ψ̃nη (θ) can still be based on the estimators ψ̂m,k except now (i) there
is truncation bias only when k < nη, (ii) the variance remains of the order of
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1
n max

(
1,
(

k
n

)m−1
)
, and (iii) the estimation and truncation bias (when it exists)

orders will be determined by any additional complexity reducing restrictions placed
on the fraction of non-zero components or on the rate of decay of the components
of the vectors η̃nη (θ) and α̃nη (θ), and, for estimation bias, by βg as well. As a con-
sequence, mopt and kopt under model M (Θnη ) will differ from their values under
model M (Θ). Note we need not take k = nη as we did in the heuristic discussion
following Remark 2.8. Indeed ψ̂m

best
in that discussion corresponds to the estimator

in the class ψ̂m,k=nη with the fastest rate of convergence. In general, ψ̂m
best

will
have convergence rate slower than ψ̂mopt,kopt . Furthermore, the discussion in Section
4.1.1 implies that, when nη 
 n and the minimax rate for estimation of ψ (θ) is
slower than n−1/2, even ψ̂mopt,kopt will typically fail to converge at the minimax rate
when complexity reducing restrictions have been imposed on η̃nη (θ) and α̃nη (θ).

Multi-robustness and a practical data analysis strategy. Conditional on
θ̂, for m ≥ 2, EBm is zero and thus estimator ψ̂m,k is unbiased for ψ̃k if p̂ (·) =
p (·) , b̂ (·) = b (·), or ĝ (·) = g (·). We refer to ψ̂m,k as triply-robust for ψ̃k, gener-
alizing Robins and Rotnitzky [17] and van der Laan and Robins [24] who referred
to ψ̂1 as doubly-robust because of its being unbiased for ψ̃k if either p̂ (·) = p (·)
or b̂ (·) = b (·). In fact, for m ≥ 3, we can construct a modified estimator ψ̂mod

m,k

that is m + 1-fold robust as follows. Let ĝs (·), s = 3, . . . , m, denote m − 2 addi-
tional initial estimators of g (·) that differ from one another and from ĝ (·). Define

ψ̂mod
m,k = ψ̂ + ÎF

1,ψ̃k
+ ÎF

22,ψ̃k,ij
+
∑m

j=3 ÎF
mod

jj,ψ̃k
, where

ÎF
mod

jj,ψ̃k,ij
= (−1)j−1

[(
H1P̂ + H2

)
ḂZ

T

k

]
i1

{(
Ṗ ḂH1ZkZ

T

k

)
i2
− Ik×k

}

×

⎡⎢⎢⎢⎣
j−1∏
s=3

{
Ês

[
Ṗ ḂH1ZkZ

T

k

]}−1

{(
Ṗ ḂH1ZkZ

T

k

)
is

− Ês

[
Ṗ ḂH1ZkZ

T

k

]}
⎤⎥⎥⎥⎦

×
{

Êj

[
Ṗ ḂH1ZkZ

T

k

]}−1

×
[
Zk

(
H1B̂ + H3

)
Ṗ
]

ij

with Ês defined like Ê, except with ĝs (·) replacing ĝ (·). In the Appendix of our
technical report, we prove that EBmod

m = E
[
ψ̂mod

m,k

]
− ψ̃k is

(−1)m−1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

E
[
ḂṖH1

(
P−P̂

Ṗ

)
Z

T

k

]{
E
[
ḂṖH1ZkZ

T

k

]
− Ik×k

}
×

m∏
s=3

{
Ês

[
ḂṖH1ZkZ

T

k

]}−1

×
{

E
[
ḂṖH1ZkZ

T

k

]
− Ês

[
ḂṖH1ZkZ

T

k

]}
×
{

E
[
ḂṖH1ZkZ

T

k

]}−1

E
[
ḂṖH1

(
B−B̂

Ḃ

)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
which is zero if p̂ (·) = p (·), b̂ (·) = b (·), ĝ (·) = g (·), or if any of the m − 2 ĝs (·)
equals g (·). (We note that if p̂ (·) = p (·) or b̂ (·) = b (·), ψ = ψ̃k and thus ψ̂mod

m,k and
ψ̂m,k are unbiased for ψ .)

In settings where the dimension d of X is so large (e.g., 30−100) that the above
asymptotic results fail as a guide to the finite sample performance of our procedures
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at the moderate sample sizes, say n = 500–5000, commonly found in practice, one
might consider, as a practical data analysis strategy, using the m + 1-fold robust
estimator ψ̂mod

m,k with p̂ (·) , b̂ (·) , ĝ (·), and the ĝs (·) selected by cross-validation as
in van der Laan and Dudoit [23]. Specifically, the training sample is split into two
random subsamples – a candidate estimator subsample of size nc and a validation
subsample of size nv, where both nc/n and nv/n are bounded away from 0 as n →
∞. A large number (e.g., n3) candidate parametric models of various dimensions
and functional forms for p, b, and g are fit to the candidate estimator subsample
and the validation sample is used to find the candidate estimators p̂ (·) and b̂ (·) for
p and b and the m−1 candidate estimators ĝ (·) and ĝs (·) , s = 3, . . . , m, for g with
the smallest estimated risks (with respect to an appropriate risk function such as
squared error or Kullback-Leibler).

In the setting of very high dimensional X, current practice is to use a doubly
robust estimator, say ψ̂1 with p̂ and b̂ selected by cross validation (van der Laan
and Dudoit [23]). An m + 1-robust estimator ψ̂mod

m,k with k 
 n and m rather large
may be preferable to a doubly robust estimator for two reasons. First, if one uses
an m + 1-robust estimator of ψ rather than a DR estimator, it may be more likely
that the estimator will have very small bias, as it is more likely that at least one
of m + 1, rather than one of two, models is very nearly correct. Second, because
k 
 n, nominal 1 − α Wald confidence intervals centered at ψ̂mod

m,k will be wider
than the interval of length proportional to n−1/2 centered at ψ̂1. A wide interval is
a more appropriate measure of the actual uncertainty about ψ. However, it is also
the case that the bias of ψ̂mod

m,k can exceed that of ψ̂1 when all of the m + 1 models
selected by cross-validation are far from correct, owing to the product structure
of the estimation bias. The product of m + 1 errors, each greater than 1, will
exceed the product of just 2 of the errors. We therefore plan to compare through
simulations the finite sample performances of ψ̂mod

m,k and ψ̂1 in the setting of very
high dimensional X.

4. Rates of convergence and minimaxity

We consider a generic version in which we only assume a model and functional
satisfying Ai) − Aiv). To examine efficiency issues, we first consider the estimator
ψ̂1 based on the first order influence function and sample splitting. Without loss
of generality we assume βp ≥ βb. (Otherwise simply interchange βp and βb in what
follows.) It will be useful to consider the alternative parametrization

β =
βp + βb

2
,

Δ =
(

βp

βb
− 1

)
≥ 0.

The (conditional) variance of ψ̂1 is of the order of 1/n and the (conditional) bias

of ψ̂1 in estimating ψ is Op

(
n
−
(

βb
d+2βb

+
βp

d+2βp

))
. If Δ = 0 and thus βp = βb, the

bias of ψ̂1 is n− 2β
d+2β and ψ̂1 is not n1/2− consistent for ψ when β/d < 1/2. At the

other extreme, as Δ → ∞, i.e. βb → 0, the bias of ψ̂1 is n− 2β
d+4β which fails to be

n1/2−consistent for any finite β.
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Minimaxity with g known. To further examine efficiency issues, it is instructive
to first consider the estimation of ψ with g (·) known. If g (·) were known, we could
set ĝ (X) = g (X) when calculating ψ̂m,k. Then EB2 = 0 and ψ̂2,k would therefore
be an unbiased estimator of ψ̃k. Letting a superscript g denote the model with g
known, it is easy to see that ψ̂mg

opt,k
g
opt(mg

opt ) would be ψ̂2,kg
opt(2 ) where kg

opt (2)

satisfies max
(
1/n, k/n2

)
� var

(
ψ̂2,k

)
= TB2

k = k−2(βb+βp)/d = k−4β/d. Solving

this, we find that when β/d is greater than or equal to 1/4, we can take kg
opt =

n
1

4β/d ≤ n and
∣∣∣ψ̂2,kg

opt(2 ) − ψ
∣∣∣ = Op

(
n− 1

2

)
regardless of Δ, which is, of course,

the minimax rate.
In contrast if β/d < 1/4, kg

opt (2) = n
2

1+4β/d and
(
ψ̂2,kg

opt(2 ) − ψ
)

= n− 4β
4β+d . In

an unpublished paper, we have proved that this is the minimax rate when g (·) is
known.

This raises the question of whether the lower bounds of rate n− 1
2 for β/d ≥ 1/4

and/or rate n− 4β
4β+d for β/d < 1/4 are still achievable when g is unknown, without

restrictions on the smoothness of g.
Before addressing this question, we take the opportunity to compare the relative

efficiencies of competing rate-optimal unbiased estimators in the case of g known.
This discussion will provide further insight into the results given in Remark 2.6 for
models which are not locally nonparametric.

Relative efficiency of various unbiased estimators with g known. For
simplicity, we restrict the following discussion to the truncated version of the para-
meter ψ = E

[
{b (X)}2

]
, with b (X) = E[Y |X], g (·) known, and Y Bernoulli. For

this choice of ψ, g (·) is the marginal density of X. In this subsection, we assume
ĝ (X) is chosen equal to the known g (X) so E

[
ZkZ

T

k

]
= Ik×k. Also we choose

Ḃ = −Ṗ = 1 and take B̂ = b̂ (X) ∈ lin
{
Zk

}
, so B̃ = Π

[
B|Zk

]
= E

[
BZ

T

k

]
Zk and

ψ̃k = E
[{

Π
[
B|Zk

]}2
]

do not depend on B̂. Further we only concern ourselves
with efficiency relative to the n observations in the estimation sample. We thus
ignore any efficiency loss from using N − n observations to construct b̂.

Let Θg = {b : x �→ b (x) ∈ [0, 1]} ⊂ Θ denote the subset of Θ corresponding to
the known g, which consists of all functions from the unit cube in Rd to the unit
interval. The model M (Θg) is not locally nonparametric. For example, the first
order tangent space Γ1 (θ) does not include first order scores for g. Its second order
tangent space Γ2 (b) does not contain second order scores for g or mixed scores for
g and b. Rather, Γ2 (b) is the closed linear span of the first and second order scores
for b. Thus

Γ2 (b) = {S (a, c) ; varb [S (a, c)]} < ∞; a ∈ A, c ∈ C }

where

Sij (a, c) = {(Y − B) a (X)}i +
[
(Y − B)i c (Xi, Xj) (Y − B)j

]
,

and A and C are the set of one and two dimensional functions of x. Since, for
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b̂ ∈ lin {zk (x)},

ψ̂2,k

(
b̂
)
≡ ψ̂2,k

= V

⎧⎨⎩
[
B̂2 + 2B̂

(
Y − B̂

)]
i

+
[(

Y − B̂
)

Z
T

k

]
i

[
Zk

(
Y − B̂

)]
j

⎫⎬⎭
is unbiased for ψ̃k (b) = E

[{
Π
[
B|Zk

]}2
]

in model M (Θg), we know, by Remark

2.6, that IF
eff

2,ψ̃k

(b) for ψ̃k (b) is the projection Πb

[
ψ̂2,k − ψ̃k (b) |Γ2 (θ)

]
of the second

order influence function ψ̂2,k−ψ̃k (b) onto Γ2 (b). Now if ψ̂2,k−ψ̃k (b) was an element
of Γ2 (b), ψ̂2,k − ψ̃k (b) would equal IF

eff

2,ψ̃k

(b) and thus be second order ‘unbiased

locally efficient’, at b ∈ Θg, as defined earlier in Remark 2.6. However we show
below that, when b̂ (X) = c for some c w.p.1 does not hold, ψ̂2,k − ψ̃k (b) is not an
element of Γ2 (b) for any b. Rather, a straightforward calculation gives

IF
eff

2,ψ̃k

(b) = V

⎧⎨⎩
[
2E

[
BZ

T

k

]
Zk (Y − B)

]
i

+
[
(Y − B)Z

T

k

]
i

[
Zk (Y − B)

]
j

⎫⎬⎭ .

Now one can check that ψ̃k

(
b̂
)

+IF
eff

2,ψ̃k

(
b̂
)

is a function of b̂, so by Theorem 2.7

of Remark 2.6, we conclude no unbiased globally efficient estimator exists. However,
we prove below that ψ̃k

(
b̂
)

+ IF
eff

2,ψ̃k

(
b̂
)

and ψ̂2,k have identical means. It follows

that ψ̃k

(
b̂
)

+ IF
eff

2,ψ̃k

(
b̂
)

is an unbiased estimator of ψ̃k (b) = E
[(

Π
[
B|Zk

])2]
for

any b̂ ∈ lin {zk (x)}. Thus, for a given choice of b̂ ∈ lin {zk (x)}, ψ̃k

(
b̂
)

+IF
eff

2,ψ̃k

(
b̂
)

is second order unbiased locally efficient at b = b̂. However, one can show using a
proof analogous to that in Theorem 3.22 that for k � n2

varb

[
ψ̃k

(
b̂
)

+ IF
eff

2,ψ̃k

(
b̂
)]

/varb

[
IF

eff

2,ψ̃k

(b)
]

= 1 + oP

(∣∣∣∣∣∣̂b − b
∣∣∣∣∣∣
∞

)
.

Henceforth we assume that b lies in a Hölder ball H(βb, Cb). That is, we con-
sider the submodel b ∈ Θg ∩ H(βb, Cb) and assume b̂ (x) ∈ lin {zk (x)} converges

to b in sup norm at the optimal rate of
(

n
log n

)−βb/(2βb+d)

uniformly over Θg ∩
H(βb, Cb). The submodel and the model Θg have identical tangent spaces. For all
b ∈ Θg ∩ H(βb, Cb),

(
max

(
n−1, k/n2

))−1/2
{

ψ̃k

(
b̂
)

+ IF
eff

2,ψ̃k

(
b̂
)
− ψ̃k (b)

}
has an

asymptotic distribution with mean zero and variance equal to

lim
n→∞

(
max

(
n−1, k/n2

))−1
varb

[
IF

eff

2,ψ̃k

(b)
]
,

for all b ∈ Θg ∩ H(βb, Cb). In a slight abuse of language, we shall refer to
varb

[
IF

eff

2,ψ̃k

(b)
]

as the asymptotic variance of
{

ψ̃k

(
b̂
)

+ IF
eff

2,ψ̃k

(
b̂
)
− ψ̃k (b)

}
.

Thus, as with standard first order theory, even when no unbiased estimator has finite
sample variance that attains the Bhattacharyya bound for all b ∈ Θg ∩ H(βb, Cb),
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there can exist an unbiased estimator sequence whose asymptotic variance does
attain the bound globally.

We next compare the means and variances of ψ̃k

(
b̂
)

+ IF
eff

2,ψ̃k

(
b̂
)

and ψ̂2,k. Now
the two estimators are algebraically related by

ψ̂2,k =
{

ψ̃k

(
b̂
)

+ IF
eff

2,ψ̃k

(
b̂
)}

+
{

V

[
B̂2

]
− E

[
B̂2

]}
.

Since V

[
B̂2

]
− E

[
B̂2

]
is unbiased for zero, we conclude that ψ̂2,k and ψ̃k

(
b̂
)

+

IF
eff

2,ψ̃k

(
b̂
)

have the same mean but varb

[
ψ̂2,k

]
/varb

[
IF

eff

2,ψ̃k

(b)
]

> 1 except when

b̂ (X) = b (X) = c w.p.1 for some c. Thus, since ψ̃k

(
b̂
)

+ IF
eff

2,ψ̃k

(
b̂
)

has asymptotic

variance varb

[
IF

eff

2,ψ̃k

(b)
]

and, except when b̂ (X) = c+op (1), var
(
V

[
B̂2

])
� n−1,

we conclude the asymptotic variance of ψ̂2,k attains the bound varb

[
IF

eff

2,ψ̃k

(b)
]

when k 
 n, but exceeds the bound when k ≤ n, except when b̂ (X) = c + op (1).
Finally, for completeness, Robins and van der Vaart [19] considered an alternative

particularly simple rate-optimal unbiased estimator of ψ̃k (b) = E
[{

Π
[
B|Zk

]}2
]

given by ψ̂RV = V

{[
Y Z

T

k

]
i

[
ZkY

]
j

}
. The Hoeffding decomposition of ψ̂RV −ψ̃k (b)

is

V

[
E
[
BZ

T

k

]
ZkY − ψ̃k (b)

]
+ V

{[
Y Z

T

k − E
[
BZ

T

k

]]
i

[
ZkY − E

[
BZk

]]
j

}
= IF

eff

2,ψ̃k

(b) + Q + T

with

Q = V
[{

Π
[
B|Zk

]
B − ψ

}]
T = V

⎧⎨⎩ 2
(
BiZ

T

k,iZk,j − Π
[
B|Zk

]
j

)
(Y − B)j

+BiZ
T

k,iZk,jBj − Π
[
B|Zk

]
i
Bi − Π

[
B|Zk

]
j
Bj + ψ

⎫⎬⎭ .

Since, except when B = c w.p.1, varb (Q) � n−1 and varb (T ) � k/n2, we conclude
that the asymptotic variance of ψ̂RV exceeds the bound varb

[
IF

eff

2,ψ̃k

(b)
]

regardless

of whether k 
 n does or does not hold except when b (X) = c w.p.1.

Minimaxity with unknown g and β/d ≥ 1/4. We now show that the bound
n− 1

2 for β/d ≥ 1/4 is achievable for each βg > 0. Consider the estimator ψ̂m,k with
n

2
1+4β/d ≤ k ≤ n and

m ≥ 1 +
{

1
2
− βb

d + 2βb
− βp

d + 2βp

}
2βg + d

βg

so that EBm = Op

(
n
−
( (m−1)βg

2βg+d +
βb

d+2βb
+

βp
d+2βp

))
is Op

(
n−1/2

)
. Then var

(
ψ̂m,k

)
�

1/n, TB2
k = Op (1/n) and EB2

m = Op (1/n) so ψ̂m,k will be n
1
2 −consistent for ψ.

If Δ = 0 and β < 1/2, the above expression implies that m ≥ d−2β
2(2β +d)/

βg

(2βg+d) +1
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for n
1
2 −consistency. Similarly, if Δ → ∞, i.e. βb → 0, it is necessary that m ≥

d
2(4β +d)/

βg

(2βg+d) +1 for n
1
2−consistency. These results imply that estimators ψ̂m,k

in our class can always achieve n
1
2 −consistency whenever βg > 0, but for fixed

β < d/2, the order m of the required U -statistic increases without bound as the
smoothness βg of g approaches zero.

Efficiency. We now show that when β/d is strictly greater than 1/4, we can con-
struct an unconditional asymptotically linear estimator based on all N subjects with
influence function N−1

∑N
i=1 IF1,ψ,i (θ) by having the number of the N subjects al-

lotted to the validation sample and analysis sample be N1−ε and n = n (ε) = N −
N1−ε, respectively, for 1 > ε > 0. It then follows from van der Vaart [26] that the es-
timator is regular and semiparametric efficient. Specifically, suppose β/d = 1/4+δ,
δ > 0. Consider the estimator ψ̂m∗,k with m∗ > 1+

{
1

2(1−ε) −
βb

d+2βb
− βp

d+2βp

}
2βg+d

βg

so that EBm∗ = Op

(
N

−(1−ε)

(
(m∗−1)βg

2βg+d +
βb

d+2βb
+

βp
d+2βp

))
is op

(
N−1/2

)
and k =

n (ε)
1

1+2δ < n (ε) so that TB2
k = op (1/N) and var

[
ÎF

jj,ψ̃k

]
= op (1/N) for j ≥

2. Then, by our previous results,

ψ̂m∗,k − ψ (θ) = n (ε)−1
n(ε)∑
i=1

IF1,ψ,i (θ) + op

(
N−1/2

)
.

It remains to show that

N−1
N∑

i=1

IF1,ψ,i (θ) − n (ε)−1
n(ε)∑
i=1

IF1,ψ,i (θ) = op

(
N−1/2

)
.

But the LHS is

n (ε)−1
n(ε)∑
i=1

IF1,ψ,i (θ)
{

n (ε)
N

− 1
}

+ N−1
N∑

i=n(ε)+1

IF1,ψ,i (θ)

= Op

(
n (ε)−1/2

N−ε
)

+ Op

(
N (1−ε)/2N−1

)
= Op

(
N−1/2N−ε

)
+ Op

(
N−1/2N−ε/2

)
= op

(
N−1/2

)
.

Adaptivity when β/d > 1/4. We next prove that if we let n ≡ n (ε) = N −
N1−ε, m ≡ m (N) = o (N) with ln (N) = O (m (N)) and k = n (ε) / ln (n), ψ̂m,k

will be semiparametric efficient for each β > 1/4, provided ||ĝ (·) − g (·)||∞ =

op

(
m
(
N (1−ε)

)−2
)
. Clearly, the truncation bias is o

(
N−1/2

)
. The estimation bias

EBm(N) is Op

(
m
(
N (1−ε)

)−2[m(N)−1]
N

−(1−ε)
{

βb
d+2βb

+
βp

d+2βp

})
. Thus EBm(N) =

op

(
N−1/2

)
if m

(
N (1−ε)

)−2[m(N)−1]
= o

(
N

− 1
2+(1−ε)

{
βb

d+2βb
+

βp
d+2βp

})
. So we re-

quire 2[m (N) − 1] ln
{
m
(
N (1−ε)

)}
/
[

1
2 − (1 − ε)

{
βb

d+2βb
+ βp

d+2βp

}]
ln (N) → ∞,

which is satisfied if ln (N) = O (m (N)). In the appendix of our technical report



380 J. Robins, L. Li, E. Tchetgen and A. van der Vaart

we prove that varθ

[
ψ̂m,k

]
= var

θ̂

[
ψ̂m,k

]
{1 + op (1)} provided ||ĝ (·) − g (·)||∞ =

op

(
m
(
N (1−ε)

)−2
)
. Now

var
θ̂

[
ψ̂m,k

]
= n−1var

θ̂

{
IF1,ψ,i

(
θ̂
)}⎡⎣O

⎛⎝m(N)∑
l=0

{ln n}−l

⎞⎠⎤⎦ .

But
m(N)∑
l=0

{lnn}−l = O

(
1 − (lnn)−[m(N)+1]

1 − {ln n}−1

)
= O

(
1 + {lnn}−1

)
,

so varθ

[
ψ̂m,k

]
is n−1var

θ̂

{
IF1,ψ,i

(
θ̂
)}

{1 + op (1)} = n−1var {IF1,ψ} {1 + op (1)}.
The proof of efficiency now proceeds as above.

Alternative estimators when β/d > 1/4. When β/d > 1/4, there actually
exist, at least for certain functionals in our class, n

1
2 -consistent estimators of ψ

that are much simpler than our very high order U -statistic estimators. For example
consider the expected conditional covariance ψ = E [cov {A, Y |X}] of Example 1b
with d = 1.

Example 1b (Continued). Number the study subjects i = 0, . . . , N −1 ordered
by their realized values Xi, where we have not split the sample. Following Wang et
al. [27], consider the difference-based estimator

ψ̂d = N−1

N/2−1∑
i=0

{Y2iA2i + Y2i+1A2i+1 − Y2i+1A2i − Y2iA2i+1} ,

which has conditional mean given {X1, . . . , XN} of

N−1

N/2−1∑
i=0

cov {A, Y |X2i} + cov {A, Y |X2i+1}

+ N−1

N/2−1∑
i=0

({b (Xi+1) − b (Xi)} {p (Xi+1) − p (Xi)}) .

Hence

E
[
ψ̂d − ψ

]
= N−1E

⎡⎣N/2−1∑
i=0

{b (Xi+1) − b (Xi)} {p (Xi+1) − p (Xi)}

⎤⎦
= Op

(
N−1

N
2 −1∑
i=0

E {Xi+1 − Xi}2β

)
= O

(
N−2β

)
by the theory of spacings (Pyke [13]). But O

(
N−2β

)
is op

(
N−1/2

)
when β > 1/4.

The variance of ψ̂d is O
(
N−1

)
so ψ̂d is N1/2−consistent. However,

varθ

(
ψ̂d

)
varθ(IF1,ψ(θ)) �=

1 + op (1) so ψ̂d is not (semiparametric) efficient. As discussed by Arellano [1], by
using a mth order rather than a second order difference operator and letting m → ∞
at an appropriate rate as N → ∞, the mth order estimator ψ̂d can be made efficient.
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Minimaxity with unknown g and β/d < 1/4. Consider next whether the
lower bound of n− 4β

4β+d for β/d < 1/4 is achievable when g is unknown but βg > 0.
We will show the next section that the bound n− 4β

4β+d is achievable provided

(4.1)
2βg/d

2βg/d + 1
>

4β/d1−4β/d
1+4β/d ( Δ + 1)

(Δ + 2)
,

i.e., βg > 2β( Δ+1)(1−4β/d)
(Δ+2) (1+4β/d)−4(β/d)(1−4β/d)( Δ+1) . To attain the bound n− 4β

4β+d when-
ever Equation (4.1) holds, we introduce new more efficient estimators, owing to the
fact that an estimator ψ̂m,k in our class can attain the bound n− 4β

4β+d only in the spe-
cial case where the second order estimation bias EB2 =

Op

(
n
−
(

βg
2βg+d +

βb
d+2βb

+
βp

d+2βp

))
is less than n− 4β

4β+d .

For a fixed β = (βp + βb) /2, the right hand side of Equation (4.1) is minimized
over Δ ≥ 0 at Δ = 0. At Δ = 0, Equation (4.1) reduces to

βg/d

2βg/d + 1
>

1 − 4β/d

1 + 4β/d
β/d ⇒(4.2)

βg >
β (1 − 4β/d)

1 + 2β/d + 8 (β/d)2
.(4.3)

The right hand side of Equation (4.1) increases with Δ with asymptote equal to
twice the RHS of Equation (4.2) as Δ → ∞. Hence, in order to attain the optimal
rate n− 4β

4β+d when βp = 2β and βb = 0, the quantity βg

2βg+d must be twice as large
as when βp = βb = β.

In the next section, we construct an estimator with a convergence rate of
log (n) n− 4β

4β+d at the cut-point βg

1+2βg = (1−4β)β
1+4β . In this paper we do not consider

the construction of estimators that are rate optimal below this cutpoint.
However, for the special case Δ = 0, in an unpublished paper Li et. al. [9]

have constructed estimators which converge at a rate given in Eq. (1.3), whenever
inequality (4.1) fails to hold . We conjecture that this rate is minimax, possibly
only up to log factors, when inequality (4.1) fails to hold and Δ = 0. At the
cut-point βg

1+2βg = (1−4β)β
1+4β , we obtain m∗ = 0 and thus Equation (1.3) becomes

log (n) n− 4β
4β+d , in agreement with the rate of the estimator of Section 4.1.2 below. In

the extreme case in which βg → 0 with β remaining fixed, log (n) n
− 1

2+
βg/d

1+2βg/d

(m∗+1)2

2β/d

→ log (n) n
− 1

2+
βg

1+2βg
1
β β(1−4β/d)

1+2βg
2βg = log (n) n−2β/d, which agrees (up to a log

factor) with the rate of n−2β/d given by the simple estimator of Wang et al. [27]
analyzed above under “Example 1b continued.” Based on the arguments given
in the Appendix of our technical report, we conjecture that when β < d/4 and
r (n) ||ĝ − g||∞ = op (1) for some r (n) → ∞ as n → ∞,

∣∣∣ψ̂m,k − ψ
∣∣∣ =

Op

(
n−2β/d (log n)t

)
for some natural number t and any m = m (n) ≥

4(β/d)2 log(n)
(1+2β/d) log(r(n)) and k = k (n) = n

m(n)−4β/d
m(n)−1 .

Remark 4.1. Suppose b (·) = E [Y |X = ·] is known to be contained in a Hölder ball
H (β, C). We provide a heuristic argument as to why the minimax rate for the linear
functional b (x) does not depend on a priori knowledge of the smoothness of fX (x)
but the minimax rate for the functional ψ = E

[
b2 (X)

]
may when β/d < 1/4. First
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consider the case where fX (x) is known. Let {φl (x) ; l = 1, . . . , } be a complete
linear independent basis for L2 (FX). Define

ηT
k = EFX

[
b (X) φk (X)T

]
EFX

[
φk (X)φk (X)T

]−1

.

Then b̃k (x) =
∑k

l=1 Π
[
b (x) |φk (x)

]
= ηT

k φk (x) is the projection in L2 (FX) of
b (x) onto linear span of the first k basis functions. With fX (x) known and η̃T

k ≡
Pn

[
Y φk (X)T

]
EFX

[
φk (X) φk (X)T

]−1

, unbiased estimators
∑k

l=1 η̃T
k φk (x) and

η̃T
1,kE

[
φk (X)φk (X)T

]
η̃2,k of the the truncated functionals b̃k (x) = ηT

k φk (x)

and ψ̃k = E
[
b̃2
k (X)

]
= E

[
ηT

k φk (X)φk (X)T
ηk

]
are, respectively, rate minimax

for b (x) and ψ, when k ≡ kopt is chosen to equate the order of the respec-
tive variances k/n and max

(
1
n , k/n2

)
with the order of the respective squared

truncation biases |b (x) − bk (x)|2 = k−2β/d and
(
ψ − ψ̃k

)2

= k−4β/d. For b (x),

kopt = n1/(1+2β/d) � n and the rate is n−β/(d+2β). For ψ, kopt = n2/(1+4β/d) 
 n
and the rate is n−4(β/d)/(1+4β/d) when β < 1/4. The minimax rate for b (x) with
fX (x) unknown and without smoothness assumptions imposed is the same as with
fX (x) known, since, subject to some regularity conditions, for kopt < n,∣∣∣∣Pn

[
Y φkopt

(X)T
]
Pn

[
φkopt

(X) φkopt
(X)T

]−1

φkopt
(x) − ηT

kopt
φkopt

(x)
∣∣∣∣

remains of order Op (kopt/n). In contrast, with k > n, Pn

[
φk (X) φk (X)T

]
is not

invertible. It is for this reason that the minimax rate for ψ with fX (x) unknown is
slower than n−4(β/d)/(1+4β/d) unless the model places sufficient restrictions on the
complexity of fX (x).

Improved rates of convergence with X random in a semiparametric
model. We now, as promised in the Introduction, construct an estimator of σ2

under the homoscedastic model E [Y |X] = b (X), var [Y |X] = σ2 with X ran-
dom with unknown density that, whenever β < min {1, d/4} and, regardless of the

smoothness of fX (x), converges at the rate n− 4β/d
4β/d+1 , which is faster than equal-

spaced non-random minimax rate of n−2β/d. Specifically we divide the support of
X, i.e. the unit cube in Rd, into k = k (n) = nγ , γ > 1 identical subcubes with edge
length k−1/d. We continue to assume the unknown density fX (x) is absolutely con-
tinuous with respect to Lebesgue measure and both it and its inverse are bounded
in sup-norm. Then it is a standard probability calculation that the number of sub-
cubes containing at least two observations is Op

(
n2/k

)
. We estimate σ2 in each

such subcube by (Yi − Yj)
2
/2, where, for any subcube with 3 or more observations,

i and j are chosen randomly, without replacement. Our final estimator σ̂2 of σ2

is the average of our subcube-specific estimates (Yi − Yj)
2
/2 over the Op

(
n2/k

)
subcubes with at least two observations. The rate of convergence of the estimator
is minimized at n− 4β/d

4β/d+1 by taking k = n
2

1+4β/d , as we now show.
We note that

E
[
(Yi − Yj)

2
/2|Xi, Xj

]
= σ2 + {b (Xi) − b (Xj)}2

/2,

|b (Xi) − b (Xj)| = O ‖Xi − Xj‖β by β < 1, and ‖Xi − Xj‖ = d1/2O
(
k−1/d

)
when Xi and Xj are in the same subcube. It follows that the estimator has vari-
ance Op

(
k/n2

)
and bias of O

(
k−2β/d

)
. To minimize the convergence rate we
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equate the orders of the variance and the squared bias by solving k/n2 = k−4β/d

which gives k = n
2

1+4β/d . Our random design estimator has better bias control
and hence converges faster than the optimal equal-spaced fixed X estimator, be-
cause the random design estimator exploits the Op

(
n2/n

2
1+4β/d

.
)

random fluctu-
ations for which X ′s corresponding to two different observations are a distance

of O

({
n

2
1+4β/d

.
}−1/d

)
apart. Our estimator will not converge at rate n− 4β/d

4β/d+1

to E [var (Y |X)] in our nonparametric model, because it then no longer suffices
to average estimates of var (Y |X) only over subcubes containing 2 or more obser-
vations. Indeed, when var [Y |X] depends on X, the estimator σ̂2 = σ̂2

n satisfies{
σ̂2

n − E
[
fk(n) (X) var {Y |X}

]
/E[fk(n)(X)]

}
= Op

(
n− 4β/d

4β/d+1

)
, k (n) = n

2
1+4β/d ,

fk(n) (X) is 1/k (n) times the integral of fX (x) with respect to Lesbegue measure
over the subcube containing X.

Remark 4.2. Consider again Example 1c with τ (θ) being the variance weighted
average treatment effect. We impose no smoothness assumptions on fX (x). The ar-
gument in the previous two paragraphs implies that if β = (βp + βb) /2 < d/4 and
max (βp, βb) < 1, we can construct an estimator τ̂ of τ (θ) that converges at rate

n− 4β/d
4β/d+1 when the semiparametric model (3.5) holds, which is faster than our con-

jectured minimax rate of n−2β/d for τ (θ) when (3.5) is not assumed. Specifically,
again create k = n

2
1+4β/d subcubes. Let τ̂ make the sum ψ̂ (τ) over subcubes contain-

ing at least 2 observations of
{
Y ∗

i (τ) − Y ∗
j (τ)

}
{Ai − Aj} /2 equal to 0 (treating

subcubes with greater than 2 observations as above), where Y ∗ (τ) = Y ∗ − τA.
When (3.5) holds, cov {Y ∗ (τ (θ)) , A|X} = 0. Thus, an argument analogous to
that above implies that ψ̂ (τ (θ)) converges to cov {Y ∗ (τ (θ)) , A|X} = 0 at rate

n− 4β/d
4β/d+1 . That τ̂ converges to τ (θ) at rate n− 4β/d

4β/d+1 is then proved by a Taylor
expansion of 0 = ψ̂ (τ̂) around τ (θ).

4.1. More efficient estimators

4.1.1. Case 1: The estimation bias of the third order estimator is less than the
optimal rate

In a (locally) nonparametric model M (Θ), the estimator ψ̂m,k = ψ̂ + ÎF
m,ψ̃k

is
essentially the unique m−th order U-statistic estimator of the truncated parameter

ψ̃k for which the leading term in the bias is O

(∣∣∣∣∣∣θ̂ − θ
∣∣∣∣∣∣m+1

)
. However, when the

minimax rate of convergence for ψ is less than n−1/2, other mth order U-statistics
estimators will often converge to ψ̃k (and thus ψ) at a faster rate uniformly over the
model than does any estimator ψ̂m,k (constructed from an estimated higher order
influence function ÎF

m,ψ̃k
for ψ̃k) by tolerating bias at orders less than m + 1 in

exchange for a savings in variance.

Remark 4.3. A heuristic understanding as to why this is so can be gained from the
following considerations. The theory of higher order influence functions as developed
in Theorems 2.2 and 2.3 is a theory of score functions (derivatives). Thus it can
directly incorporate the restriction that a function, say b (x), has an expansion
b (x) =

∑∞
l=1 ηlzl (x) for which ηl = 0 for l > k, as the restriction is equivalent to
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various scores being equal to zero. However the theory cannot directly incorporate
restrictions such as

∑∞
l=k η2

l = k−2βb or ηl ∝ l−(βb+
1
2 ) that do not imply any

restrictions on score functions. Thus to find an optimal estimator, one must perform
additional “side calculations” to quantify the estimation and truncation bias of
various candidate estimators under these restrictions. As the assumption that b (x)
lies in a Hölder ball can be expressed in terms of such restrictions, this remark is
relevant to a search for an optimal rate estimator.

We now construct more efficient estimators. We first consider the case where

βb, βb, and βg are such that the estimation bias O

(
n
−
(

βg
2βg+d +

βb
d+2βb

+
βp

d+2βp

))
of

the second order estimator is greater than O
(
n− 4β

4β+d

)
but the estimation bias

O

(
n
−
( 2βg

2βg+d +
βb

d+2βb
+

βp
d+2βp

))
of the third order estimator is less than O

(
n− 4β

4β+d

)
.

That is,

(4.4) n
−
( 2βg

2βg+d +
βb

d+2βb
+

βp
d+2βp

)
< n− 4β

4β+d < n
−
(

βg
2βg+d +

βb
d+2βb

+
βp

d+2βp

)
.

Then the most efficient estimator ψ̂m,k in our class has rate of convergence slower

than n− 4β
4β+d because ψ̂2,kopt(2) converges at rate n

−
(

βg
2βg+d +

βb
d+2βb

+
βp

d+2βp

)
determined

by the second order estimation bias and, for m > 3, ψ̂m,kopt(m) converges at a rate

no faster than n− 6β
(d+2β) = n−4 β

d 3/((3−1)+4 β
d ) = min{m;m>3} n−4 β

d m/((m−1)+4 β
d ). We

obtained n−4 β
d m/((m−1)+4 β

d ) as
(
k−4β/d

)1/2
, where k solves the equation

km/nm+1 = k−4β/d that equates the variance km/nm+1 of IFm to the squared
truncation bias k−4β/d.

First, for the remainder of the paper, we redefine Z̄k ≡ z̄k(X) ≡ ϕ̄k,f̂ (X){Ê[H1|
X]ḃ(X)ṗ(x)}−1/2 by redefining ϕ̄n2,f̂ (X) to have orthonormal components un-
der L2(F̂X)such that the linear spans of {ϕt,f̂ (X), . . . , ϕn2,f̂ (X)} and {ϕt(X), . . . ,
ϕn2(X)} agree for t < n2. This can be accomplished by Gram-Schmidt orthogonal-
ization of ϕ̄n2(X) in L2(F̂X) beginning with ϕn2(X) and working backwards.

To describe our more efficient estimator, define for nonnegative integers
k (0) , k (1) , k∗ (0) , k∗ (1) with k (0) < k (1) and k∗ (0) < k∗ (1) the U -statistic

Û3

(
k(1),
k(0),

k∗ (1)
k∗ (0)

)
= V

(
Û3

(
k(1),
k(0),

k∗ (1)
k∗ (0)

))
with

Û3

(
k(1),k∗(1)
k(0),k∗(0)

)
= ε̂i1Z

k(1),T

k(0),i1

([
Ṗ ḂH1Z

k(1)

k(0) Z
k∗(1),T

k∗(0)

]
i2
− I{k(1)−k(0)}×{k∗(1)−k∗(0)}

)
Z

k∗(1)

k∗(0),i3Δ̂i3

=
k(1)∑

s1=k(0)+1

k∗(1)∑
s2=k∗(0)+1

⎧⎪⎪⎨⎪⎪⎩
ε̂i1zs1 (Xi1)×{[

ḂṖH1

]
i2

zs1 (Xi2) zs2 (Xi2) − I [s1 = s2]
}

× zs2 (Xi3) Δ̂i3

⎫⎪⎪⎬⎪⎪⎭ ,

where Z
k(1)

k(0) =
(
Zk(0)+1 , . . . , Zk(1)

)T
, ε̂ =

(
H1P̂ + H2

)
Ḃ, Δ̂ =

(
H1B̂ + H3

)
Ṗ ,

Ir×v = (Iij)r×v with Iij = I (i = j).
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As an example, ÎF
33,ψ̃k

= Û3

(
k
0 ,k0

)
. We can identify

(
k(1),
k(0),

k∗(1)
k∗(0)

)
with the rec-

tangle in R2 defined by {(r1, r2) ; k (0) + 1 ≤ r1 ≤ k (1) , k∗ (0) + 1 ≤ r1 ≤ k∗ (1)}
with (k (0) + 1, k∗ (0) + 1) and (k (1) + 1, k∗ (1) + 1), respectively, the vertices clos-
est and furthest from the origin. Thus ÎF

33,ψ̃k
= Û3

(
k
0 ,k0

)
is identified with the

rectangle
(
k
0 ,k0

)
. Indeed we can write

Û3

(
k(1),
k(0),

k∗ (1)
k∗ (0)

)

=
∑

(s1,s2)∈
(

k(1),

k(0),

k∗(1)
k∗(0)

)
⎧⎪⎪⎨⎪⎪⎩

ε̂i1zs1 (Xi1)×{[
ḂṖH1

]
i2

zs1 (Xi2) zs2 (Xi2) − I [s1 = s2]
}

× zs2 (Xi3) Δ̂i3

⎫⎪⎪⎬⎪⎪⎭
where, here and below, s1 and s2 are restricted to be integers, so (s1, s2) ∈(

k(1),
k(0),

k∗(1)
k∗(0)

)
are the lattice points of the rectangle.

We next study the variance of Û3

(
k(1),
k(0),

k∗(1)
k∗(0)

)
. It follows from Theorem 3.20 above

that the number of lattice points in
(

k(1),
k(0),

k∗(1)
k∗(0)

)
is proportional to the variance of

Û3

(
k(1),
k(0),

k∗(1)
k∗(0)

)
so if k (0) � k (1) and k∗ (0) � k∗ (1) then var

[
Û3

(
k(1),
k(0),

k∗(1)
k∗(0)

)]
and var

[
Û3

(
k(1),
0,

k∗(1)
0

)]
are both of order k (1) k∗ (1) /n3. Hence the order of the

variance of Û3

(
k(1),
k(0),

k∗(1)
k∗(0)

)
is determined by the vertex of the rectangle

(
k(1),
k(0),

k∗(1)
k∗(0)

)
furthest from the origin.

In contrast by a theorem in the Appendix of our technical report, the mean
E
[
Û3

(
k(1),
k(0),

k∗(1)
k∗(0)

)]
is

Ê
(
Π̂
[
δb|Zk(1)

k(0)

]
δgQ̂2Π̂

[
δp|Zk∗(1)

k∗(0)

])
(1 + op (1))

with δb = Ṗ Ê (H1|X)
(
B̂ − B

)
, δp = ḂÊ (H1|X)

(
P̂ − P

)
, δg = g(X)−ĝ(X)

ĝ(X)
and

Q̂2 = ḂṖ Ê (H1|X). It follows that if k (0) � k (1) and k∗ (0) � k∗ (1) then
E
[
Û3

(
k(1),
k(0),

k∗(1)
k∗(0)

)]
and E

[
Û3

(
∞,
k(0),

∞
k∗(0)

)]
are both of order

Op

[
k (0)−βb k∗ (0)−βp (n/ log n)

−βg
2βg+1

]
.

This “bias” is a “product mixture” of truncation bias through the term

k (0)−βb k∗ (0)−βp and estimaton bias through the term (n/ log n)
−βg

2βg+1 . To see this
for E

[
Û3

(
k(1),
k(0),

k∗(1)
k∗(0)

)]
, we ‘sup out’

∣∣∣δgQ̂2
∣∣∣ from

Ê
(∣∣∣Π̂ [

δb|Zk(1)

k(0)

]
δgQ̂2Π̂

[
δp|Zk∗(1)

k∗(0)

]∣∣∣)
which is

Op

[
(n/ log n)

−βg
2βg+1

]
Ê
(∣∣∣Π̂ [

δb|Zk(1)

k(0)

]
Π̂
[
δp|Zk∗(1)

k∗(0)

]∣∣∣) .

We then apply Cauchy Schwartz to Ê
(∣∣∣Π̂ [

δb|Zk(1)

k(0)

]
Π̂
[
δp|Zk∗(1)

k∗(0)

]∣∣∣), noting that

Ê

({
Π̂
[
δb|Zk(1)

k(0)

]}2
)1/2

= O
(
k (0)−βb

)
. Again a more careful argument using
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Hölder’s inequality would show the log factor is unnecessary. Hence the order of
the mean of Û3

(
k(1),
k(0),

k∗(1)
k∗(0)

)
is determined by the vertex of the rectangle

(
k(1),
k(0),

k∗(1)
k∗(0)

)
closest to the origin.

Motivation. With this background we are ready to motivate our new estimator.
Recall from Section 3.2.5, that with g known, the choice kg

opt (2) = n
2

1+4β/d gives(
ψ̂2,kg

opt(2 ) − ψ
)

= Op

(
n− 4β

4β+d

)
because the truncation bias

∣∣∣ψ̃kg
opt(2)

− ψ
∣∣∣ and

variance are of order n− 4β
4β+d and the estimation bias is zero. Any choice of k larger

than kg
opt (2) will result in a slower rate of convergence.

However, when g is unknown and thus estimated, ψ̂2,kg
opt(2 ) −ψ does not attain

the optimal rate of convergence because the estimation bias n
−
(

βg
2βg+d +

βb
d+2βb

+
βp

d+2βp

)
exceeds n− 4β

4β+d . The estimator ψ̂3,kg
opt(2 ) = ψ̂2,kg

opt(2 ) + Û3

(
kg

opt(2 ),

0,
kg

opt(2 )

0

)
also

fails to attain the rate n− 4β
4β+d because it has variance of the order of

kg
opt (2 )

n

kg
opt (2 )

n2
= O

(
n

2
1+4β/d

n
n− 8β

4β+d

)
,

which exceeds O
(
n− 8β

4β+d

)
. On the other hand, ψ̂3,kg

opt(2 ) has bias of Op

(
n− 4β

4β+d

)
because the truncation bias is Op

(
n− 4β

4β+d

)
and the estimation bias

Op

(
n
−
( 2βg

2βg+d +
βb

d+2βb
+

βp
d+2βp

))

is also Op

(
n− 4β

4β+d

)
under our assumption (4.4). Our strategy will be to try to

replace the term Û3

(
kg

opt(2 ),

0,
kg

opt(2 )

0

)
in the estimator ψ̂3,kg

opt(2 ) = ψ̂2,kg
opt(2 ) +

Û3

(
kg

opt(2 ),

0,
kg

opt(2 )

0

)
by

Û3 (Ω) =
∑

(s1,s2)∈Ω

⎧⎨⎩ ε̂i1zs1 (Xi1) zs2 (Xi3) Δ̂i3×{[
ḂṖH1

]
i2

zs1 (Xi2) zs2 (Xi2) − I [s1 = s2]
} ⎫⎬⎭

where Ω is a subset of the rectangle
(

kg
opt(2 ),

0,
kg

opt(2 )

0

)
such that var

(
Û3 (Ω)

)
�

n− 8β
4β+d but the additional bias

E

[
Û3

(
kg

opt(2 ),

0,

kg
opt (2 )

0

)
− Û3 (Ω)

]
= E

[
Û3

((
kg

opt(2 ),

0,

kg
opt (2 )

0

)
\Ω

)]

≡ E

⎡⎢⎢⎢⎣ ∑
(s1,s2)∈

(
k

g
opt

(2 ),

0,

k
g
opt

(2 )

0

)
\Ω

⎧⎪⎨⎪⎩ ε̂i1zs1 (Xi1)

{ [
ḂṖH1

]
i2

zs1 (Xi2)

×zs2 (Xi2) − I [s1 = s2]

}
×zs2 (Xi3) Δ̂i3

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦
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is Op

(
n− 4β

4β+d

)
. This approach will succeed if we can chose Ω and thus

(
kg

opt(2 ),

0,

kg
opt (2 )

0

)
\Ω

to be sums of rectangles (whose number does not increase with n) such that

(i) each rectangle in
(

kg
opt(2 ),

0,
kg

opt(2 )

0

)
\Ω has its closest vertex to the origin, say

(k (0) , k∗ (0)), satisfying Op

[
k (0)−βb k∗ (0)−βp n

−βg
2βg+1

]
≤ n− 4β

4β+d and (ii) simulta-

neously each rectangle in Ω has its furthest vertex from the origin, say (k (1) , k∗ (1)),
satisfying O

(
k (1) k∗ (1) /n3

)
= O

(
n− 8β

4β+d

)
.

We index the vertices of our set of rectangles as follows. Consider a natural
number J and a set of non-negative integers KJ,tot = {k−2, k−1, k0, . . . , k2J , k2J+1,
k2J+2} satisfying 0 = k−2 < k0 < k2 < · · · < k2J−2 < k2J < k2J+2 = k2J+1 <
k2J−1 < · · · < k1 < k−1.

Note the elements with even subscripts increase from 0 to 2J +2 while elements
with odd subscripts decrease from −1 to 2J − 1. Further the smallest element with
odd subscript equals the largest element with even subscript. We will use two such
sets Kb,J,tot and Kp,J,tot with corresponding elements kbl and kpl with kb,−1 = kp,−1.

Set for s ∈ {−1, 0, . . . , J}

kb,2s+1 = n
3d+4β
(d+4β) /kp,2s+2,(4.5)

kp,2s+1 = n
3d+4β
(d+4β) /kb,2s+2, so(4.6)

kp,2s+1kb,2s+2

n3
=

kb,2s+1kp,2s+2

n3
= n− 8β

4β+d .

We leave J , Kp,J = {kp,2s, s = 0, . . . , J + 1}, and Kb,J = {kb,2s, s = 0, . . . , J + 1}
unspecified for now but derive optimal values below.

Let Ω = Ω (KpJ ,KbJ ) be the union of rectangles

Ω (KpJ ,KbJ) =

{
J⋃

s=0

(
kp,2s−1,kb,2s

kp,2s−2 ,kb,2s−2

)
∪
(

kp,2s,kb,2s−1
kp,2s−2 kb,2s

)}
∪
(

kp,2J+1kb,2J+1
kp,2J kb,2J

)
.

The points (kp,2s+1, kb,2s+2) , (kp,2s+2, kb,2s+1) for s = −1, 0, . . . , J + 1 lie on a

hyperbola Hy in R2 defined by Hy =
{

(r1, r2) ; r1r2 = n
3d+4β
(d+4β)

}
shown in Figure

1 for J = 2. The set Ω (KpJ ,KbJ) ⊂
(

kg
opt(2 ),

0,
kg

opt(2 )

0

)
lies below Hy.

Define

ψ̂3,(KpJ ,KbJ ) = ψ̂2,k−1 + Û3 (Ω (KpJ ,KbJ)) .

We then have

Theorem 4.4. (i) The estimator ψ̂3,(KpJ ,KbJ ) has variance of the order of

k−1

n2
+ (2J + 1)n− 8β

4β+d
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Fig 1. Hyperbola Hy and Associated Rectangles.

and bias E
(
ψ̂3,(KpJ ,KbJ )

)
− ψ of order

Op

{
n
− βg

2βg+d

(
J∑

s=0

(
k
−βp/d
p,2s+1k

−βb/d
b,2s + k

−βb/d
b,2s+1k

−βp/d
p,2s

))}

+Op

(
n
−
( 2βg

2βg+d +
βb

d+2βb
+

βp
d+2βp

))
+ Op

(
k
−(βp+βb)/d
−1

)
.

Proof. Each of the 2J + 1 rectangles whose union is Ω (KpJ ,KbJ) has (kp,2s+1,
kb,2s+2) or (kp,2s+2, kb,2s+1) for some s ∈ {−1, 0, . . . , J} as the vertex furthest
from the origin and thus contributes kp,2s+1kb,2s+2

n3 = n− 8β
4β+d to the variance of

ψ̂3,(KpJ ,KbJ ). The variance of ψ̂2,k−1 � k−1
n2 . Now

E
(
ψ̂3,(KpJ ,KbJ ,)

)
− ψ

=
{

E
(
ψ̂3,k−1

)
− ψ

}
+
{

E
[
Û3 {Ω ((KpJ ,KbJ))}

]
− E

[
Û3

{(
k−1,
0,

k−1

0

)}]}
= Op

(
k
−(βp+βb)/d
−1

)
+ Op

(
n
−
( 2βg

2βg+d +
βb

d+2βb
+

βp
d+2βp

))
+ E

[
Û3

{(
k−1,
0,

k−1

0

)
\Ω ((KpJ ,KbJ))

}]
.

As is evident from Figure 1, Ωc(KpJ ,KbJ) ≡
(

k−1,
0,

k−1
0

)
\Ω ((KpJ ,KbJ)) is the union
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of rectangles ∪J
s=0

{(
kp,2s−1,
kp,2s,

kb,2s−1
kb,2s+1

)
∪
(

kp,2s−1,
kp,2s+1,

kb,2s+1
kb,2s

)}
which have

{(kp,2s, kb,2s+1) , (kp,2s+1, kb,2s) ; s ∈ {−1, 0, . . . , J}}

as the set of vertices closest to the origin, leading to the expression for the bias
given in the theorem.

Theorem 4.5. Given (βb, βp, βg) with βp ≥ βb so Δ ≥ 0, Equation (4.1) holds if

and only if there exists J,KpJ ,KbJ such that ψ̂3,(KpJ ,KbJ , ) − ψ = Op

(
n− 4β

4β+d

)
.

If Equation (4.1) holds, E
[
Û3

{(
k−1,
0,

k−1
0

)
\Ω ((KpJ ,KbJ))

}]
= Op

(
n− 4β

4β+d

)
and thus ψ̂3,(KpJ ,KbJ ) − ψ = Op

(
n− 4β

4β+d

)
, when we choose J to be the smallest

integer such that

(1 + Δ) (J + 1) + c∗ (βg, β,Δ)
∑J+1

l=1 (1 + Δ)l−1
> 3+4β/d

2(1+4β/d) with

c∗ (βg, β,Δ) =
(

2βg/d

2βg/d + 1

)
(Δ + 2)
4β/d

− 2 (Δ + 2)
4β/d + 1

+
3 + 4β/d

(1 + 4β/d)
,

kb,0 = kp,0 = n, kb,2s = kp,2s = n(1+Δ)snq
∑s

l=1
(1+Δ)l−1

for s = 1, . . . , J +1, with

q =
{

3+4β/d
2(1+4β/d) − (1 + Δ) (J + 1)

}
/
∑J+1

l=1 (1 + Δ)l−1.

Note J does not depend on the sample size n.

Proof. From Theorem 4.4, for the variance of ψ̂3,(KpJ ,KbJ ) to be Op

(
n− 8β

4β+d

)
, J

cannot increase with n. Further for the second order truncation bias
Op

(
k
−(βp+βb)/d
−1

)
and the square root of the variance k−1

n2 of ψ̂2,k−1 both to be

Op

(
n− 4β

4β+d

)
, we must have k−1 = kg

opt (2) = n
2

1+4β/d . It then follows from Equa-
tions (4.5) and (4.6) that kp,0 = kb,0 = n.

In order for E
[
Û3

{(
k−1,
0,

k−1
0

)
\Ω ((KpJ ,KbJ))

}]
= Op

(
n− 4β

4β+d

)
, we require for

s = 0, . . . , J ,

n
− 2βg

2βg+d

{
k
−2βb/d
b,2s k

−2βp/d
p,2s+1

}
≤ n− 8β/d

4β/d+1 ,(4.7)

n
− 2βg

2βg+d

{
k
−2βp/d
p,2s k

−2βb/d
b,2s+1

}
≤ n− 8β/d

4β/d+1 .(4.8)

Substituting for kb,2s+1 in Equation (4.8) using Equation (4.5) and recalling that
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βp ≥ βb so Δ ≥ 0, we obtain

n
− 2βg

2βg+d k
−2βp/d
p,2s

{
n

3d+4β
(d+4β)

kp,2s+2

}−2βb/d

≤ n− 8β
4β+d(4.9)

⇔ k
2βb/d
p,2s+2 ≤ n

2βg/d

2βg/d+1 n− 8β/d
4β/d+1 k

2βp/d
p,2s

(
n

3+4β/d
(1+4β/d)

)2βb/d

⇔ kp,2s+2 ≤ n

( 2βg/d

2βg/d+1

)
1

2βb/d n
− 8β/d

4β/d+1
1

2βb/d k
βp
βb
p,2s

(
n

3+4β/d
(1+4β/d)

)
⇔ 1 ≤ kp,2s+2

kp,2s
≤ n

( 2βg/d

2βg/d+1

)
1

2βb/d n
− 8β/d

4β/d+1
1

2βb/d kΔ
p,2s

(
n

3 +4β/d
(1+4β/d)

)
⇔ 1 ≤ kp,2s+2

kp,2s
≤ nc∗(βg,β,Δ)kΔ

p,2s(4.10)

⇔ 1 ≤ nc∗(βg,β,Δ)nΔ

⇔ 0 ≤ c∗ (βg, β,Δ) + Δ

since n = k0 ≤ kp,2s ≤ kp,2s+2.
Solving the last expression for 2βg/d

2βg/d+1 ,we obtain

(4.11)
2βg/d

2βg/d + 1
≥

1−4β/d
1+4β/d + Δ

{
2

4β/d+1 − 1
}

(Δ+2)
4β/d

=
{

4β/d

(Δ + 2)

}
(Δ + 1)

1 − 4β/d

1 + 4β/d
,

which is Equation (4.1), except with a nonstrict inequality. We have just deduced
that the constraint (4.11) was due to restriction (4.8). We have not yet considered
whether the restriction (4.7) implies additional constraints. We now show that it
does not. Specifically if we set kp,2l = kb,2l for all l ∈ {1, 2, . . . , J + 1}, then equation
(4.7) is true whenever Equation (4.8) holds because of our assumption that Δ ≥ 0.
Thus we can set KpJ = KbJ .

Thus we have shown that if ψ̂3,(KpJ ,KbJ , ) − ψ = Op

(
n− 4β

4β+d

)
, then k−1 =

n
2

1+4β/d , (4.11) holds, and J must not increase with n.
We next show that when the inequality is strict in (4.11) and Equation (4.4)

holds, we can find KJ = KpJ = KbJ for which ψ̂3,KJ
− ψ = Op

(
n− 4β

4β+d

)
. We

then complete the proof of the theorem by showing that when (4.11) holds with an

equality, there is no choice of KJ for which ψ̂3,KJ
converges at a rate better than

Op

(
(log n) n− 4β

4β+d

)
.

Suppose the inequality is strict in (4.11). Since k0 = n. Equation (4.10) ap-
plied recursively suggests we define k2s = n(1+Δ)snc∗(βg,β,Δ)

∑s

l=1
(1+Δ)l−1

for s =

1, . . . , J + 1 and take k2s+1 = n
3d+4β
(d+4β)

k2s+2
. However, this will not generally give

k2J+1 = k2J+2 = n

{
3d+4β
(d+4β)

}
1
2 as required when KpJ = KbJ . Instead we use the mod-

ified algorithm given in the statement of the theorem which insures that k2J+1 =

k2J+2 = n
3+4β/d

2(1+4β/d) , as required. Since J is not a function of n, in order to show
ψ̂3,KJ

converges at rate n− 4β
4β+d , we only need to check the bias.

Now k2s+2
k2s

= n(1+Δ)nq(1+Δ)s−1
= k

(1+Δ)
0 nq(1+Δ)s−1 ≤ k

(1+Δ)
0 nc∗(βg,β,Δ)(1+Δ)s−1

since q ≤ c∗ (βg, β,Δ) so the bias of ψ̂3,KJ
is OP

(
n− 4β

4β+d

)
, as required.
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Suppose now the equality holds in Equation (4.11) so c∗ (βg, β,Δ) + Δ = 0 and

continue to assume Eq. (4.4) holds. We now construct an estimator ψ̂3,KJ
that

converges at rate OP

(
n− 4β

4β+d ln (n)
)

and show that no estimator in our class ψ̂3,KJ

converges at a faster rate. We conjecture this rate is minimax when the equality

in Equation (4.11) holds. Again k2s+1 = n
3d+4β
(d+4β)

k2s+2
and by the previous arguments,

k0 = n, k−1 = n
2

(1+4β/d) , k2J+1 = k2J+2 =
{

n
3d+4β
(d+4β)

}1/2

. We can suppose that

k2s = n {v (n)}s
. It remains to determine v (n) and J = J (n). We know J (n) must

satisfy

k2J(n)+2 =
{

n
3d+4β
(d+4β)

}1/2

= n {v (n)}J(n)+1 so

v (n) = n

(
3d+4β

2(d+4β)−1
)

1
J(n)+1 .

The variance of ψ̂3,KJ
is of order n− 8β

4β+d J (n). Thus the order of the bias will still
equal that of the variance provided we multiply the RHS of Eq. (4.9) by J (n). Then
Equation (4.10) becomes 1 ≤ kp,2s+2

kp,2s
≤ nc∗(βg,β,Δ)kΔ

p,2sJ (n)
1

2β/d . Since, kp,2s+2
kp,2s

=
v (n) and n = k0 ≤ kp,2s, we substitute nΔ = kΔ

0 for kΔ
p,2s in the modified Equa-

tion (4.10) which gives v (n) = J (n)
1

2β/d . Hence n

(
3d+4β

2(d+4β)−1
)

1
J(n)+1 = J (n)

1
2β/d

which implies that.

(4.12)
ln (n)
J (n)

= O (ln [J (n)]) .

To minimize the variance, we want the slowest growing function of n that satisfies
Equation (4.12), which is J (n) = ln (n), as claimed.

4.1.2. Case 2: The estimation bias of the third order estimator exceeds the
optimal rate

In this section we no longer assume that the estimation bias n
−
( 2βg

2βg+d +
βb

d+2βb
+

βp
d+2βp

)
of a third order estimator is less than n− 4β

4β+d . Then even when Equation (4.11)

holds with a strict inequality, ψ̂3,KJ
does not achieve a n− 4β

4β+d rate of convergence

because the fourth order bias n
−
( 2βg

2βg+d +
βb

d+2βb
+

βp
d+2βp

)
exceeds n− 4β

4β+d . However, we
will now construct an estimator ψ̂eff

KJ
≡ ψ̂eff

KJ
(βg, βb, βp) that under our assumptions

(Ai)–(Aiv) does converge at rate n− 4β
4β+d whenever (βg, βb, βp) given in assumption

(Aiv) satisfy Equation (4.11) with a strict inequality. Because the estimator is very
complicated, we have chosen to only define the estimator and give its properties
in the text. The motivating ideas for and the formal proofs of these properties are
provided in the appendix of our technical report.

To define the estimator, we need some additional notation. Define

Ûm

(
(l)k(l,1)

k(l,0) , 1 ≤ l ≤ m − 1
)

= Vm

(
ε̂i1Z

k(1,1)T

k(1,0),i1

m−1∏
u=2

(
ḂṖH1Z

k(u−1,1)

k(u−1,0)Z
k(u,1)T

k(u,0) − Iku−1×ku

)
Z

k(m−1,1)

k(m−1,0)Δ̂im

)
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where, ku = k (u, 1) − k (u, 0), Iku−1×ku = (Iij)ku−1×ku
with Iij = I (i = j).

Then define Ûm

(
k(1)
k(0)

)
as Ûm

(
(l)k(1)

k(0) , 1 ≤ l ≤ m − 1
)
. Û

(u)
m

(
k∗(1)
k∗(0),

k(1)
k(0)

)
is de-

fined as Ûm

(
(l)k(l,1)

k(l,0) , 1 ≤ l ≤ m − 1
)

with k (l, 1) = k (1) , k (l, 0) = k (0) for l �= u,

and k (u, 1) = k∗ (1), k (u, 0) = k∗ (0). Next Û
(u,u+1)
m

(
k∗(1)
k∗(0),

k∗∗(1)
k∗∗(0) ,

k(1)
k(0)

)
is defined

as Ûm

(
(l)k(l,1)

k(l,0) , 1 ≤ l ≤ m − 1
)

with k (l, 1) = k (1) , k (l, 0) = k (0) for l �= u and
l �= u + 1, k (u, 1) = k∗ (1) , k (u, 0) = k∗ (0), k (u + 1, 1) = k∗∗ (1), k (u + 1, 0) =
k∗∗ (0). We will use this notation for m = 3, even though Û

(1,2)
3

(
k∗(1)
k∗(0),

k∗∗(1)
k∗∗(0) ,

k(1)
k(0)

)
does not depend on k (0) , k (1) and is equal to Û3

(
k∗(1)
k∗(0),

k∗∗(1)
k∗∗(0)

)
of the previous

subsection.

Finally, define

H∗
v = Ûv

(
k0
0

)
+

v−1∑
u=1

Û(u)
v

(
k−1
k0

,k0
0

)
,

G (s, v) =
v−2∑
u=1

{
Û(u,u+1)

v

(
k2s−1
k2s−2

,k2s

k2s−2
,k0
0

)
+ Û(u,u+1)

v

(
k2s

k2s−2
,
k2s−1
k2s

,k0
0

)}
,

Qv =
v−2∑
u=1

Û(u,u+1)
v

(
k2J+1
k2J

,
k2J+1
k2J

,k0
0

)
.

Theorem 4.6. Given (βg, βb, βp) satisfying Equation (4.11) with a strict inequality,
define

(4.13) m (βg, βb, βp) = int

{(
4β

d + 4β
− βb

d + 2βb
− βp

d + 2βp

)(
2 +

d

βg

)
+ 1

}
+ 1

to be the smallest integer such that
(

log n
n

) (m−1)βg
d+2βg

n
− βb

d+2βb
− βp

d+2βp < n− 4β
d+4β , where

β = βb+βp

2 . Let KJ , J , ψ̂3,KJ
be as in Theorem 4.5 and define

ψ̂eff
KJ

(βg, βb, βp)

= ψ̂3,KJ
+

m(βg,βb,βp)∑
v=4

(−1)v−1
H∗

v +
J∑

s=1

m(βg,βb,βp)∑
v=4

(−1)v−1
G (s, v)

+
m(βg,βb,βp)∑

v=4

(−1)v−1
Qv

= Vn,1

(
H1B̂P̂ + H2B̂ + H3P̂ + H4

)
− H∗

2

+
m(βg,βb,βp)∑

v=3

(−1)v−1
H∗

v +
J∑

s=1

m(βg,βb,βp)∑
v=3

(−1)v−1
G (s, v) +

m(βg,βb,βp)∑
v=3

(−1)v−1
Qv
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Then

E
(
ψ̂eff
KJ

(βg, βb, βp)
)
− ψ (θ)

= Op

⎛⎜⎜⎜⎜⎜⎜⎝max

⎡⎢⎢⎢⎢⎢⎢⎣
k

2β/d
−1 ,

(
log n

n

)− βg
d+2βg

k
−βb/d
2s k

−βp/d
2s+1 ,

(
log n

n

)− βg
d+2βg

k
−βb/d
2s+1 k

−βp/d
2s ,(

log n
n

)− 2βg
d+2βg

k
−2β/d
0 ,

(
log n

n

)− (m−1)βg
d+2βg

n
− βb

d+2βb
− βp

d+2βp ,(
log n

n

)− 2βg
d+2βg max

1≤s≤J

(
k
−βb/d
2s k

−βp/d
0 , k

−βb/d
0 k

−βp/d
2s

)

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠

= Op

⎛⎜⎜⎝max

⎡⎢⎢⎣ k
2β/d
−1 ,

(
log n

n

)− βg
d+2βg

k
−βb/d
2s k

−βp/d
2s+1 ,

(
log n

n

)− βg
d+2βg

k
−βb/d
2s+1 k

−βp/d
2s ,(

log n
n

)− 2βg
d+2βg

k
−2β/d
0 ,

(
log n

n

)− (m−1)βg
d+2βg

n
− βb

d+2βb
− βp

d+2βp

⎤⎥⎥⎦
⎞⎟⎟⎠

= Op

(
n− 4β

d+4β

)
and

var
(
ψ̂eff
KJ

(βg, βb, βp)
)

� k−1

n2
+

J∑
s=0

k2sk2s−1

n3
+

k2
2J+1

n3
� n− 8β

d+4β .

Inference. Elsewhere, we prove that ψ̂eff
KJ

(βg, βb, βp) is asymptotically normal.
Here, to avoid the problem of unknown ‘constants’ for confidence interval construc-
tion that we discussed in Section 3.2.5, we will construct nearly optimal rather than
optimal confidence intervals. We suppose that Equation (4.11) holds with strict
equality for the (βg, βb, βp) associated with the parameter space Θ. Then there ex-
ists ε > 0 such that for all 0 < σ < ε, (βg, βb − σ, βp − σ) satisfies Equation (4.11)
with strict equality,

supθ∈Θ

⎡⎣ Eθ

[
ψ̂eff
KJ

(βg, βb − σ, βp − σ) |θ̂
]

varθ

[
ψ̂eff
KJ

(βg, βb − σ, βp − σ) |θ̂
]
⎤⎦ = op (1)

and
supθ∈Θ

{
varθ

[
ψ̂eff
KJ

(βg, βb − σ, βp − σ) |θ̂
]}

� n− 8(β−σ)
d+4(β−σ) .

Let Ŵ

[
ψ̂eff
KJ

(βg, βb , βp )
]

be a uniformly consistent estimator of (the properly

standardized) varθ

[
ψ̂eff
KJ

(βg, βb , βp ) |θ̂
]

constructed in the same manner as in
Section 3.2.5. Then, for all σ < ε,{

ψ̂eff
KJ

(βg, βb − σ, βp − σ) − ψ (θ)
}(

Ŵ

[
ψ̂eff
KJ

(βg, βb − σ, βp − σ)
])−1

converges uniformly in θ ∈ Θ to a N (0, 1). Moreover,

ψ̂eff
KJ

(βg, βb − σ, βp − σ) ± zαŴ

[
ψ̂eff
KJ

(βg, βb − σ, βp − σ)
]

is a conservative uniform asymptotic (1 − α) confidence interval for ψ (θ) with di-

ameter of the order of n− 4(β−σ)
d+4(β−σ) .
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Remark 4.7. If Equation (4.11) holds with an equality and KJ , J , ψ̂3,KJ
are

as in the final paragraph of the preceding subsection then the proof of Theo-
rem 4.6 in the appendix of our technical report implies ψ̂eff

KJ
(βg, βb, βp) − ψ (θ) =

Op

(
(log n) n− 4β

d+4β

)
5. Adaptive confidence intervals for regression and treatment effect

functions with unknown marginal of X

In this section we describe how to construct adaptive confidence intervals (i) for a
regression function b (X) = E [Y |X] when the marginal of X is unknown and (ii)
for the treatment effect function and optimal treatment regime in a randomized
clinical trial.

5.1. Regression functions

Example 1a (Continued). Consider the case b = p, O = (Y, X) with b (X) =
E (Y |X). As usual, we assume for all θ ∈ Θ, b (·) and the density g (·) of X
are contained in known Hölder balls H (βb, Cb) and H (βg, Cg). Redefine ψ (θ) ≡

Eθ

[(
b (X) − b̂ (X)

)2
]

where b̂ (·) is an adaptive estimate of b (·) from the training

sample and expectations and probabilities remain conditional on the training sam-
ple. Adaptivity of b̂ (·) implies that if b (·) ∈ θ is also contained in a smaller Hölder
ball H (β∗, C), β∗ > βb, C < Cb, then b̂ (·) will converge to b (·) under F (·, θ) at rate

Op

(
n− β∗/d

1+2β∗/d

)
. Robins and van der Vaart [19] showed that, when the marginal

density g (x) of X is known, the key to constructing optimal (rate) adaptive confi-

dence balls for b (X) was to find a rate optimal estimator of Eθ

[(
b (X) − b̂ (X)

)2
]
.

We shall show that their approach fails when the marginal of X is unknown, but
that a modification described below succeeds. Specifically, if b (·) ∈ θ lies in a
smaller Hölder ball H (β∗, C), β∗ > βb, C < Cb, our modification results in honest
asymptotic confidence balls under F (·, θ), θ ∈ Θ, whose diameter is (essentially)

of the same order Op

(
max

{
n− β∗/d

1+2β∗/d , n
− 2βb

d+4βb

})
as the diameter of Robins and

van der Vaart’s optimal adaptive region or ball, provided either (i) βb/d > 1/4 and
βg/d > 0 or (ii) βb/d ≤ 1/4 and Equation (4.1) holds with β = βb. This order

is the maximum of the minimax rate n− β∗/d

1+2β∗/d of convergence of b̂ (X) to b (X)
were b (X) known to lie in H (β∗, C) and the square root of the minimax rate of

convergence of an estimator of Eθ

[(
b (X) − b̂ (X)

)2
]

in the larger model M (Θ)

with b (·) and g (·) only known to lie in H (βb, Cb) and H (βg, Cg).
The case where βb/d ≤ 1/4 and Equation (4.1) does not hold will be considered

elsewhere.
Now, since Eθ

[
b̂ (X) b (X)

]
= Eθ

[
b̂ (X)Y

]
,

ψ (θ) ≡ Eθ

[(
b (X) − b̂ (X)

)2
]

= Eθ

[
{b (X)}2

]
− 2Eθ

[
b̂ (X) b (X)

]
+ Eθ

[{
b̂ (X)

}2
]
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has first order influence function IF1,ψ (θ) = V [H (b, b) − ψ (θ)] where

H (b, b) = b2 (X) + 2b (X) [Y − b (X)] − 2b̂ (X) Y + b̂2 (X) ,

so H1 = −1, H2 = H3 = Y, H4 = −2b̂ (X)Y + b̂2 (X). Thus H (b, b) for Eθ

[
b (X)2

]
differs from H (b, b) for Eθ

[(
b (X) − b̂ (X)

)2
]

only in H4. Since the truncation

bias ψ̃k (θ) − ψ (θ), higher order influence functions of ψ̃k (θ) and estimation bias
do not depend on H4, it follows that TBk (θ) , IF

jj,ψ̃k
(θ), Ŵ2

jj,ψ̃k

, and EBm (θ)

are identical for ψ (θ) ≡ Eθ

[(
b (X) − b̂ (X)

)2
]

and ψ (θ) ≡ Eθ

[
b (X)2

]
. In con-

trast, IF1,ψ

(
θ̂
)

is identically zero for ψ (θ) ≡ Eθ

[(
b (X) − b̂ (X)

)2
]

but not for

ψ (θ) ≡ Eθ

[
b (X)2

]
. Thus, by Theorem 3.21, for ψ (θ) ≡ Eθ

[(
b (X) − b̂ (X)

)2
]
,

varθ

[
ψ̂

m,ψ̃k

]
� 1

n

(
k
n

)m−1
if k > n and m > 1, and varθ

[
ψ̂

m,ψ̃k

]
= 0 if k ≤ n and

m = 1. In the case when k ≤ n and m > 1, by the Hoeffding decomposition,

varθ

[
ψ̂

m,ψ̃k

]
= varθ

⎛⎝ m∑
s=1

⎛⎝D

(
ψ̂

m,ψ̃k

)
s (θ)

⎞⎠⎞⎠

where D

(
ψ̂

m,ψ̃k

)
s is a sth order degenerate U-statistic. Further by Theorem 3.21,

we have

varθ

[
ψ̂

m,ψ̃k

]
� max

⎛⎝varθ

⎛⎝D

(
ψ̂

m,ψ̃k

)
1

⎞⎠ , varθ

⎛⎝D

(
ψ̂

m,ψ̃k

)
2

⎞⎠⎞⎠

as varθ

⎛⎝D

(
ψ̂

m,ψ̃k

)
s

⎞⎠ � 1
n

(
k
n

)s−1
= o

(
k
n2

)
for any s > 2. Moreover,

varθ

⎛⎝D

(
ψ̂

m,ψ̃k

)
1

⎞⎠ �

∣∣∣∣∣∣b (X) − b̂ (X)
∣∣∣∣∣∣2

2

n

since the kernel of D

(
ψ̂

m,ψ̃k

)
1 is of order Op

(∣∣∣∣∣∣b (X) − b̂ (X)
∣∣∣∣∣∣

2

)
. In summary

varθ

[
ψ̂

m,ψ̃k

]
� max

⎛⎜⎝
∣∣∣∣∣∣b (X) − b̂ (X)

∣∣∣∣∣∣2
2

n
,

k

n2

⎞⎟⎠
= max

(
n
− 2βb/d

1+2βb/d
−1

,
k

n2

)
if k ≤ n and m > 1. (In contrast, for ψ (θ) ≡ Eθ

[
b (X)2

]
, varθ

[
ψ̂

m,ψ̃k

]
� 1

n if

k ≤ n). Thus, if βb/d > 1/4, (i) ψ̂mopt,kopt(mopt) has kopt (mopt) of O
(
n

2
1+4βb/d

)
,
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where n
2

1+4β/d < n comes from equating the order k−4βb/d of TB2
k (θ) to the order

k/n2 = n
− 8βb/d

1+4βb/d � n−1 of the variance and (ii) mopt is the smallest integer m

such that the order n
−
( (m−1)βg

2βg+d +
2βb

d+2βb

)
of

EBm = Op

(
n
−
( (m−1)βg

2βg+d +
2βb

d+2βb

))

is less than the order n
− 4βb/d

1+4βb/d of the standard error. It follows that, for βb/d > 1/4,

in contrast to ψ (θ) ≡ Eθ

[
b (X)2

]
, we can estimate ψ (θ) ≡ Eθ

[(
b (X) − b̂ (X)

)2
]

at (the minimax) rate n
− 4βb/d

1+4βb/d which is faster (i.e., less ) than the usual parametric
rate of n−1/2.

When βb/d < 1/4 , the minimax rates for ψ (θ) ≡ Eθ

[(
b (X) − b̂ (X)

)2
]

and

ψ (θ) ≡ Eθ

[
b (X)2

]
are identical and, when Eq. (4.1) holds, it follows from Theorem

4.6 that ψ̂eff
KJ

(βg, βb, βb) achieves the minimax rate of n
− 4βb/d

1+4βb/d ≥ n−1/2.
Henceforth assume either (i)βb/d > 1/4 or (ii)βb/d < 1/4 and Equation (4.1)

holds. Pick an ε so that Equation (4.1) holds for (βg, βb − ε, βp − ε). Let 0 < σ < ε

and define ψ̂∗ ≡ ψ̂ (σ) = ψ̂mopt,{kopt(mopt)}1+σ and

Ŵ∗ ≡ Ŵ∗ (σ) = Ŵ
mopt,ψ̃{kopt(mopt)}1+σ

if βb/d > 1/4 and ψ̂∗ = ψ̂eff
KJ

(βg, βb − σ, βp − σ) and

Ŵ∗ = Ŵ

[
ψ̂eff
KJ

(βg, βb − σ, βp − σ)
]

if βb/d < 1/4. Note Ŵ∗ is Op

(
n
− 4(βb−σ)

d+4(βb−σ)

)
uniformly over Θ, where Θ is the parameter space with smoothness parameters
(βg, βb). Then, by Equation (4.1) and results in Section 4.1.2, as n → ∞,

inf
θ∈Θ

Pr
θ

[{
ψ̂∗ − ψ (θ)

}
≥ −zαŴ∗

]
≥ 1 − α.

Thus, if ψ (θ) were a function of θ only through b (·) so ψ (θ) = ψ (b), the set

(5.1)
{

b∗ (·) ; ψ (θ) ≤ ψ̂∗ + zαŴ∗
}

would be an uniform asymptotic (1 − α) confidence region for b (·). However, for

ψ (θ) = Eθ

[(
b (X) − b̂ (X)

)2
]
, this approach fails because ψ (θ) also depends on θ

through the unknown density g (x) of X. This approach succeeded in Robins and
van der Vaart [19] because g (x) was assumed known.

We consider two solutions. The first gives (near) optimal adaptive honest inter-
vals. The second would give honest, but non-optimal, intervals. The first solution

is to replace ψ (θ) with its empirical mean ψemp (b) ≡ V

[{
b (X) − b̂ (X)

}2
]

in

Equation (5.1),

ψemp (b) − ψ (θ) = Op

([{
b (X) − b̂ (X)

}2
]

n−1/2

)
= Op

(
n
−
(

2βb
d+2βb

+ 1
2

))
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uniformly in θ ∈ Θ. It is straightforward to check that for all βb > 0, n
−
(

2βb
d+2βb

+ 1
2

)
�

n
− 4βb/d

1+4βb/d . Thus, for σ < ε,
{

ψ̂∗ − ψemp (b)
}

/
{

ψ̂∗ − ψ (θ)
}

= 1 + op (1) uniformly

over θ ∈ Θ, so infθ∈Θprθ

[{
ψ̂∗ − ψemp (b)

}
≥ −zαŴ∗

]
≥ 1 − α and

(5.2)
{

b∗ (·) ; V
[{

b∗ (X) − b̂ (X)
}2
]
≤ ψ̂∗ + zαŴ∗

}
is a uniform asymptotic (1 − α) confidence region for b (·). Moreover, if b (·) ∈ θ
lies in a smaller Hölder ball H (β∗, C), β∗ > βb, C < Cb, then, under F (·, θ), the
diameter {

ψ̂∗ + zαŴ∗
}1/2

=

{
ψ (θ) + Op

(
n
− 4(βb−σ)

d+4(βb−σ)

)}1/2

= Op

(
max

{
n− 2β∗/d

1+2β∗/d , n
− 4(βb−σ)

d+4(βb−σ)

})1/2

= Op

(
max

{
n− β∗/d

1+2β∗/d , n
− 2(βb−σ)

d+4(βb−σ)

})

since ψ (θ) = Op

(
n− 2β∗/d

1+2β∗/d

)
and ψ̂∗ − ψ (θ) and Ŵ∗ are Op

(
n
− 4(βb−σ)

d+4(βb−σ)

)
.

The second, non-optimal, solution would be to replace the functional ψ (θ) ≡
Eθ

[(
b (X) − b̂ (X)

)2
]

with ψ (b) =
∫ {

b (x) − b̂ (x)
}2

dx. The functional ψ (b) is

the first functional we have considered that is not in our doubly robust class of
functionals. Arguing as above, if we can construct an asymptotically normal higher
order U -statistic estimator ψ̂∗ that converges to ψ (b) at rate n−ω on M (Θ) and a
consistent estimator Ŵ∗ of its standard error, then{

b∗ (·) ;
∫ {

b (x) − b̂ (x)
}2

dx ≤ ψ̂∗ + zαŴ∗
}

would be an honest adaptive confidence interval of diameter

Op

(
max

{
n− β∗/d

1+2β∗/d , n−ω/2

})
. We conjecture, based on arguments given else-

where, that the minimax rate for estimation of ψ (b) =
∫ {

b (x) − b̂ (x)
}2

dx ex-

ceeds Op

[
n
− 4βb

d+4βb

]
whenever βg/d

2βg/d+1 < β/d
(1+4β/d)(1+2β/d) . Since β/d

(1+4β/d)(1+2β/d) >

1−4β/d
1+4β/dβ/d for all β > 0, it follows that, when the marginal of X is unknown and

β/d
(1+4β/d)(1+2β/d) >

βg/d
2βg/d+1 > 1−4β/d

1+4β/dβ/d, intervals based on V

[{
b∗ (X) − b̂ (X)

}2
]

will, but intervals based on
∫ {

b (x) − b̂ (x)
}2

dx will not, have diameter of the same
order as the optimal interval with the marginal of X known.

5.2. Treatment effect functions in a randomized trial

Example 4 (Continued). Consider the case b = p, Y = Y ∗ w.p.1 so we have
data O = {Y, A, X}, where A is a binary treatment, Y is the response, and
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X is a vector of prerandomization covariates. The randomization probabilities
π0 (X) = P (A = 1|X) are known by design and b (x) = Eθ(Y |A = 1, X = x) −
Eθ(Y |A = 0, X = x ) is the average treatment effects function. For θ ∈ Θ,
b (·) and the density g (·) of X are contained in known Hölder balls H (βb, Cb)
and H (βg, Cg). Suppose we have an adaptive estimator b̂ (·) of b (·) based on the

training sample constructed as described below. Now, since Eθ

[
b̂ (X) b (X)

]
=

Eθ

[
b̂ (X) Y |A = 1

]
− Eθ

[
b̂ (X) Y |A = 0

]
has influence function A

π0(X)Y b̂ (X) −
1−A

1−π0(X)Y b̂ (X) − Eθ

[
b̂ (X) b (X)

]
= (A − π0 (X))σ−2

0 (X)Y b̂ (X) − Eθ

[
b̂ (X) ×

b (X)], where σ2
0 (X) = π0 (X) {1 − π0 (X)}, ψ (θ) ≡ Eθ

[(
b (X) − b̂ (X)

)2
]

has

first order influence functions, indexed by arbitrary functions c (x), IF1,ψ (θ, c) ≡
IF1,ψ (θ) = V [H (b, b) − ψ (θ)] with

H1 = 1 − 2A {A − π0 (X)}σ−2
0 (X) ,

H2 = H3 = {A − π0 (X)}σ−2
0 (X)Y,

H4 = {A − π0 (X)} c (X) − 2 (A − π0 (X))σ−2
0 (X) Y b̂ (X) + b̂2 (X) .

Thus H (b, b) for Eθ

[(
b (X) − b̂ (X)

)2
]

differs from H (b, b) for ψ (θ) ≡ Eθ

[
b (X)2

]
only in H4. It follows that all the properties of the confidence ball 5.2 for b (·) =
Eθ(Y | X = ·) in the setting of the last subsection remain true for b (·) = Eθ(Y |A =
1, X = ·) − Eθ (Y |A = 0, X = ·) in the setting of this subsection.

Now define db∗ (x) = I [b∗ (x) > 0]. Then it then follows that an honest 1 −
α uniform asymptotic confidence set for the optimal treatment regime dopt (·) =

I [b (·) > 0] is given by
{

db∗ (·) ; V
[{

b∗ (X) − b̂ (X)
}2
]
≤ ψ̂∗ + zαŴ∗

}
.

Adaptive estimator of the treatment effect function. One among many
approaches to constructing a rate-adaptive estimator of b (·) is as follows. Split the
training sample into two random subsamples - a candidate estimator subsample
of size nc and a validation subsample of size nv, where both nc/n and nv/n are
bounded away from 0 as n → ∞. Noting that

0 = Eθ [{Y − Ab (X)} q (X) {A − π0 (X)}]

for all q (·), we construct candidate estimators of b (·) as follows. For s = 1, 2, . . . , n−
1, let κ̂s be the solution, if any, to the s equations

0 = Pc

[{
Y − AκT

s ϕs (X)
}

ϕs (X) {A − π0 (X)}
]
,

where ϕ1 (X) , ϕ2 (X) , . . . is a complete basis with respect to Lebesgue measure in
Rd that provides optimal rate approximation for Hölder balls and Pc is the em-
pirical measure for the candidate estimator subsample. Our candidates for b (X)
are the b̂(s) (X) = ϕs (X)T

κ̂s. Robins [16] proved that b (·) is the unique func-
tion b∗ (·) minimizing Risk(b∗) ≡ Eθ

[
σ−2

0 (X) {Y − [A − π0 (X)] b∗ (X)}2
]
. In fact,

the candidate b̂(s) (X) in our set for which Risk
(
b̂(s)

)
is smallest is also the

candidate that minimizes E

[(
b (X) − b̂(s) (X)

)2
]

since Risk
(
b̂(s)

)
−Risk(b) =
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E

[(
b (X) − b̂(s) (X)

)2
]
. Specifically,

E

[
σ−2

0 (X)
{

Y − [A − π0 (X)] b̂(s) (X)
}2

−σ−2
0 (X) {Y − [A − π0 (X)] b (X)}2

]

= E

⎡⎣ σ−2
0 (X) (A − π0 (X))

(
b (X) − b̂(s) (X)

)
×(

2 (Ab (X) − E (Y |A = 0, X)) − (A − π0 (X))
(
b (X) + b̂(s) (X)

)) ⎤⎦
= E

(
σ−2

0 (X) (A − π0 (X))A
(
b (X) − b̂(s) (X)

)2
)

= E

[(
b (X) − b̂(s) (X)

)2
]

.

We use these results to select among our candidates by cross-validation. Let

b̂ (·) be the b̂(s) (·) minimizing Pv

[
σ−2

0 (X)
{

Y − [A − π0 (X)] b̂(s) (X)
}2
]

over s =

1, 2, . . . , n − 1, where Pv is the validation subsample empirical measure. If b (·)
were known to lie in a Hölder ball H (β, C), it is easy to check that the candi-
date b̂(s) (·) with s = �n 1

2β+1 � obtains the optimal rate of n
−β

2β+1 for estimating

E

[(
b (X) − b̂(s) (X)

)2
]
. Since the number of candidates at sample size n is less

than n, it then follows at once from van der Laan and Dudoit’s [23] results on
model selection by cross validation that b̂ (·) is adaptive over Hölder balls.

6. Testing, confidence sets, and implicitly defined functionals

In Example 1c of Section 3.1, we considered the following problem. We were given
a functional ψ (τ, θ) indexed by a real number τ and the parameter θ ∈ Θ. The
implicitly defined-functional τ (θ) was the assumed unique solution to 0 = ψ (τ, θ).
We noted that a (1−α) confidence set for τ (θ) is the set of τ such that a (1−α) CI
interval for ψ (τ, θ) contains 0. In the following subsection we derive the width of the
confidence set for τ (θ). We then generalize the problem in the second subsection by
introducing the notions of the testing tangent space, a testing influence function,
and the higher order efficient testing score. In the final subsection, we show how
the two earlier subsections are related.

6.1. Confidence intervals for implicitly defined functionals

To derive the order of the length of the confidence interval for the parameter τ (θ)
in Example 1c, we can use the next theorem as follows. Assume Equation (4.1)
holds and β ≤ 1/4. Then we can take the estimator ψ̃ (τ) and rate n−γ in the
theorem to be the estimator ψ̂eff

KJ
and rate n− 4β

4β+1+σ for a very small positive σ
and conclude that the length of the confidence interval for τ (θ) in Example 1c to
be Op

(
n− 4β

4β+1+σ
)
.

Theorem 6.1. Suppose for an estimator ψ̂ (τ) and functional ψ (τ, θ), there is a
scale estimator Ŵ (τ) such that nγŴ (τ) → w (τ, θ) in θ−probability , w (τ, θ) >
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c∗ > 0 and
(
ψ̂ (τ) − ψ (τ, θ)

)
/Ŵ (τ) converges in law to N (0, 1) uniformly for

θ ∈ Θ, τ ∈ {τ (θ) ; θ ∈ Θ}. Then, (i) with zα the α−quantile and Φ (·) the CDF

of a N (0, 1), the confidence set Cn =
{

τ ;−z1−α/2 < ψ̂(τ)

Ŵ(τ)
< z1−α/2

}
is a uni-

form asymptotic 1 − α confidence set for the (assumed) unique solution τ (θ) to
ψ (τ, θ) = 0; (ii) the probability under θ that a sequence τ = τn satisfying ψ (τn, θ) =
ann−ρ, an → a �= 0 is contained in Cn converges to 1 when ρ > γ, is o (1) when
ρ < γ, and converges to Φ

(
z1−α/2 − a

w(τ(θ),θ)

)
− Φ

(
−z1−α/2 − a

w(τ(θ),θ)

)
when

ρ = γ. (iii) If ψ (τ, θ) is uniformly twice continuously differentiable in τ and 0 < σ <
|ψτ (τ (θ) , θ)| < c and |ψτ2 (τ (θ) , θ)| < c for constants (σ, c), then (ii) holds for a
sequence τ = τn satisfying τn − τ (θ) = {ψτ (τ (θ) , θ)}−1

ann−ρ, an → a �= 0, ρ > 0.

Proof. (i) That Cn is a uniform asymptotic 1 − α confidence set is immediate. (ii)
Now

Prθ

{
z1−α/2 >

ψ̂ (τn)

Ŵ (τn)
> −z1−α/2

}

= Prθ

{
z1−α/2 −

ψ (τn, θ)

Ŵ (τn)
>

ψ̂ (τn) − ψ (τn, θ)

Ŵ (τn)
> −z1−α/2 −

ψ (τn, θ)

Ŵ (τn)

}

→
n→∞

Φ

(
z1−α/2 − lim

n→∞

nγ ψ (τn, θ)

nγ Ŵ (τn)

)
− Φ

(
−z1−α/2 − lim

n→∞

nγ ψ (τn, θ)

nγ Ŵ (τn)

)

= Φ
(

z1−α/2 −
a limn→∞ nγ−ρ

w (τ (θ) , θ)

)
− Φ

(
−z1−α/2 −

a limn→∞ nγ−ρ

w (τ (θ) , θ)

)
.

(iii) Since ψ (τn, θ) = ψτ (τ (θ) , θ) (τn − τ (θ)) + 1
2ψτ2 (τ∗ (θ) , θ) (τn − τ (θ))2 for

some τ∗ (θ) between τ (θ) and τ , we have that ψ (τn, θ) = ann−ρ + op (ann−ρ) =
an (1 + op (1))n−ρ satisfies the assumption in (ii).

Remark 6.2. Under some further regularity conditions, the solution τ̃ to 0 = ψ̃ (τ)
is asymptotically normal with mean τ (θ) and variance ψ−2

τ (τ , θ)
[
{w (τ (θ) , θ)}2

]
uniformly over θ ∈ Θ, τ ∈ {τ (θ) ; θ ∈ Θ}.

6.2. Testing influence functions and a higher order efficient score

In the following, we repeatedly use definitions from Section 2, which might usefully
be reviewed at this point.

Definition 6.3. mth order testing nuisance tangent space, testing tangent space,
testing influence functions, efficient score, efficient information, and efficient test-
ing variance: Given a model M (Θ) with parameter space Θ and a functional
τ (θ), define M

(
Θ
(
τ †)) to be the submodel with parameter space Θ

(
τ †) ≡ Θ ∩{

θ; τ (θ) = τ †}). Thus M
(
Θ
(
τ †)) is the submodel with τ (θ) equal to τ †. Define, for

θ ∈ Θ
(
τ †), the mth order (i) testing nuisance tangent space Γnuis,test

m

(
θ, τ †) to be

the mth order tangent space for the submodel M
(
Θ
(
τ †)), (ii) testing tangent space

Γtest
m

(
θ, τ †) to be the closed linear span of IF1,τ(·) (θ) ∪ Γnuis,test

m

(
θ, τ †), (iiia) set

Γnuis,test,⊥
m

(
θ, τ †) ≡

{
IFtest

m,τ(·)

}
of testing influence functions to be the orthocom-

plement of Γnuis,test
m

(
θ, τ †) in Um (θ), (iiib) set Γstd,nuis,test,⊥

m

(
θ, τ †) ≡ {

IF
std,test
m,τ(·)

}
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of standardized testing influence functions to be{
IF

std,test
m,τ(·) ∈ Γnuis,test,⊥

m

(
θ, τ †) ; Eθ

[
IF

std,test
m,τ(·) IF

eff
1,τ(·) (θ)

]
= varθ

[
IF

eff
1,τ(·) (θ)

]}
,

(iv) efficient testing score EStest
m (θ) ≡ EStest

m,τ(·) (θ) ∈ Γtest
m

(
θ, τ †) to be

EStest
m,τ(·) (θ) = EStest

1 − Πθ

[
EStest

1 |Γnuis,test
m

(
θ, τ †)]

≡ Πθ

[
EStest

1 (θ) |Γnuis,test,⊥
m

(
θ, τ †)]

where EStest
1 (θ) ≡ EStest

1,τ(·) (θ) ≡ varθ

{
IF

eff
1,τ(·) (θ)

}−1

IF
eff
1,τ(·) (θ), (v) efficient test-

ing information to be varθ

{
EStest

m (θ)
}
, and (vi) the efficient testing variance to be[

varθ

{
EStest

m (θ)
}]−1

.
Further define, for θ ∈ Θ, the mth order (i) estimation nuisance tangent space

Γnuis
m (θ) to be Γnuis

m (θ) ≡
{

Am ∈ Γm (θ) ; E
[
AmIF

eff
m,τ(·) (θ)

]
= 0

}
, and (ii) effi-

cient estimation variance to be varθ

[
IF

eff
m,τ(·) (θ)

]
.

Remark 6.4. For m = 1, the testing and estimation nuisance tangent spaces
Γnuis,test

m

(
θ, τ †) and Γnuis

m (θ) are identical. However for m > 1, Γnuis,test
m

(
θ, τ †)

is generally a strict subset of Γnuis
m (θ). For example, if the model can be parame-

trized as θ = (τ, ρ) and Θ is the product of the parameter spaces for τ and ρ,
the Γnuis,test

m

(
θ, τ †) is the space of mth order scores for ρ; however, Γnuis

m (θ) also
includes the mixed scores that have s derivatives in the direction τ and m − s ≥ 1
derivatives in ρ directions. It is this strict inclusion that gives rise to higher order
phenomena that do not occur in the first order theory.

Theorem 6.5. Suppose ES
test
m (θ) exists in Um (θ). Then for θ ∈ Θ

(
τ †),

(i) the set of estimation nuisance scores Γnuis
m (θ) includes the set of testing

nuisance scores Γnuis,test
m

(
θ, τ †) with equality of the sets when m = 1,

(ii) IFtest
m,τ(·) (θ) , θ ∈ Θ

(
τ †) is standardized if and only if E

[
IFtest

m,τ(·) (θ) ×

EStest
m (θ)

]
= 1 if and only if E

[
IFtest

m,τ(·) (θ) EStest
1 (θ)

]
= 1,

(iii)
{

IF
std,test
m,τ(·)

}
=
{

Eθ

[
IF

test
m,τ(·)ES

test
1 (θ)

]−1

IF
test
m,τ(·); IF

test
m,τ(·) ∈

{
IF

test
m,τ(·)

}}
,

(iv) the set
{
IFm,τ(·) (θ)

}
of all mth order estimation influence functions is

contained in
{

IF
std,test
m,τ(·)

}
with equality of the sets when m = 1,

(v) Πθ

[
IF

std,test
m,τ(·) (θ) |Γtest

m

(
θ, τ †)] =

{
var

[
ES

test
m (θ)

]}−1
ES

test
m (θ) ,

(vi)
{
varθ

[
EStest

m (θ)
]}−1

EStest
m (θ) ∈

{
IF

std,test
m,τ(·)

}
and has the minimum vari-

ance
{
varθ

[
ES

test
m (θ)

]}−1
among members of

{
IF

std,test
m,τ(·)

}
. In particular{

varθ

[
EStest

m (θ)
]}−1 ≤ varθ

[
IF

eff
m,τ(·) (θ)

]
with equality when m = 1,

(vii) Given IFtest
m,τ(·) (·) ∈

{
IFtest

m,τ(·) (·)
}
,any smooth submodel θ̃ (ζ) with range

containing θ and contained in Θ
(
τ †) , and s ≤ m, we have

∂sEθ

[
IF

test
m,τ(·)

(
θ̃ (ζ)

)]
/∂ζl1 . . . ∂ζls |ζ=θ̃−1{θ} = 0.
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Thus, if Eθ

[
IF

test
m,τ(·) (θ∗)

]
is Fréchet differentiable with respect to θ∗ to order m+1

for a norm ||·||, Eθ

[
IF

test
m,τ(·) (θ + δθ)

]
= O

(
||δθ ||m+1

)
for θ and θ+ δθ in an open

neighborhood contained in Θ
(
τ †), since the Taylor expansion of Eθ

[
IFtest

m,τ(·) (θ∗)
]

around θ through order m is identically zero.

The proof of the Theorem will use the following two lemmas:

Lemma 6.6. For any IF
test
m,τ(·) (θ) , θ ∈ Θ

(
τ †)

Eθ

[
IFtest

m,τ(·) (θ) EStest
1 (θ)

]
= Eθ

[
IFtest

m,τ(·) (θ) EStest
m (θ)

]
.

Proof.

Eθ

[
IFtest

m,τ(·)EStest
m (θ)

]
= Eθ

[
IF

test
m,τ(·)Πθ

[
ES

test
1 (θ) |Γnuis,test,⊥

m

(
θ, τ †)]] = Eθ

[
IF

test
m,τ(·)ES

test
1 (θ)

]
,

where the last equality holds by IF
test
m,τ(·) ∈ Γnuis,test,⊥

m

(
θ, τ †).

Lemma 6.7. For any IFtest
m,τ(·) (θ) , θ ∈ Θ

(
τ †),

Πθ

[
IFtest

m,τ(·) (θ) |Γtest
m

(
θ, τ †)]

= E
[
IF

test
m,τ(·) (θ) ES

test
m (θ)

] {
var

[
ES

test
m (θ)

]}−1
ES

test
m (θ)

= E
[
IFtest

m,τ(·) (θ) EStest
1 (θ)

] {
var

[
EStest

m (θ)
]}−1

EStest
m (θ) .

Proof. Γtest
m

(
θ, τ †) =

{
cES

test
m (θ) ; c ∈ R1

}
⊕ Γnuis,test

m

(
θ, τ †). Thus, by

IF
test
m,τ(·) (θ) ∈ Γnuis,test,⊥

m

(
θ, τ †),

Πθ

[
IF

test
m,τ(·) (θ) |Γtest

m

(
θ, τ †)] = Πθ

[
IF

test
m,τ(·) (θ) |

{
cES

test
m (θ) ; c ∈ R1

}]
= E

[
IFtest

m,τ(·) (θ) EStest
m (θ)

] {
var

[
EStest

m (θ)
]}−1

EStest
m (θ) .

Now apply Lemma 6.6.

Proof of Theorem 6.5. (i) is immediate from the definitions. (ii) and (iiii) follow
from

E
[
IFtest

m,τ(·) (θ) EStest
m (θ)

]
= 1 ⇔ E

[
IFtest

m,τ(·) (θ) EStest
1 (θ)

]
= 1

⇔ Eθ

[
IFtest

m,τ(·)IF
eff
1,τ(·) (θ)

]
= varθ

[
IF

eff
1,τ(·) (θ)

]
,

where we have used Lemma 6.6. For (iv), note
{
IFm,τ(·) (θ)

}
⊂

{
IF

test
m,τ(·)

}
fol-

lows from the fact that every smooth submodel through θ in model M
(
Θ
(
τ †))

is a smooth submodel through θ in model M (Θ). Thus it remains to prove that
IFm,τ(·) (θ) is standardized. But, by Part 4 of Theorem 2.3,

Eθ

[
IFm,τ(·) (θ) IF

eff
1,τ(·) (θ)

]
= varθ

[
IF

eff
1,τ(·) (θ)

]
.
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(v) follows at once from Lemma 6.6 and Part (ii). For (vi), note that{
varθ

[
ES

test
m (θ)

]}−1
ES

test
m (θ) ∈

{
IF

std,test
m,τ(·)

}
by definition. Thus

varθ

{
Eθ

[
IF

test
m,τ(·)ES

test
m (θ)

]−1

IF
test
m,τ(·)

}
≥
{
varθ

[
ES

test
m (θ)

]}−1

follows from (v). The result then follows from part (iii). Part (vii) is proved anal-
ogously to Theorem 2.2 except now all scores lie in Γnuis

m (θ) by range θ̃ (ζ) in
Θ
(
τ †).
In the case of (locally) nonparametric models, we can explicitly characterize

Γtest,⊥
m

(
θ, τ †). Let

{
U

test,⊥
j,j

(
θ, τ †)} be the set of all

U
test,⊥
j,j

(
θ, τ †) = V

[
U test,⊥

j,j

(
θ, τ †)]

with the U test,⊥
j,j

(
θ, τ †) =

∑∞
l=1 clIF eff

1,τ(·),i1 (θ)
j∏

s=2

hl,s (Ois ; θ) ∈ Uj (θ), indexed by

constants cl ∈ R1, and functions hl,s (Ois ; θ) satisfying Eθ [hl,s (Ois ; θ)] = 0. We re-
mark that the subset of Uj (θ) comprised of all jth order degenerate U-statistics can

be written

{
V

[∑∞
l=1

j∏
s=1

hl,s (Ois ; θ)

]}
. Thus

{
U

test,⊥
j,j

(
θ, τ †)} simply restricts

one of the functions hl,s (O ; θ) to be clIF eff
1,τ(·) .

Theorem 6.8. If the model M (Θ) is (locally) nonparametric, then Γtest,⊥
m

(
θ, τ †) ={∑m

j=2 U
test,⊥
j,j

(
θ, τ †) ; U

test,⊥
j,j

(
θ, τ †) ∈ {

U
test,⊥
j,j

(
θ, τ †)}} .

Proof. Since the model is locally nonparametric Γtest
m

(
θ, τ †) includes the set of all

mean zero first order U -statistics U1 (θ) and thus any element of Γtest,⊥
m

(
θ, τ †) must

be a sum of degenerate U -statistics of orders 2 through m. We continue by induction.
First we prove the theorem for m = 2. Now, Γtest

2

(
θ, τ †) = U1 (θ) + Unuis,test

2,2 (θ)
where Unuis,test

2,2 is the closed linear span of the second order degenerate part∑
s �=j Sl1,jSl2,s of second order scores S̃2,l2

=
∑

j Sl1l2,j +
∑

s �=j Sl1,jSl2,s in model
M

(
Θ
(
τ †)), where

∑
s �=j Sl1,jSl2,s is a sum of products Sl1,jSl2,s of first order

scores in model M
(
Θ
(
τ †)) for two different subjects. By model M (Θ) being

(locally) nonparametric, the set of first order scores in model M
(
Θ
(
τ †)) is pre-

cisely the set of random variables Γnuis,test
1

(
θ, τ †) orthogonal to IF eff

1,τ(·) (θ). But
the set of degenerate U -statistics of order 2 orthogonal to the product of two scores
in Γnuis,test

1

(
θ, τ †) is clearly

{
U

test,⊥
2,2

(
θ, τ †)}. Suppose now the theorem is true

for m, m ≥ 2, we show it is true for m + 1. By M (Θ) (locally) nonparametric
and the induction assumption, Γtest

m+1

(
θ, τ †) = Γtest

m

(
θ, τ †) + U test

m+1,m+1 (θ) where
Unuis,test

m+1,m+1 (θ) is the closed linear span of the sum of products of first order scores

in model M
(
Θ
(
τ †)) for m + 1 different subjects. But

{
U

test,⊥
m+1,m+1

(
θ, τ †)} is the

set of set of degenerate U -statistics of order m+1 orthogonal to Unuis,test
m+1,m+1 (θ).
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6.3. Implicitly defined functionals and testing influence functions

In the following theorem we show that estimation influence functions IFm,ψ(τ,·) (θ)
for the parameter ψ (τ, ·) evaluated at the solution τ (θ) to 0 = ψ (τ , θ) is contained
in the set

{
IFtest

m,τ(·) (θ)
}

of testing influence functions for τ (θ). We also derive the

estimation influence functions IFm,τ(·) (θ) =
∑m

s=1 IFs,s,τ(·) (θ) for τ (θ) in terms
of the estimation influence functions IFm,ψ(τ,·) (θ) for ψ (τ, ·) and their derivatives
with respect to τ .

Theorem 6.9. Let τ (θ) be the assumed unique functional defined by 0 = ψ (τ (θ) ,
θ), θ ∈ Θ. Then, for θ ∈ Θ

(
τ †), whenever IFm,ψ(τ†,·) (θ) and IF m,τ(·) (θ) exist ,

(i) IFm,ψ(τ†,·) (θ) ∈
{

IFtest
m,τ(·) (θ)

}
,

(ii) IF1,τ(·) (θ) = −ψ−1
τ IF1,ψ(τ†,·) (θ) ∈

{
IF

std,test
1,τ(·) (θ)

}
where ψτ ≡ ∂ψ (τ, θ) /

∂τ|τ=τ† ,
(iii) IFm,m,τ(·) (θ) = −ψ−1

τ

{
IFm,m,ψ(τ†,·) (θ) + Qm,m (θ)

}
, where Qm,m (θ) ≡

Qm,m,τ(·) (θ) = V {Qm,m (θ)} ∈
{
Utest,⊥

m,m

(
θ, τ †)}. For m = 2,

Q2,2 (θ) =
1
2
ψ\τ2IF1,τ(·),i1 (θ) IF1,τ(·),i2 (θ)

+
1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎝ ∂IF1,ψ(τ†,·),i1
(θ)

∂τ

−Eθ

[
∂IF1,ψ(τ†,·),i1

(θ)

∂τ

] ⎞⎟⎠ IF1,τ(·),i2 (θ)

+

⎛⎜⎝ ∂IF1,ψ(τ†,·),i2
(θ)

∂τ

−Eθ

[
∂IF1,ψ(τ†,·),i2

(θ)

∂τ

] ⎞⎟⎠ IF1,τ,i1 (θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.1)

where
∂IF1,ψ(τ†,·),i1

(θ)

∂τ = ∂IF1,ψ(τ,·),i1 (θ) /∂τ|τ=τ† . Qm,m (θ) is given in the appendix
of our technical report as well as the general formula.

Proof. (i) For r ≤ m, consider any suitably smooth r dimensional parametric sub-
model θ̃ (ζ) with range containing θ and contained in Θ

(
τ †). Let S̃s\ls

(θ) be any as-
sociated sth-order score s ≤ m. By definition of τ (θ), ψ (τ (θ (ζ)) , θ (ζ)) = 0. Hence,
0 = ∂sψ (τ (θ (ζ)) , θ (ζ)) /∂ζl1 · · · ∂ζ

ls |ζ=θ̃−1(θ)
. Now we expand the RHS using the

chain rule and note that the only non-zero term is the term ψ\ls

(
τ †, θ

)
in which all

s−derivatives are taken with respect to the second θ (ζ) in ψ (τ (θ (ζ)) , θ (ζ)); all
other terms include derivatives of τ (θ (ζ)) , which are zero by range θ̃ (ζ) ⊂ Θ

(
τ †).

Further ψ\ls

(
τ †, θ

)
= Eθ

[
IFm,ψ(τ†,·) (θ) S̃s\ls

(θ)
]

by the definition of the esti-
mation influence function IFm,ψ(τ†,·) (θ). We conclude that IFm,ψ(τ†,·) (θ) is in

Γnuis,test
m

(
θ, τ †)⊥. (ii) IF1,τ(·) = −ψ−1

τ IF1,ψ(τ†,·) is straightforward. That IF1,τ(·)

is contained in
{

IF
std,test
1,τ(·)

}
follows by Part (iv) of Theorem 6.5. (iii) See Appendix

of our technical report for proof.

6.4. “Inefficiency” of the efficient score

We now provide an example to show that, contrary to what one might expect based
on Part (vi) of Theorem 6.5, inference concerning τ (θ) may be more efficient when
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based on an ‘inefficient’ member of the set
{

IF
test
m,τ(·) (θ)

}
such as IFm,ψ(τ†,·) (θ)

than when based on the efficient score ES
test
m,τ(·) (θ). Without loss of generality, it

is sufficient to consider the case m = 2. In the following example it is τ̃k (θ) and
ψ̃k

(
τ †, θ

)
that play the role of τ (θ) and ψ

(
τ †, θ

)
in the preceding theorem, be-

cause τ̃k (θ) and ψ̃k

(
τ †, θ

)
have, but τ (θ) and ψ

(
τ †, θ

)
do not have, higher order

estimation and testing influence functions.

Example 1c (Continued). In this example, with Y ∗ (τ) ≡ Y ∗ − τA, A and Y ∗

binary,
ψ (τ, θ) = Eθ [{Y ∗ (τ) − Eθ (Y ∗ (τ) |X)} {A − Eθ (A|X)}]

and τ (θ) satisfies ψ (τ (θ) , θ) = 0. Let τ̃k (θ) satisfy ψ̃k (τ̃k (θ) , θ) = 0 where
ψ̃k (τ, θ) = Eθ [Y ∗ (τ)A]−Eθ

{[
Πθ

[
B (τ) |Zk

]
Πθ

[
P |Zk

]]}
is defined in Section 3.1

with τ a real-valued index and B (τ) = b (X, τ) = Eθ (Y ∗ (τ) |X). Note ψ̃k,τ (τ, θ) ≡
∂ψ̃k (τ, θ) /∂τ = −

{
Eθ

[
A2

]
− Eθ

[{
Πθ

[
P |Zk

]}2
]}

, ψτ (τ, θ) = −Eθ [varθ (A|X)],

ψ̃k,τ2 (τ, θ) = ψτ2 (τ, θ) = 0. Below we freely use results of Theorems 3.11, 3.14,
and 3.17. We suppose that 0 < σ < varθ (A|X) and Eθ

[
A2

]
< c for some (σ, c),

β = βp+βb

2 < 1/4. Choose k = kopt (2)n2σ = n
2

1+4β +2σ, σ > 0 so the truncation

bias of ψ̂2,k (τ) ≡ ψ2,k

(
τ, θ̂

)
is Op

(
n− 4β

4β+d

)
and n− 4β

4β+d � varθ

[
ψ̂2,k (τ)

]
�

k/n2 = n−2( 4β
4β+d +σ). We assume the given (βg, βb, βp) are such that the order

Op

[
n
−
(

βg
2βg+d +

βb
d+2βb

+
βp

d+2βp

)]
of the estimation bias of ψ̂2,k (τ) is Op

(
n− 4β

4β+d

)
.

Then
∣∣∣ψ̂2,k (τ) − ψ̃k (τ, θ)

∣∣∣ and
∣∣∣ψ̂2,k (τ) − ψ (τ, θ)

∣∣∣ are Op

(
n− 4β

4β+d +σ
)

which just

exceeds the minimax rate Op

(
n− 4β

4β+d

)
for σ very small.

Our goal is to compare the coverage and length of confidence intervals for τ̃k (θ)
and τ (θ) based on

C
1−α,ψ̃k(τ)

≡

⎧⎨⎩τ ;−z1−α/2 <
ψ2,k

(
τ, θ̂

)
W

2,ψ̃k(τ)

(
θ̂
) < z1−α/2

⎫⎬⎭ ,

C
1−α,2,τ̃k

≡

⎧⎨⎩τ ;−z1−α/2 <
τ2,k

(
θ̂
)
− τ

W
2,τ̃k

(
θ̂
) < z1−α/2

⎫⎬⎭ ,

C1−α,2,ES ≡

⎧⎨⎩τ ;−z1−α/2 <
EStest

2,τ̃k

(
θ̂ (τ)

)
WES

2,τ̃k

(
θ̂ (τ)

) < z1−α/2

⎫⎬⎭ ,

where W
2,ψ̃k(τ)

(
θ̂
)

, W
2,τ̃k

(
θ̂
)

, WES

2,τ̃k

(
θ̂ (τ)

)
are appropriate variance estimators,

θ̂ is our usual split sample initial estimator, and θ̂
(
τ †) is an initial split sam-

ple estimator depending on τ † that satisfies ψ̃k

(
τ, θ̂

(
τ †)) = 0 if τ = τ † , i.e.,

τ
[
θ̂
(
τ †)] = τ †. We assume that if τ (θ) = τ † then the convergence rate under θ of

our estimator of b (X, τ∗) for any τ∗ remains n
− βb

d+2βb .
We shall see that the interval based on C

1−α,ψ̃k(τ)
outperforms the other two in-

terval estimators. The next theorem gives explicit formulae for ψ2,k

(
τ, θ̂

)
,
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ES
test

2,τ̃k

(
θ̂ (τ)

)
, and τ2,k

(
θ̂
)
. Using these formulae we calculate the biases and vari-

ances necessary to compare the coverage of the three intervals. Before proceeding,
note the assumption 0 < σ < Eθ [varθ (A|X)], Eθ

[
A2

]
< c implies

|τ̃k (θ) − τ (θ)| /
∣∣∣ψ̃k (τ, θ) − ψ (τ, θ)

∣∣∣
is uniformly bounded away from zero and infinity. It then follows from earlier results
on ψ̂2,k (τ), the assumption 0 < σ < Eθ [varθ (A|X)] , Eθ

[
A2

]
< c, and Theorem

6.9 that C
1−α,ψ̃k(τ)

is a uniform asymptotic 1−α confidence interval for both τ (θ)

and τ̃k (θ) of length Op

(
n− 4β

4β+d +σ
)
.

Our comparison requires each of our three candidate procedures to be on the
same scale. Therefore we used standardized versions of the relevant statistics.

Theorem 6.10. Suppose the assumptions described in the preceding example hold.
Then

(i)

ψ2,k

(
τ, θ̂

)
= ψ̃k,τ

(
τ, θ̂

)
+ IF

2,ψ̃k(τ,·)

(
θ̂
)

= ψ̃k,τ

(
τ, θ̂

)
+ V

[(
Y ∗ (τ) − b̂ (X, τ)

)
{A − p̂ (X)}

]
+ V

[{[
Y ∗ (τ) − b̂ (X, τ)

]
Z

T

k

}
i1

{
Zk [A − p̂ (X)]

}
i2

]
,

where b̂ (X, τ) = B̂ (τ) = E
θ̂
(Y ∗ (τ) |X), p̂ (X) = P̂ = E

θ̂
(A|X);

(ii) Let ε̂ denote Y − b̂ (X), and Δ̂ denote A − p̂ (X). Thus,

EStest

2,τ̃k

(
θ̂
(
τ †))

= v
(
θ̂
(
τ †)){var

θ̂(τ†)

[
IF

2,ψ̃k(τ†,·)

(
θ̂
(
τ †))]− var

[
U

∗,test,⊥
2,2,τ̃k(·)

(
θ̂
(
τ †) , τ †

)]}−1

×
{

IF
2,ψ̃k(τ†,·)

(
θ̂
(
τ †))− U

∗,test,⊥
2,2,τ̃k(·)

(
θ̂
(
τ †) , τ †

)}
,

where

U∗,test,⊥
2,2,τ̃k(·),ij

(
θ̂
(
τ †) , τ †

)
=
(
E

θ̂

[
ε̂2i Δ̂

2
i

])−1

× ε̂iΔ̂i⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
−

⎧⎨⎩
(
E

θ̂

[
ε̂2i Δ̂

2
i

])−1

E
θ̂

[
ε̂Δ̂2Z

T

k

]
×E

θ̂

[
ε̂2Δ̂Z

T

k

]
ε̂jΔ̂j

⎫⎬⎭
+E

θ̂

[
ε̂2i Δ̂iZ

T

k,i

]
Zk,jΔ̂j

+E
θ̂

[
ε̂iΔ̂2

i Z
T

k,i

]
Zk,j ε̂j

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
and

v (θ) = Eθ [varθ (A|X)] .
Also,

var
θ̂(τ†)

{
ES

test

2,τ̃k(·)

(
θ̂
(
τ †))}−1

ES
test

2,τ̃k(·)

(
θ̂
(
τ †))

= v
(
θ̂
(
τ †))−1 {

IF
2,ψ̃k(τ†,·)

(
θ̂
(
τ †))− U

∗,test,⊥
2,2,τ̃k(·)

(
θ̂
(
τ †) , τ †

)}
.(6.2)
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(iii)

τ2,k

(
θ̂
)
≡ τ̃k

(
θ̂
)

+ IF
1,τ̃k(·)

(
θ̂
)

+ IF
2,2,τ̃k(·)

(
θ̂
)

,

where

IF
1,τ̃k(·)

(
θ̂
)

= IF
1,τ̃k(·)

(
θ̂
)

= V

{
v
(
θ̂
)−1 [{

Y − b̂ (X)
}
{A − p̂ (X)}

]}

with Y = Y ∗
(
τ
(
θ̂
))

, b̂ (X) = b̂
(
X, τ

(
θ̂
) )

,

IF
2,2,τ̃k(·)

(
θ̂
)

= v
(
θ̂
)−1

[
IF

2,2,ψ̃k

(
τ
(
θ̂
)
,·
) (θ̂

)
+ Q

2,2,τ̃k(·)

(
θ̂
)]

where

Q
2,2,τ̃k(·),i2

(
θ̂
)

= −1
2
v
(
θ̂
)−1

⎡⎣
[
{A − p̂ (X)}2

i1
− v

(
θ̂
)] [{

Y − b̂ (X)
}
{A − p̂ (X)}

]
i2

+[
{A − p̂ (X)}2

i2
− v

(
θ̂
)] [{

Y − b̂ (X)
}
{A − p̂ (X)}

]
i1

⎤⎦ .

Proof. The proof of (i) was given earlier. The proofs of (ii) and (iii) are in the
Appendix of our technical report.

Theorem 6.11. Suppose τ̃k (θ) = τ † and the assumptions of the preceding theorem
hold. Then

(i) varθ

[
U

∗,test,⊥
2,2,τ̃k(·)

(
θ̂
(
τ †) , τ †

)]
= o

(
1
n

)
,

varθ

[
v
(
θ̂
)−1

ψ2,k

(
τ, θ̂

)]
×
[
varθ

{
var

θ̂(τ†)

{
EStest

2,τ̃k(·)

(
θ̂
(
τ †))}−1

EStest

2,τ̃k(·)

(
θ̂
(
τ †))}]−1

= 1 + op (1)

(ii)

varθ

[
Q

2,2,τ̃k(·)

(
θ̂
)]

= o

(
1
n

)
,

varθ

[
v
(
θ̂
)−1

ψ2,k

(
τ, θ̂

)]
/varθ

{
τ2,k

(
θ̂
)
− τ †

}
= 1 + op (1)

(iii)

v
(
θ̂
)−1

Eθ

[
ψ2,k

(
τ †, θ̂

)]
= Op

{(
P − P̂

)(
B
(
τ †)− B̂

(
τ †))(g (X)

ĝ (X)
− 1

)}
= Op

(
n
−
(

βg
2βg+d +

βb
d+2βb

+
βp

d+2βp

))
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(iv)

Eθ

[
var

θ̂(τ†)

{
EStest

2,τ̃k(·)

(
θ̂
(
τ †))}−1

EStest

2,τ̃k

(
θ̂
(
τ †))]

= Op

{(
P − P̂

)(
B
(
τ †)− B̂

(
τ †))

×
[(

g (X)
ĝ (X)

− 1
)

+
(
P − P̂

)
+
(
B
(
τ †)− B̂

(
τ †))]}

= Op

[
max

{
n
−
(

βg
2βg+d +

βb
d+2βb

+
βp

d+2βp

)
, n

−
(

βb
d+2βb

+
2βp

d+2βp

)
, n

−
(

2βb
d+2βb

+
βp

d+2βp

)}]
(v)

Eθ

[
τ2,k

(
θ̂
)
− τ †

]

= Op

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
P − P̂

)(
g(X)

ĝ(X)
− 1

)(
B − B̂

)
+(

P − P̂
)2 (

P − P̂
)(

B − B̂
)

+
(

g(X)

ĝ(X)
− 1

)2 [(
P − P̂

)
+
(

g(X)

ĝ(X)
− 1

)
+
(
B − B̂

)]
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

= Op

⎧⎪⎪⎪⎨⎪⎪⎪⎩max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n
−
(

βg
2βg+d +

βp
d+2βp

+
βb

d+2βb

)
,

n
−
( 2βp

d+2βp

)
n
− βp

d+2βp n
− βb

d+2βb ,

n
− 2βg

2βg+d

{
n
− βb

d+2βb + n
− βp

d+2βp + +n
− βg

2βg+d

}
⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Proof. The proof of part (iii) was given earlier. The remaining parts are proved in
the Appendix of our technical report.

We conclude from this theorem that the savings in variance that comes with
using ES

test

2,τ̃k(·)

(
θ̂
(
τ †)) rather than ψ2,k

(
τ, θ̂

)
is asymptotically negligible even

in regard to constants. Similarly, we conclude that the difference in variance that
comes with using ψ2,k

(
τ, θ̂

)
rather than IF

2,2,τ̃k(·)

(
θ̂
)

is asymptotically negligible,

again even in regard to constants. Further, because varθ

[
U

∗,test,⊥
2,2,τ̃k(·)

(
θ̂
(
τ †) , τ †

)]
and varθ

[
Q

2,2,τ̃k(·)

(
θ̂
)]

are of the order of o
(

1
n

)
as their first order degenerate

kernels are both of order op (1), and n
4β

4β+d−σ
{

ψ2,k

(
τ, θ̂

)
− Eθ

[
ψ2,k

(
τ, θ̂

)]}
is

asymptotically normal, we conclude that

n
4β

4β+d−σ
{

τ2,k

(
θ̂
)
− Eθ

[
τ2,k

(
θ̂
)]}

,

n
4β

4β+d−σ
{

ES
test

2,τ̃k(·)

(
θ̂
(
τ †))}−1 [

ES
test

2,τ̃k(·)

(
θ̂
(
τ †))− Eθ

[
ES

test

2,τ̃k(·)

(
θ̂
(
τ †))]]

and n
4β

4β+d−σv
(
θ̂
)−1 {

ψ2,k

(
τ, θ̂

)
− Eθ

[
ψ2,k

(
τ, θ̂

)]}
are all asymptotically nor-

mal with the same asymptotic variance.

It then follows that a necessary condition for the intervals based on ψ2,k

(
τ †, θ̂

)
,

ES
test

2,τ̃k(·)

(
θ̂ (τ)

)
, and τ2,k

(
θ̂
)
− τ to cover τ̃k (θ) = τ † at the nominal 1−α level as
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n → ∞ is that

v
(
θ̂
)−1

Eθ

[
ψ2,k

(
τ †, θ̂

)]
,

var
θ̂(τ†)

{
ES

test

2,τ̃k(·)

(
θ̂
(
τ †))}−1

Eθ

[
ES

test

2,τ̃k

(
θ̂
(
τ †))]

and Eθ

[
τ2,k

(
θ̂
)
− τ †

]
are Op

(
n− 4β

4β+d +σ
)
.

Now we know under the assumptions of Theorem 6.11 that this necessary condi-

tion holds for v
(
θ̂
)−1

Eθ

[
ψ2,k

(
τ †, θ̂

)]
since v

(
θ̂
)

is bounded away from zero and

one and, by assumption, n
−
(

βg
2βg+d +

βb
d+2βb

+
βp

d+2βp

)
= Op

(
n− 4β

4β+d

)
. However, this

necessary condition need not hold for either

var
θ̂(τ†)

{
ES

test

2,τ̃k(·)

(
θ̂
(
τ †))}−1

Eθ

[
ES

test

2,τ̃k

(
θ̂
(
τ †))] ,

or Eθ

[
τ2,k

(
θ̂
)
− τ †

]
. For example, consider the following specification consistent

with our assumptions: βp/d = 0 , βb/d = βg/d = 1/4. Then β/d = 1/8, so

n
−
(

βg
2βg+d +

βb
d+2βb

+
βp

d+2βp

)
= n− 4β

4β+d = n−1/3. However, Eθ

[
τ2,k

(
θ̂
)
− τ †

]
converges

to zero at rate n
− βb

d+2βb = n− 1
6 . Next

var
θ̂(τ†)

{
ES

test

2,τ̃k(·)

(
θ̂
(
τ †))}−1

Eθ

[
ES

test

2,τ̃k

(
θ̂
(
τ †))]

= Op

(
n
−
(

βb
d+2βb

+
2βp

d+2βp

))
= n−1/6 
 Op

(
n− 4β

4β+d +σ
)

= n−1/3+σ,

for small σ. We conclude that the intervals based on ES
test

2,τ̃k(·)

(
θ̂ (τ)

)
and τ2,k

(
θ̂
)
−

τ fail to cover τ̃k (θ) = τ † at the nominal 1 − α level uniformly over Θ as n → ∞.
We reach the identical conclusion with regard to the parameter τ (θ) because under
our assumptions |τ (θ) − τ̃k (θ)| = Op

(
n− 4β

4β+d +σ
)
.

Furthermore, by the argument used in the proof of Theorem 6.9, it is easy to
see that the length of each interval is Op

(
k/n2

)
= Op

(
n− 4β

4β+d +σ
)
. It follows that

if we try to improve the coverage of the intervals based on ES
test

2,τ̃k(·)

(
θ̂ (τ)

)
and

τ2,k

(
θ̂
)
− τ by further increasing k, the length of the intervals will increase beyond

Op

(
n− 4β

4β+d +σ
)
. We conclude that the interval based on ψ2,k

(
τ, θ̂

)
is strictly pre-

ferred to the other two intervals when βp/d = 0 , βb/d = βg/d = 1/4 and is never
worse in terms of shrinkage rate and coverage than the other two intervals whatever
be βp, βb, and βg. We reach the identical conclusion with regard to the coverage
of the parameter τ (θ) because, under our assumptions including our choice of k,
|τ (θ) − τ̃k (θ)| = Op

(
n− 4β

4β+d

)
and n− 4β

4β+d � n− 4β
4β+d +σ, the order of the interval

lengths.
These results translate directly into analogous results concerning the associated

estimators. Under our assumptions the estimator solving ψ2,k

(
τ, θ̂

)
= 0 converges

to both τ (θ) and τ̃k (θ) at rate Op

(
n− 4β

4β+d +σ
)
. In contrast the rate of convergence
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of τ2,k

(
θ̂
)

and the estimator solving ES
test

2,τ̃k(·)

(
θ̂ (τ)

)
= 0 converge to τ (θ) and

τ̃k (θ) at the rates given in (iv) and (v) of Theorem 6.11.
What is the intuition behind the above findings? First note that, as promised

by Theorem 2.2 and part (vii) of the theorem in the last subsection, the bias away

from zero of var
θ̂(τ†)

{
EStest

2,τ̃k(·)

(
θ̂
(
τ †))}−1

Eθ

[
EStest

2,τ̃k

(
θ̂
(
τ †))] , Eθ

[
τ2,k

(
θ̂
)
−

τ̃k (θ)], and v
(
θ̂
)−1

Eθ

[
ψ2,k

(
τ †, θ̂

)]
are all Op

(∣∣∣∣∣∣θ̂ − θ
∣∣∣∣∣∣3). However the nature

and convergence rate of the Op

(∣∣∣∣∣∣θ̂ − θ
∣∣∣∣∣∣3) term can vary markedly between es-

timators, attaining a minimum for Eθ

[
ψ2,k

(
τ †, θ̂

)]
. Now it is not surprising that,

for the same order of variance, the order of Eθ

[
τ2,k

(
θ̂
)
− τ̃k (θ)

]
often exceeds

that of Eθ

[
ψ2,k

(
τ †, θ̂

)]
. Confidence intervals for τ̃k (θ) based on τ2,k

(
θ̂
)

are cen-

tered at (i.e are symmetric around) τ2,k

(
θ̂
)
, which is a quite stringent constraint

on the form of the interval. In that sense, intervals based on τ2,k

(
θ̂
)

are a higher
order generalization of the first order asymptotic Wald intervals for τ̃k (θ). It is
well known that when τ̃k (θ) is an implicit parameter that sets a functional such
as ψ̃k (τ, θ) to zero, first-order Wald confidence intervals are often outperformed
in finite samples by confidence sets obtained by inverting a ‘score-like’ test based
on first order ‘estimating functions’ for the functional that depend on the para-
meter τ̃k and, frequently, on estimated nuisance parameters as well, although this
fact is not reflected in the first order asymptotics. Our example is higher order
version of this phenomenon, where the benefit of the interval C

1−α,ψ̃ k(τ)
obtained

by inverting tests based on the estimating function ψ2,k

(
τ, θ̂

)
for the functional

ψ̃k (τ, θ) is clearly and quantitatively revealed by the asymptotics. Note that, like
first order Wald intervals, the interval based on τ2,k

(
θ̂
)

will differ from the interval

for τ̃k (θ) based on applying an inverse nonlinear monotone transform h−1 (·) to
the end points of a Wald interval for the transformed parameter h {τ̃k (θ)} that is
centered on h (τ)2,k

(
θ̂
)
≡ h

(
τ̃k

(
θ̂
))

+ IF
2,h(τ̃k(·))

(
θ̂
)
. In contrast, like first order

score-based intervals, the intervals based on ψ2,k

(
τ, θ̂

)
and ES

test

2,τ̃k(·)

(
θ̂
(
τ †)) are

invariant to monotone transformations of the parameter τ̃k (θ).
More interesting and perhaps more surprising is that, for the same order of

variance, the order of Eθ

[
var

θ̂(τ†)

{
EStest

2,τ̃k(·)

(
θ̂
(
τ †))}−1

EStest

2,τ̃k

(
θ̂
(
τ †))] exceeds

that of Eθ

[
ψ2,k

(
τ †, θ̂

)]
. The surprise derives from a failure to recognize that The-

orem 6.5 is simply too general to help select among competing procedures . For
example, this theorem implies that under law θ̂

(
τ †), (a) the variance

var
θ̂(τ†)

{
EStest

2,τ̃k(·)

(
θ̂
(
τ †))}−1

of [
var

θ̂(τ†)

{
ES

test

2,τ̃k(·)

(
θ̂
(
τ †))}−1

Eθ

[
ES

test

2,τ̃k

(
θ̂
(
τ †))]]
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is less (and generally strictly less ) than the variance of

v
(
θ̂
(
τ †))−1

Eθ

[
ψ2,k

(
τ †, θ̂

(
τ †))] ,

while (b) both have bias of Op

(∣∣∣∣∣∣θ̂ (τ †)− θ
∣∣∣∣∣∣3). At first blush, this might sug-

gest that the estimator solving EStest

2,τ̃k

(
θ̂ (τ)

)
= 0 would likely have the same

bias but smaller variance than the estimator solving ψ2,k

(
τ, θ̂

)
= 0. But we have

seen that just the opposite is true. The reason is that the difference between
the variances in (a) is negligible in the sense that their ratio is 1 + op (1), while

the Op

(∣∣∣∣∣∣θ̂ (τ †)− θ
∣∣∣∣∣∣3) biases are often of quite different orders with that of

v
(
θ̂
(
τ †))−1

Eθ

[
ψ2,k

(
τ †, θ̂

(
τ †))] always a minimum. Furthermore, the theory of

higher order estimation and testing influence functions, as a theory of score func-
tions, is, in itself, insufficient to order these biases. Rather side calculations were
required. See Remark 4.3 above for further discussion.

More generally, whenever the functional ψ (τ, θ) is in our doubly robust class,
Equation (4.1) holds so ψ̂eff

KJ
is rate minimax (or near minimax if σ is chosen posi-

tive), and the suppositions of Theorem 6.1 hold for ψ̃ (τ) = ψ̂eff
KJ

(τ), Theorem 6.1
then implies the width of the interval estimator for τ (θ) based on ψ̂eff

KJ
(τ) converges

to zero at the convergence rate of ψ̂eff
KJ

(τ) to ψ (τ, θ).

Appendix

In the following, we assume all parametric submodels are sufficiently smooth and
regular that expectation and differentiation operators commute as needed. We also
define IF1,1 to be IF1.

Proof of Theorem 2.2. Define the bias function Bm

[
θ†, θ

]
of IFm (θ) to be

Eθ† [IFm (θ)]. Define

Bm,l∗1 ...l∗
j
lj+1,...ls [θ, θ] =

∂sBm

[
θ̃ (ς∗) , θ̃ (ς)

]
/∂ς∗l1...∂ς∗lj ∂ςlj+1...∂ςls |ς∗=θ̃−1{θ},ς=θ̃−1{θ},

where we reserve ∗ for differentiation with respect to the first argument of Bm [·, ·].
Thus for s ≤ m,

ψ\l1...ls (θ) = Bm,l∗1 ...l∗s [θ, θ] .

To prove the theorem we will first need to show that:

(A.1) Bm,l∗1 ...l∗
j
lj+1,...ls [θ, θ] = 0 for m ≥ s > j > 0

To this end note that for j < m,

ψ\l1...lj+1 (θ) = ∂ψ\l1...lj (θ) /∂ςlj+1 = ∂Bm,l∗1 ...l∗
j
[θ, θ] /∂ςlj+1

= Bm,l∗1 ...l∗
j
l∗
j+1

[θ, θ] + Bm,l∗1 ...l∗
j
lj+1 [θ, θ]

= ψ\l1...lj+1 (θ) + Bm,l∗1 ...l∗
j
lj+1 [θ, θ] ,
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where the second equality is by the definition of IFm (θ), the third is by the chain
rule, and the fourth is again by the definition of IFm (θ). Hence Bm,l∗1 ...l∗

j
lj+1 [θ, θ] =

0. Hence for j ≤ m − 2,

0 = ∂Bm,l∗1 ...l∗
j
lj+1 [θ, θ] /∂ςlj+2...

= Bm,l∗1 ...l∗
j
l∗
j+2lj+1 [θ, θ] + Bm,l∗1 ...l∗

j
lj+1lj+2 [θ, θ]

= 0 + Bm,l∗1 ...l∗
j
lj+1lj+2 [θ, θ] ,

where the last equality holds because we just proved Bm,l∗1 ...l∗
j
lj+1 [θ, θ] = 0 for

arbitrary indices. Iterating this argument proves (A.1). We complete the proof
by induction on s for some s < m. Given a s = 1 dimensional regular paramet-
ric submodel θ̃ (ς), Eθ(ς) [IFm (θ (ς))] = 0 by assumption. Hence, by regularity of
the model, 0 = Bm,l∗1 . [θ, θ] + Bm,l1. [θ, θ]. Therefore Bm,l1. [θ, θ] = −ψ\l1 (θ). Now
suppose the theorem is true for s. Then

−ψ\l1...ls+1 (θ) = −∂ψ\l1...ls (θ) /∂ςls+1

= ∂Bm,l1...ls [θ, θ] /∂ςls+1

= Bm,l∗
s+1l1...ls [θ, θ] + Bm,l1...ls+1 [θ, θ]

= 0 + Bm,l1...ls+1 [θ, θ] ,

where the second equality is by the induction assumption, the third by the chain
rule, and the last by Equation (A.1).

Proof of Theorem 2.3. (1) Consider two influence functions IF(1)
m (θ) and IF(2)

m (θ)
for ψ (θ). Then Eθ

[{
IF(1)

m (θ) − IF(2)
m (θ)

}
S̃s,ls

(θ)
]

= ψ\ls
(θ) − ψ\ls

(θ) = 0 for

any score S̃s,ls
(θ) , s ≤ m and hence for any linear combination of scores. But,

by definition, linear combinations of scores are dense in Γm (θ). Thus IF
(1)
m (θ) and

IF
(2)
m (θ) have the same projection on Γm (θ). (2-3): Essentially immediate from the

definitions. (4): For t ≤ s,

ψ\lt
(θ) = Eθ

[
IFm (θ) S̃t,lt

(θ)
]

= Eθ

[
Πm,θ [IFm (θ) |Ut (θ)] S̃t,lt

(θ)
]

for any S̃t,lt
(θ). (5.a): follows from (1). (5.b): follows from (4). Degeneracy of

IFmm (θ) follows at once from the fact that IFmm (θ) ∈ Um−1 (θ)⊥ in Um (θ). Proof
of part (5.c) requires the following.

Lemma A.1. Suppose, for m ≥ 1, IFm,m (θ) and if1,ifsym
m,m(Oi1 ,...,Oim ;·)

(
Oim+1 ; θ

)
exist w.p.1 for a kernel IFm,m (θ). Let f

(
O; θ̃ (ζ)

)
, ζT = (ζ1, . . . , ζs), denote an

arbitrary smooth s-dimensional parametric submodel. Let lt ∈ {1, 2, . . . , s}, and
Slt (O) be the score for ζlt evaluated at θ. Then,

(i) −if1,ifsym
m,m(Oi1 ,...,Oim ;·)

(
Oim+1 ; θ

)
slt

(
Oim+1

)
, −ifm,m,\lt (Oi1 , . . . , Oim ; θ),

and ifm,m (Oi1 , . . . , Oim ; θ) slt (Oim) each have the same mean given Oi1 , . . . , Oim−1 ,
(ii) E

[
ifm,m,\lt (Oi1 , . . . , Oim ; θ) |Oi1 , . . . , Oim−2

]
= 0,

(iii) Eθ

[
if1,ifsym

m,m(Oi1 ,...,Oim ;·)
(
Oim+1 ; θ

)
|Oi1 , . . . , Oim−2 , Oim+1

]
= 0, so

Π
[
V

[
if1,ifsym

m,m(Oi1 ,...,Oim ;·)
(
Oim+1 ; θ

)]
|Um (θ)

]
= Π

[
V

[
if1,ifsym

m,m(Oi1 ,...,Oim ;·)
(
Oim+1 ; θ

)]
|Um (θ) ∩ U⊥

m−2 (θ)
]
,
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(iv) IFm,m,\lt (θ) satisfies Πθ

[
IFm,m,\lt (θ) |Um−2 (θ)

]
= 0 and

Πθ

[
IFm,m,\lt (θ) |Um−1 (θ)

]
= −V

[
mEθ

[
IF sym

m,m,\lt,im
(θ) |Oi1 , . . . , Oim−1

]]
.

Proof. (i) By IFm,m (θ) degenerate,

Eθ

[
IFm,m,\lt,im

(θ) |Oi1 , . . . , Oim−1

]
= −Eθ

[
IFm,m,im

(θ) slt (Oim) |Oi1 , . . . , Oim−1

]
.

Further, by definition,

Eθ

[
if1,ifsym

m,m(Oi1 ,...,Oim ;·)
(
Oim+1 ; θ

)
slt

(
Oim+1

)
|Oi1 , . . . , Oim

]
= Eθ

[
IFm,m,\lt,im

(θ) |Oi1 , . . . , Oim

]
.

(ii) By IFm,m (θ) degenerate 0 = Eθ

[
IFm,m,im

(θ) slt (Oim) |Oi1 , . . . , Oim−2

]
w.p.1 and so (ii) follows from (i).

(iii) (i) and (ii) imply

0 = Eθ

[
if1,ifsym

m,m(Oi1 ,...,Oim ;·)
(
Oim+1 ; θ

)
slt

(
Oim+1

)
|Oi1 , . . . , Oim−2

]
= Eθ

[
Eθ

[
if1,ifsym

m,m(Oi1 ,...,Oim ;·)
(
Oim+1 ; θ

)
|Oim+1 , Oi1 , . . . , Oim−2

]
× slt

(
Oim+1

)
|Oi1 , . . . , Oim−2

]
.

But, by slt

(
Oim+1

)
an arbitrary mean zero function,

Eθ

{
if1,ifsym

m,m(Oi1 ,...,Oim ;·)
(
Oim+1 ; θ

)
|Oim+1 , Oi1 , . . . , Oim−2

}
= Eθ

{
if1,ifsym

m,m(Oi1 ,...,Oim ;·)
(
Oim+1 ; θ

)
|Oi1 , . . . , Oim−2

}
= 0.

(iv) By definition,

Πθ

[
IFm,m,\lt (θ) |Um−1 (θ)

]
= V

[
{I − dm,θ}

{
IFm,m,\lt,im

(θ)
}]

.

The result follows by Equation (2.1) and part (ii).

Proof of Theorem 5(c)(ii). Consider a m-dimensional parametric submodel

f
(
O; θ̃ (ζ)

)
= f (O; θ)

{
1 +

m∑
l=1

ζjaj (O)

}
, ζT = (ζ1, . . . , ζm) ,

with Eθ [al (O)] = 0. Since this model is linear in the ζj , f\l1...lm (Oj ; θ) = 0 for
m > 1. Hence S̃m,lm

(θ) is degenerate of order m, i.e., S̃m,lm
(θ) ∈ U⊥

m−1 (θ). Since
IFm−1 (θ) exists, on setting ls = s for s = 1, . . . , m,

∂m−1ψ
(
θ̃ (ζ)

)
/

m−1∏
j=1

∂ζj|ζ=0 ≡ ψ\lm−1
(θ) = Eθ

[
IFm−1 (θ) S̃m−1,lm−1

(θ)
]
.
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Differentiating the last display with respect to ζm and evaluating at ζ = 0, we
obtain

ψ\lm
(θ) = Eθ

[
IFm−1 (θ) S̃m,lm

(θ)
]

+ Eθ

[
IFm−1,\lm (θ) S̃m−1,lm−1

(θ)
]

= Eθ

[
IFm−1,\lm (θ) S̃m−1,lm−1

(θ)
]
.

Now

Eθ

[
IFm−1,\lm (θ) S̃m−1,lm−1

(θ)
]

= Eθ

[
IFm−2,\lm (θ) S̃m−1,lm−1

(θ)
]

+ Eθ

[
IFm−1,m−1,\lm (θ) S̃m−1,lm−1

(θ)
]
.

Setting slr (Oir , θ) = ar (Oir), S̃m−1,lm−1
(θ) =

∑
i1 �=···�=im−1

m−1∏
r=1

ar (Oir ; θ) is de-

generate of order m − 1 so

Eθ

[
IFm−1,m−1,\lm (θ) S̃m−1,lm−1

(θ)
]

= (m − 1)!Eθ

([
ifsym

m−1,m−1,\lm

(
Oi1 , . . . , Oim−1 ; θ

)]m−1∏
r=1

ar (Oir ; θ)

)
,

and Eθ

[
IFm−2,\lm (θ) S̃m−1,lm−1

(θ)
]

= 0. Hence

ψ\lm
(θ) = (m − 1)!Eθ

(
ifsym

m−1,m−1,\lm

(
Oi1 , . . . , Oim−1 ; θ

)m−1∏
r=1

ar (Oir ; θ)

)
.

Now, by the assumed existence of IFm (θ), we also have ψ\lm
(θ) = Eθ [IFm (θ) ×

S̃m (θ)
]

= m!Eθ

(
ifsym

m,m (Oi1 , . . . , Oim ; θ)
m∏

r=1
ar (Oir ; θ)

)
. It follows that, for any

choice of m − 1 mean zero functions ar (O) under θ,

0 = Eθ

({
ifsym

m−1,m−1,\lm

(
Oi1 , . . . , Oim−1 ; θ

)
−mEθ

[
ifsym

m,m (Oi1 , . . . , Oim ; θ) am (Oim ; θ) |Oi1 , . . . , Oim−1

] }
×

m−1∏
r=1

ar (Oir ; θ)

)

= Eθ

(
r
(
Oi1 , . . . , Oim−1 ; θ

)m−1∏
r=1

ar (Oir ; θ)

)
,

where

r
(
Oi1 , . . . , Oim−1 ; θ

)
≡ dm−1,θ

[
ifsym

m−1,m−1,\lm

(
Oi1 , . . . , Oim−1 ; θ

)]
− mEθ

[
ifsym

m,m (Oi1 , . . . , Oim ; θ) am (Oim ; θ) |Oi1 , . . . , Oim−1

]
.

The last equality follows from

ifsym
m−1,m−1,\lm

(
Oi1 , . . . , Oim−1 ; θ

)
− dm−1,θ

[
ifsym

m−1,m−1,\lm

(
Oi1 , . . . , Oim−1 ; θ

)]
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orthogonal to
m−1∏
r=1

ar (Oir ; θ). We conclude r
(
Oi1 , . . . , Oim−1 ; θ

)
= 0 with probabil-

ity 1 because r
(
Oi1 , . . . , Oim−1 ; θ

)
is a degenerate U-statistic kernel of order m− 1

and all degenerate U-statistics of order m − 1 have kernels that are the (possibly
infinite) sum of products of m − 1 mean zero functions. It follows that, on a set
Om−1 which has probability 1 under F (m−1) (·; θ),

ifsym
m−1,m−1,\lm

(
oi1 , . . . , oim−1 ; θ

)
= Eθ

[{
m × ifsym

m,m

(
oi1 , . . . , oim−1 , Oim,; θ

)
am (Oim ; θ)

}]
+ {I − dm−1,θ}

[
ifsym

m−1,m−1,\lm

(
oi1 , . . . , oim−1 ; θ

)]
= Eθ

[{
m × ifsym

m,m

(
oi1 , . . . , oim−1 , O; θ

)
−
∑m−1

j=1 ifsym
m−1,m−1

(
oi1 , . . . , oij−1 , O, oij+1 , . . . , oim−1 ; θ

) }
am (O; θ)

]
since, by parts (i) and (ii) of the Lemma A.1 and Equation (2.1),

{I − dm−1,θ}
[
ifsym

m−1,m−1,\lm

(
oi1 , . . . , oim−1 ; θ

)]
= −Eθ

⎡⎣m−1∑
j=1

ifsym
m−1,m−1

(
oi1 , . . . , oij−1 , O, oij+1 , . . . , oim−1 ; θ

)
am (O; θ)

⎤⎦ .

Here I is the identity operator. Now since the model f
(
O; θ̃ (ζ)

)
= f (O; θ) {1+

ζmam (O)} with ζs = 0 for s < m has score am (O) and such scores are dense in the
subspace of L2 (F (·; θ)) with mean zero, it follows that ifsym

m−1,m−1

(
oi1 , . . . , oim−1 ; θ

)
has influence function

m × ifsym
m,m

(
oi1 , . . . , oim−1 , O; θ

)
−

m−1∑
j=1

ifsym
m−1,m−1

(
oi1 , . . . , oij−1 , O, oij+1 , . . . , oim−1 ; θ

)
on the set Om−1. Thus

m × ifsym
m,m

(
oi1 , . . . , oim−1 , Oim ; θ

)
= dm,θ

[
if1,ifsym

m−1,m−1(oi1 ,...,oim−1 ;·) (Oim ; θ)
]
.

Corollary A.2. For m ≥ 2,

Πθ

[
IFm−1,m−1,\lt (θ) |U⊥

m−2 (θ)
]

= −Πθ

[
IFm,m,\lt (θ) |Um−1 (θ)

]
(A.2)

IFm,\lt (θ) = Πθ

[
IFm,m,\lt (θ) |U⊥

m−1 (θ)
]

(A.3)

Eθ

[
IFm,\lm+1 (θ) S̃m,lm

(θ)
]

=

m!Eθ

(
ifsym

m,m,\lm+1

(
Oi1 , . . . , Oilm

; θ
) m∏

r=1

Slr (Oir ; θ)

)
.(A.4)
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Proof of Equation (A.2). By Lemma A.1 and Theorem 5c(ii),

Πθ

[
IFm,m,\lt (θ) |Um−1 (θ)

]
= V

[
mEθ

(
IF sym

m,m,im
(θ) slt (Oim) |Oi1 , . . . , Oim−1

)]
= V

[
mEθ

(
m−1dm,θ

{
if1,ifsym

m−1,m−1(Oi1 ,...,Oim−1 ;·) (Oim ; θ)
}

slt (Oim) |

×Oi1 , . . . , Oim−1

)]
.

Now, by part (iii) of Lemma A.1 and Equation (2.1), the RHS is

V

[
Eθ

(
if1,ifsym

m−1,m−1(Oi1 ,...,Oim−1 ;·) (Oim ; θ) slt (Oim) |Oi1 , . . . , Oim−1

)]
− V

{
E
[
E
[
(m − 1)E

[
if1,ifsym

m−1,m−1(Oi1 ,...,Oim−1 ;·) (Oim ; θ) |Oim , Oi1 , . . . , Oim−2

]]
×slt (Oim) |Oi1 , . . . , Oim−1

]}
= V

[
IF sym

m−1,m−1,\lt
(θ)

]
− V

{
(m − 1)Eθ

[
IF sym

m−1,m−1,\lt
(θ) |Oi1 , . . . , Oim−2

]}
On the other hand, by part (iv) of the Lemma A.1,

Πθ

[
IFm−1,m−1,\lt (θ) |U⊥

m−2 (θ)
]

= V
[
IFm−1,m−1,\lt (θ)

]
− V

[
(m − 1)Eθ

[
IF sym

m−1,m−1,\lt,im−1
(θ) |Oi1 , . . . , Oim−2

]]
.

Proof of Equation (A.3). Write

IFm,\lt (θ) = Πθ

[
IFm,m,\lt (θ) |U⊥

m−1 (θ)
]
+
{
Π
[
IF2,2,\lt (θ) |U1 (θ)

]
+ IF1,\lt (θ)

}
+

m−1∑
j=2

{
Π
[
IFj+1,j+1,\lt (θ) |Uj (θ)

]
+ Π

[
IFjj,\lt (θ) |U⊥

j−1 (θ)
]}

The RHS is Πθ

[
IFm,m,\lt (θ) |U⊥

m−1 (θ)
]

by Equation (A.2).

Proof of Equation (A.4).

Eθ

[
IFm,\lm+1 (θ) S̃m,lm

(θ)
]

= Eθ

[
Π
[
IFm,m,\lm+1 (θ) |U⊥

m−1 (θ)
]
S̃m,lm

(θ)
]

by Equation (A.3). But the RHS of this equation is the RHS of Equation (A.4).

Proof of Theorem 5c(i). By assumption

ψ\lm−1
(θ) = Eθ

(
IFm−1 (θ) S̃m−1,lm−1

(θ)
)

.

Hence

ψ\lm
(θ) = Eθ

(
IFm−1 (θ) S̃m,lm

(θ)
)

+ Eθ

[
IFm−1,\lm (θ) S̃m−1,lm−1

(θ)
]
.

By Equation (A.4), and the assumption ifsym
m−1,m−1 (Oi1 , . . . , Oim ; θ) has an influ-

ence function, we obtain

Eθ

[
IFm−1,\lm (θ) S̃m−1,lm−1

(θ)
]

= (m − 1)!Eθ

(
if1,ifsym

m−1,m−1(Oi1 ,...,Oim−1 ;·) (Oim ; θ) Slm (Oim ; θ)
m−1∏
r=1

Slr (Oir ; θ)

)
.
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We conclude that IFm,m exists and equals

V

[
m−1dm,θ

{
if1,ifsym

m−1,m−1(Oi1 ,...,Oim−1 ;·) (Oim ; θ)
}]

.

Proof of Theorem 3.14. By Theorem 3.13,

IF
1,ψ̃k,i1

(θ) = if
1,ψ̃k

(Oi1 ; θ)

= Hi1

(
b̃ (θ) , p̃ (θ)

)
− ψ̃k (θ)

= h
(
Oi1 , b̃ (Xi1 ; θ) , p̃ (Xi1 ; θ)

)
− ψ̃k (θ) ,

and by part 5.c of Theorem 2.3,

V

[
IF

22,ψ̃k,i2

]
=

1
2

{
Πθ

[
V

[
IF1,if

1,ψ̃k
(Oi1 ,·),i2

(θ)
]
|U⊥θ,2

1 (θ)
]}

.

Now

IF1,if
1,ψ̃k

(Oi1 ,·),i2
(θ) = h̃

b

(
Oi1 , b̃ (Xi1 ; θ) , p̃ (Xi1 ; θ)

)
IF

1,̃b(Xi1 ;·),i2
(θ)

+ h
p̃

(
Oi1 , b̃ (Xi1 ; θ) , p̃ (Xi1 ; θ)

)
IF

1,p̃(Xi1 ;·),i2
(θ) ,

where

h̃
b

(
Oi1 , b̃ (Xi1 ; θ) , p̃ (Xi1 ; θ)

)
= H1,i1 p̃ (Xi1 ; θ) + H2,i1

h
p̃

(
Oi1 , b̃ (Xi1 ; θ) , p̃ (Xi1 ; θ)

)
= H1,i1 b̃ (Xi1 ; θ) + H3,i1 .

IF
1,̃b(Xi1 ;·),i2

(θ) = IF
1,b∗

(
Xi1 ,̃ηk(·)

)
,i2

(θ)

= Ḃi1Z
T

ki1IF
1,̃ηk(·),i2

(θ)

= −Ḃi1Z
T

ki1

{
Eθ

[
Ṗ ḂH1ZkZ

T

k

]}−1 [{
H1b̃ (X; θ) + H3

}
ṖZk

]
i2

,

and

IF
1,p̃(Xi1 ,·),i2

(θ) = −Ṗi1Z
T

ki1

{
Eθ

[
Ṗ ḂH1ZkZ

T

k

]}−1 [
{H1p̃ (X; θ) + H2} ḂZk

]
i2

IF1,if
1,ψ̃k

(Oi1 ;·),i2
(θ)

= −{H1p̃ (X; θ) + H2}i1
Ḃi1Z

T

ki1

{
Eθ

[
Ṗ ḂH1ZkZ

T

k

]}−1

×
[{

H1b̃ (X; θ) + H3

}
ṖZk

]
i2

−
{

H1b̃ (X; θ) + H3

}
i1

Ṗi1Z
T

ki1

{
Eθ

[
Ṗ ḂH1ZkZ

T

k

]}−1

×
[
{H1p̃ (X; θ) + H2} ḂZk

]
i2

,

and further

Πθ

[
V

[
IF1,if

1,ψ̃k
(Oi1 ;·),i2

(θ)
]
|U1 (θ)

]
= 0,
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since

Eθ

[
{H1p̃ (X; θ) + H2} ḂZk

]
= Eθ

[{
H1b̃ (X; θ) + H3

}
ṖZk

]
= 0

and thus IF1,if
1,ψ̃k

(Oi1 ;·),i2
(θ) is degenerate. Because IF1,if

1,ψ̃k
(Oi1 ;·),i2

(θ) has two

terms, it appears that IF
22,ψ̃k,i2

will consist of two terms. However by the symmetry
upon interchange of i2 and i1, and the permutation invariance of the operator V

V

[
IF1,if

1,ψ̃k
(Oi1;θ),i2

(θ)
]

= V

⎡⎣ −2 {H1p̃ (X, θ) + H2}i1
Ḃi1Z

T

ki1

{
Eθ

[
Ṗ ḂH1ZkZ

T

k

]}−1

×
[
Zk

{
H1b̃ (X, θ) + H3

}
Ṗ
]

i2

⎤⎦ .

Thus we can take

IF
22,ψ̃k,i2

= −{H1p̃ (X, θ) + H2}i1
Ḃi1Z

T

ki1

{
Eθ

[
Ṗ ḂH1ZkZ

T

k

]}−1

×
[
Zk

{
H1b̃ (X, θ) + H3

}
Ṗ
]

i2

as was to be proved. We now complete the proof of the Theorem by induction. We
assume it is true for IF

mm,ψ̃k,im
and prove it is true for IF

(m+1)(m+1),ψ̃k,im+1
. Now

V

[
IF

(m+1),(m+1),ψ̃k,im+1
(θ)

]
=

1
m

V

[
Πθ

[
IF

1,if
m,m,ψ̃k

(
O

im
,·
)
,im+1

(θ) |U⊥θ,m+1
m (θ)

]]
.

Now by the induction hypothesis,

if
m,m,ψ̃k

(
Oim

, θ
)

= (−1)m−1
[(

H1P̃ (θ) + H2

)
ḂZ

T

k

]
i1

×

⎡⎣ m∏
s=3

{
Eθ

[
Ṗ ḂH1ZkZ

T

k

]}−1

⎧⎨⎩
(
Ṗ ḂH1ZkZ

T

k

)
is

−Eθ

[
Ṗ ḂH1ZkZ

T

k

]
⎫⎬⎭
⎤⎦

×
{

Eθ

[
Ṗ ḂH1ZkZ

T

k

]}−1 [
Zk

(
H1B̃ (θ) + H3

)
Ṗ
]

i2
.

The derivatives with respect to the θ′s in P̃ (θ) , B̃ (θ) and in the m − 1 terms{
Eθ

[
Ṗ ḂH1ZkZ

T

k

]}−1

will each contribute a term to V

[
IF

(m+1)(m+1),ψ̃k,im+1
(θ)

]
.

However differentiating with respect to the θ in the m− 2 terms Eθ

[
Ṗ ḂH1ZkZ

T

k

]
will not contribute to V

[
IF

(m+1),(m+1),ψ̃k,im+1
(θ)

]
as the contribution from each

of these m − 2 terms to IF
1,if

m,m,ψ̃k

(
O

im
,θ
)
,im+1

(θ) is only a function of m units’

data and is thus an element of Um (θ) which is orthogonal to the space U⊥θ,m+1
m (θ)
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that is projected on. Now

IF
1,
{

Eθ

[
Ṗ ḂH1ZkZ

T

k

]}−1
,im+1

(θ)

= −
{

Eθ

[
Ṗ ḂH1ZkZ

T

k

]}−1

⎧⎨⎩
(
Ṗ ḂH1ZkZ

T

k

)
im+1

−Eθ

[
Ṗ ḂH1ZkZ

T

k

]
⎫⎬⎭{

Eθ

[
Ṗ ḂH1ZkZ

T

k

]}−1

.

so upon permuting the unit indices, the contribution of each of these m − 1 terms
to IF

1,if
m,m,ψ̃k

(
O

im
,θ
)
,im+1

(θ) is

− (−1)m−1
[(

H1P̃ (θ) + H2

)
ḂZ

T

k

]
i1

(A.5)

×

⎡⎣m+1∏
s=3

{
Eθ

[
Ṗ ḂH1ZkZ

T

k

]}−1

⎧⎨⎩
(
Ṗ ḂH1ZkZ

T

k

)
is

−Eθ

[
Ṗ ḂH1ZkZ

T

k

]
⎫⎬⎭
⎤⎦

×
{

Eθ

[
Ṗ ḂH1ZkZ

T

k

]}−1 [
Zk

(
H1B̃ (θ) + H3

)
Ṗ
]

i2
,

which is already degenerate ( i.e., orthogonal to Um (θ)). Differentiating with respect
to the θ′s of P̃ (θ) , B̃ (θ) in IF

1,if
m,m,ψ̃k

(
O

im
,θ
)
,im+1

(θ) we obtain

= (−1)m−1
IF

1,̃b(Xi1 ,·),im+1
(θ)

[
H1ḂZ

T

k

]
i1[

m∏
s=3

{
Eθ

[
Ṗ ḂH1ZkZ

T

k

]}−1
{(

Ṗ ḂH1ZkZ
T

k

)
is

− Eθ

[
Ṗ ḂH1ZkZ

T

k

]}]
×

{
Eθ

[
Ṗ ḂH1ZkZ

T

k

]}−1 [
Zk

(
H1B̃ (θ) + H3

)
Ṗ
]

i2

+ (−1)m−1
[(

H1P̃ (θ) + H2

)
ḂZ

T

k

]
i1
×[

m∏
s=3

{
Eθ

[
Ṗ ḂH1ZkZ

T

k

]}−1
{(

Ṗ ḂH1ZkZ
T

k

)
is

− Eθ

[
Ṗ ḂH1ZkZ

T

k

]}]
×[

ZkH1Ṗ
]
IF

1,p̃(Xi2 ,·),im+1
(θ)

Substituting in the above expressions for IF
1,̃b(Xi1 ,·),im+1

(θ) and IF
1,p̃(Xi2 ,·),im+1

(θ),

then projecting on U⊥θ,m+1
m (θ), and again permuting unit indices, we obtain two

identical terms both equal to Equation (A.5). Thus we obtain m+1 identical terms
in all. Upon dividing by m+1, we conclude that V

[
IF

(m+1),(m+1),ψ̃k,im+1
(θ)

]
equals

V operating on (A.5), proving the theorem.
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sion of this Festschrift is to say with Kipling: you are a better man than I. Who
else has David’s passion to get things exactly right, whether in an elementary text-
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420 J. Robins, L. Li, E. Tchetgen and A. van der Vaart

now write their papers without imagining the withering attack of a David Freed-
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