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Abstract: This paper considers a wide family of semiparametric repeated
measures regression models, in which the main interest is on estimating
population-level quantities such as mean, variance, probabilities etc. Examples
of our framework include generalized linear models for clustered/longitudinal
data, among many others. We derive plug-in kernel-based estimators of the
population level quantities and derive their asymptotic distribution. An exam-
ple involving estimation of the survival function of hemoglobin measures in the
Kenya hemoglobin study data is presented to demonstrate our methodology.

1. Introduction

This paper is about semiparametric regression models with repeated measures when
the primary goal is to estimate a population quantity such as mean, variance, prob-
ability, etc. We will construct estimators of these quantities which utilize the under-
lying semiparametric structure of the model and derive their limiting distribution.

The work is motivated by the following example: the Kenya hemoglobin data.
The goal is to study the changes of hemoglobin over time during the first year
of birth. The data set consists of 68 families with 2 children per family. For each
child, 4 repeated measures are taken over time in the first year since birth: the
time of visit varied from child to child. The factors include mother’s age at child
birth, child sex and placental parasitemia density (PDEN), a marker of malaria
that could affect hemoglobin. To model these data, Lin and Carroll [2] considered a
semiparametric model where the mother’s age effect is modeled nonparametrically
and (sex, PDEN) is modeled parametrically. The model is given by the repeated
measures partially linear model

Yijk = XT
ijkβ0 + θ0(Zij) + εijk,(1.1)

where i = 1, . . . , n, j = 1, . . . , m and k = 1, . . . , R. Specifically, Lin and Carroll [2]
set Yijk = hemoglobin level of the jth child in the ith family at the kth visit, Zij =
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mother’s age at the jth child birth in the ith family, Xijk = {sex, logpden, month,
(month−4)+}, where sex = 1 if female and 0 if male, logpden = log(PDEN+1),
month denotes the age of the child at the kth visit and the function f+ = f if
f > 0 and 0 if f ≤ 0. As noted by Lin and Carroll [2], the covariates {month,
(month−4)+} are used to model the time effect as a piecewise linear function with
a knot at 4 months: this trend being observed by preliminary analysis of the data
set. Also assume that, εi = (εi11, εi12, . . . , εimR) has a Normal(0, Σ) distribution
with Σ = σ2ImR + ρσ2(JmR − ImR), where ImR is the mR × mR identity matrix
and JmR is a mR × mR matrix with 1 as all elements. In this context, apart from
the model components, namely β0 and θ0(•), one is interested in other population
level quantities such as mean hemoglobin, E(Y ) or various probabilities such as
the proportion of six month old children who have hemoglobin measure above a
given constant c, pr(Y > c|month = 6), etc. Note that each of the above-mentioned
population-level quantities can be written as functions of X, Z and the model
parameters. For example, because Z, sex and logpden are independent of month,
we can write

pr(Y > c|month = a) = E
(
Φ[{XTβ0 + θ0(Z) − c}/σ]|month = a

)
,(1.2)

where c and a are given constants and Φ(•) is the standard normal cdf. In general,
we can consider any functional κ0 = E{F(•)} for some function F(•): this of course
includes such quantities as population mean, probabilities, etc.

The Kenya hemoglobin study example is a special case of a much more general
framework, one we call semiparametric repeated measures regression modeling. Let
Z̃i = (Zi1, . . . , Zim) and let Ỹi and X̃i be the ensemble of responses and other
covariates, respectively. Consider a semiparametric problem in which the loglike-
lihood function conditional on (X̃, Z1, . . . , Zm) is L{Ỹ , X̃, θ0(Z1), . . . , θ0(Zm),B0},
where B0 is the set of model parameters. Also as an important generalization, allow
Ỹ to be partially missing and let δ = 1 if Ỹ is observed and 0 otherwise. Suppose
further that Ỹ is missing at random, so that pr(δ = 1|Ỹ , X̃, Z̃) = pr(δ = 1|X̃, Z̃).
If we define LB(•) and Ljθ(•) to be the derivatives of the loglikelihood with respect
to B and θ(Zj), we have the properties that for j = 1, 2, . . . ,m,

E[δLB{Ỹ , X̃, θ0(Z1), . . . , θ0(Zm),B0}|X̃, Z1 . . . , Zm] = 0;

E[δLjθ{Ỹ , X̃, θ0(Z1), . . . , θ0(Zm),B0}|X̃, Z1 . . . , Zm] = 0.

The main goal of this paper is to estimate a population level quantity, namely

κ0 = E[F{X̃, Z̃, θ0(Z1), . . . , θ0(Zm),B0}](1.3)

for an arbitrary but smooth function F(•). For example, in (1.2) we have F(•) =
Φ[{XTβ0+θ0(Z)−c}/σ] where last two components of X are fixed as a and (a−4)+.

Although there are various papers about application of semiparametric methods
in the context of longitudinal data (see for example Zeger and Diggle [5] and Zhang
et al. [6]), to the best of our knowledge there is no literature on estimation of
arbitrary population-level quantities in the repeated-measures context. See Maity
et al. [3] for the case of no repeated measurement. However, estimation of B0 and
θ0(•) is described in Lin and Carroll [2]. If we call their estimates B̂ and θ̂(•, B̂),
then we propose to estimate the population-level quantity as

κ̂semi = n−1
n∑

i=1

F{X̃i, Z̃i, θ̂(Zi1, B̂), . . . , θ̂(Zim, B̂), B̂}.(1.4)
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In this paper, we are interested in the asymptotic behavior of κ̂semi.
This paper is organized as follows. In Section 2, we discuss the general semipara-

metric problem with loglikelihood L(•) and a general goal of estimating κ0. We
also derive the asymptotic distribution of (1.4). In Section 3, we demonstrate our
method by applying it to analyze the Kenya hemoglobin study data. All technical
results are given in an Appendix.

2. Semiparametric models with multiple components

2.1. Model component estimation

Estimation of B0 and θ0(•) using profile likelihood and backfitting methods is dis-
cussed in detail in Lin and Carroll [2] when there are no missing data. With miss-
ing data, the method works as follows. Let K(•) be a smooth symmetric density
function with bounded support and variance 1.0, let h be a bandwidth and let
Kh(z) = h−1K(z/h). Define Gij(z, h) = {1, (Zij − z)/h}. For any fixed B = B∗, let
θ̂c(•) be the current estimate in an iterative procedure and (α̂0, α̂1) be the solution
of the following estimating equation:

0 =
n∑

i=1

m∑
j=1

δiKh(Zij − z)Gij(z, h)

×Ljθ

{
Ỹi, X̃i, θ̂c(Zi1,B∗), . . . , α0 + α1(Zij − z), . . . , θ̂c(Zim,B∗)

}
.

We then update θ̂(•) as θ̂(z,B∗) = α̂0.
To estimate B0, a backfitting algorithm can be used. In the iterated backfitting

algorithm, suppose the current estimate is B∗. Then the backfitting estimator of B0

modified for missing responses is updated by maximizing in B the function
n∑

i=1

δiL
{

Ỹi, X̃i, θ̂(Zi1,B∗), . . . , θ̂(Zim,B∗),B
}

,

i.e., solving for B

0 =
n∑

i=1

δiLB
{

Ỹi, X̃i, θ̂(Zi1,B∗), . . . , θ̂(Zim,B∗),B
}

.

The final estimates are obtained by iterating the process until convergence.

2.2. Estimation of general population-level summaries

We take advantage of the results about the asymptotic expansions for B̂ and θ̂(•)
provided in Lin and Carroll [2], with the modification of incorporating the missing
data indicators. Let Ljkθ(•) = ∂Ljθ{Y, X, θ0(Z1), . . . , θ0(Zm),B0}/∂θ(Zk). Make
the definitions Ω(z) =

∑m
j=1 fj(z)E{δLjjθ(•)|Zj = z} and

A(B, z1, z2) =
m∑

j=1

m∑
k �=j

fj(z1)E {δLjkθ(•)B(Zk, z2)/Ω(Zk)|Zj = z1} ;

Q(z1, z2) =
m∑

j=1

m∑
k �=j

fjk(z1, z2)E {δLjkθ(•)|Zj = z1, Zk = z2} /Ω(z2),
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where fj(z) is the density of Zj and fjk(z1, z2) is the bivariate density of (Zj , Zk),
assumed to have bounded support and are positive on the support. Let G(z1, z2)
be the solution to

G(z1, z2) = Q(z1, z2) −A(G, z1, z2).

Define LjθB(•) = ∂Ljθ{Ỹ , X̃, θ0(Z1), . . . , θ0(Zm),B0}/∂B and

ε#ij(θ,B) = LjθB{Ỹi, X̃i, θ(Zi1), . . . , θ(Zim),B}

+
m∑

k=1

Ljkθ{Ỹi, X̃i, θ(Zi1), . . . , θ(Zim),B}θB(Zik,B),(2.1)

where θB(z,B0) satisfies

0 =
m∑

j=1

fj(z)E{δε#ij(θ0,B0)|Zj = z}.(2.2)

Define

εi = LiB(•) +
m∑

j=1

Lijθ(•)θB(Zij ,B0);

M1 = E(δεεT) = −E{δiLBB(•) +
m∑

j=1

δiLjθB(•)θT
B (Zj ,B0)}.

Define the derivatives of F(•) in a similar way to L(•) and make the following
definitions:

M2 = E[FB(•) +
m∑

j=1

Fjθ(•)θB(Zj ,B0)];

C1(z) = −
m∑

j=1

fj(z)E{Fjθ(•)|Zj = z}/Ω(z);

C2(z) = E[
m∑

j=1

E{Fjθ(•)|Zj}G(Zj , z)/Ω(Zj)];

D(•) =
m∑

j=1

Ljθ(•){C1(Zj) + C2(Zj)}.

Then we have the following result.

Theorem 2.1. Assume that (Ỹi, δi, X̃i, Zi1, . . . , Zim), i = 1, 2, . . . , n are indepen-
dently and identically distributed and nh4 → 0. Then, to terms of order op(1),

n1/2(κ̂semi − κ0) ≈ n−1/2
n∑

i=1

{Fi(•) − κ0 + MT
2 M−1

1 δiεi + δiDi(•)}(2.3)

→ Normal (0,Vκ),(2.4)

where Vκ = E{F(•) − κ0}2 + MT
2 M−1

1 M2 + E{δD2(•)}.
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Note that we have assumed that κ0 = E[F{X̃, Z̃, θ0(Z1), . . . , θ0(Zm),B0}] and
F(•) are scalar, which in principle excludes the estimation of quantities such as
the population variance and standard deviation. However, the result can be readily
generalized to handle this case. In general, suppose κ1 = E{F1(•)} and κ2 =
E{F2(•)} for some smooth functions F1(•) and F2(•), and are estimated by κ̂1

and κ̂2, respectively. Suppose that we are interested in κgen = g(κ1, κ2) for some
function g(•, •). Then we have the following result:

Corollary 2.1. Let κgen be estimated by κ̂gen = g(κ̂1, κ̂2) and that g(•, •) is dif-
ferentiable with respect to both of its arguments. Let g1(•, •) and g2(•, •) be the
derivatives of g with respect to its first and second argument, respectively. Then we
have

n1/2(κ̂gen − κgen) = n1/2g1(κ1, κ2)(κ̂1 − κ1) + n1/2g2(κ1, κ2)(κ̂2 − κ2) + op(1)
→ Normal(0,Vgen),

with Vgen = g2
1(κ1, κ2)V1 + g2

2(κ1, κ2)V2 + 2g1(κ1, κ2)g2(κ1, κ2)V12, where V1 and
V2 are asymptotic variances of κ̂1 and κ̂2, respectively, computed using (2.4) and
V12 = E[{F1(•) − κ1}{F2(•) − κ2}].
Remark 2.1. We note that if κ0 were a function of only B0, then a bandwidth
proportional to h ∼ n−1/5 can be used, because in this case undersmoothing is not
necessary. The reason for the undersmoothing in the general case is the inclusion
of θ0(•) in κ0. Using the results from Lin and Carroll [2] we have

θ̂(z) − θ0(z) = Op(h2) − n−1
n∑

i=1

m∑
j=1

δiKh(Zij − z)Lijθ(•)/Ω(z)

+n−1
n∑

i=1

m∑
j=1

δiLijθ(•)G(z, Zij)/Ω(z) + op(n−1/2).

The restriction nh4 → 0 removes the Op(h2) bias term. It is suggested in Sepa-
nski et al. [4] that in many semiparametric problems, the optimal bandwidth for
estimating parameters such as B0 is of the order n−1/3, which of course satisfies
nh4 → 0. In the case of no repeated measures, i.e., when m = 1, Maity et al. [3]
find that they have good experience numerically by first estimating the bandwidth
via likelihood crossvalidation, which will be of order n−1/5, and then multiplying it
by n−2/15 to get the bandwidth to be of order n−1/3.

Remark 2.2. To estimate the asymptotic variance of κ0, one can use the bootstrap
method. While the justification of use of parametric bootstrap for estimation of
model parameters is provided in Chen et al. [1], we conjecture that the bootstrap
works for κ0 as well. One can also use the plug-in method where one replaces each
term in the variance expression in (2.4) by their consistent estimators. Constructing
consistent estimators for the first two terms are fairly straightforward where one
merely replaces all the expectations by sums in that expression and all the regression
functions by kernel estimates. However, the main difficulty lies in the estimation of
the third term where one has to solve the functional equation G(z1, z2) = Q(z1, z2)−
A(G, z1, z2) for G(•, •), which can be numerically difficult.

2.3. General functions of the response

One interesting and important scenario is when κ0 can be constructed using only the
responses. Suppose that κ0 = E{G(Ỹ )}. Also define F{X̃, Z̃, θ0(Z1), . . . , θ0(Zm),
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B0} = E{G(Ỹ )|X̃, Z̃}. In the presence of missing data, there are various estimators
one can use. We will discuss two of these estimators which are based upon different
constructions for estimating the missing data process.

Let F̂i(•) = F{X̃i, Z̃i, θ̂(Zi1, B̂), . . . , θ̂(Zim, B̂), B̂}. To form the first estimator,
we impute G(Ỹi) by F̂i(•) for every missing Ỹi. We estimate κ0 by

κ̂1 = n−1
n∑

i=1

{δiG(Ỹi) + (1 − δi)F̂i(•)}.

Note that in absence of missing data, κ̂1 does not use the semiparametric model
and is consistent. If the responses are missing at random, then κ̂1 is consistent if
the semiparametric model specification is correct.

The second estimator depends on the underlying structure of the missing data
process where we assume a parametric formulation for estimating pr(δ = 1|Ỹ , X̃,

Z̃) = π(X̃, Z̃, ζ), where ζ is an unknown parameter estimated by standard logistic
regression of δ on (X̃, Z̃). Then construct the estimator

κ̂2 = n−1
n∑

i=1

[
δi

π(X̃i, Z̃i, ζ̂)
G(Ỹi) +

{
1 − δi

π(X̃i, Z̃i, ζ̂)

}
F̂i(•)

]
.

This estimator has the double-robustness property that if either the semiparametric
model specification for (θ0,B0) or the parametric model for π(X̃, Z̃, ζ) is correct,
κ̂2 is consistent and has an asymptotic normal distribution.

If both the models are correct then the following results are true. The proofs are
given in the Appendix.

Lemma 2.1. Define

M2,imp = E[(1 − δ){FB(•) +
m∑

j=1

Fjθ(•)θB(Zj ,B0)}];

C1,imp(z) = −
m∑

j=1

fj(z)E{(1 − δ)Fjθ(•)|Zj = z}/Ω(z);

C2,imp(z) = E[
m∑

j=1

E{(1 − δ)Fjθ(•)|Zj}G(Zj , z)/Ω(Zj)];

Dimp(•) =
m∑

j=1

Ljθ(•){C1,imp(Zj) + C2,imp(Zj)}.

Assume that nh4 → 0. Then, to terms of order op(n−1/2),

κ̂1 − κ0 ≈ n−1
n∑

i=1

{
δiG(Ỹi) + (1 − δi)Fi(•) − κ0

+MT
2,impM−1

1 δiεi + δiDi,imp(•)
}

.(2.5)

Lemma 2.2. Define πζ(X̃, Z̃, ζ) = ∂π(X̃, Z̃, ζ)/∂ζ. Assume that n1/2(ζ̂ − ζ) =
n−1/2

∑n
i=1 ψiζ(•)+op(n−1/2) with E{ψζ(•)|X̃, Z̃} = 0. Also assume that nh4 → 0.
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Then, to terms of order op(n−1/2),

κ̂2 − κ0 ≈ n−1
n∑

i=1

[
δi

π(X̃i, Z̃i, ζ)
{G(Ỹi) − κ0}

+
{

1 − δi

π(X̃i, Z̃i, ζ)

}
{Fi(•) − κ0}

]
.(2.6)

Remark 2.3. The expansions (2.5) and (2.6) show that κ̂1 and κ̂2 are asymptot-
ically normally distributed. One can show that the asymptotic variances are given
as

Vκ1 = var
{

δG(Ỹ ) + (1 − δ)F(•) + MT
2,impM−1

1 δε + δDimp(•)
}

;

Vκ2 = var
[

δ

π(X̃, Z̃, ζ)
G(Ỹ ) +

{
1 − δ

π(X̃, Z̃, ζ)

}
F(•)

]
,

respectively, from which estimates are readily derived. Note that the estimation
of B0 and θ0(•) has no impact on the asymptotic distribution of κ̂2. Hence it has
the distinct advantage that its limiting distribution does not involve an integral
equation.

3. Application

3.1. Motivating example

We applied our method to analyze the Kenya hemoglobin data which is described
in Section 1. The model is given by (1.1) where n = 68, m = 2 and R = 4.
Comparing this to the general model, we see that Ỹi = (yi11, . . . , yi24)T, X̃i =
(Xi11, . . . , Xi24)T and Zi1 = Zi2 = Zi3 = Zi4 and Zi5 = Zi6 = Zi7 = Zi8. Also,
B = (βT, σ)T. Let e4 be a vector of ones of length 4. The loglikelihood function,
conditional of X̃ and (Z1, Z2), is that of a multivariate Gaussian distribution with
mean X̃Tβ0 + {θ0(Z1)eT

4 , θ0(Z2)eT
4 }T and covariance matrix Σ.

Recall that we are interested in the proportion of all children of a given age a
who have their hemoglobin measure above any given constant c, which is defined
as

κ0 = E
(
Φ[{XTβ0 + θ0(Z) − c}/σ]|month = a

)
.(3.1)

Note that the joint density of (Z, sex, logpden) is independent of “month” and hence
the conditional expectation in (3.1) can be written as E(Φ[{XTβ0 + θ0(Z)− c}/σ])
with the last two components of X being fixed as a and (a − 4)+. Using this fact,
we estimate κ0 by

κ̂semi = {nmR}−1
n∑

i=1

m∑
j=1

R∑
k=1

Φ[{XT
ijkβ̂ + θ̂(Zij , β̂) − c}/σ̂],(3.2)

where the last two components of Xijk are fixed as a and (a − 4)+. Also note that
there are no missing responses involved in this setup.

We proceed to estimate B0 and θ0(•) as indicated in Lin and Carroll [2] and use
these estimates to compute (3.2). We estimate κ̂semi for a = 3, 6 and for different
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Fig 1. Results for the Kenya hemoglobin data example. Plotted are estimated survival function
(1 − the cdf) of hemoglobin measure of children of a given age a, along with 95% confidence
intervals. Dashed lines correspond to six-month-old children and solid lines correspond to three-
month-old children.

Fig 2. Results for the Kenya hemoglobin data example. Plotted are estimated survival function
(1 − the cdf) for a fixed hemoglobin level c = 10 as age varies from 0.1 months to 4 months (left
panel) and 4 months to 11 months (right panel).

values of c. We estimate the limiting variances via the bootstrap and use those
to construct 95% confidence intervals. The results are displayed in Figure 1. It
is interesting to note that the two estimates differ significantly and a decrease in
proportion is evident as the age of the children increases. We can observe form
Figure 1 that for a given hemoglobin level, the proportion of children having a
higher hemoglobin level at age three is significantly less than at age six, indicating
an increase in risk of getting anemia (low hemoglobin level) as children grow older.
To observe this effect, we set the hemoglobin level, c = 10 and estimated the survival
function over a grid of value for age, a. Since the time effect is modeled as a piecewise
linear function with a knot at 4 months, we plot the estimated survival function in
two different plots in Figure 2: left panel displays the survival function as age varies
in [0.1, 4] and right panel plots the survival function when age varies in (4, 11]. The
decrease in hemoglobin level is much faster for children below age 4 months than
children older than 4 months, after which the survival function becomes flatter.
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Note that one can construct other estimators for κ0, for example, the sample
average of hemoglobin measures of only those children who have age a. However,
it is important to note that the naive estimator does not use the information that
“month” is independent of (Z, sex, logpden). On the other hand, this vital informa-
tion is used to construct the semiparametric estimator thus allowing κ̂ to be more
efficient than the naive estimator. Also, note that in this example the use of the
usual naive estimators may not be justified because the number of children of any
given age a may be very small. In fact, there are only six children with age a = 3
and only one child with age a = 6 in the data set we used. This problem does not
arise when κ̂semi is used because of the fact that it uses all the data to estimate κ0

rather than using only those children who have age a.

3.2. Simulation study

We conducted a small simulation study to observe the performance of our method.
We considered the model given in (1.1) with n = 100 clusters with six measurements
per cluster. Specifically, we set m = 2 and R = 3 with Zi1 = Zi2 = Zi3 and
Zi4 = Zi5 = Zi6. We assume that εi has a Normal(0, Σ) distribution with Σ =
σ2ImR + ρσ2(JmR − ImR). We set σ2 = 1 and ρ = 0.4. We generated Z from a
uniform(0, 1) distribution with the true function θ0(z) = sin(8z−1). The individual
components of X are generated from uniform(0, 1) distribution, independent of each
other and Z. The true value of β0 = [1, 1]T.

In this setup, our target was to estimate

κ0(c) = pr(Y > c|X1 = 0.5)

= E
(
Φ[{XTβ0 + θ0(Z) − c}/σ]|X1 = 0.5

)
for a given value of c, where X1 denotes the first component of X. We estimate
κ0(c) by

κ̂(c) = {nmR}−1
n∑

i=1

m∑
j=1

R∑
k=1

Φ[{XT
ijkβ̂ + θ̂(Zij , β̂) − c}/σ̂],

where the first component of Xijk is fixed to be 0.5. Note again that in definition
of κ̂(c), we used independence between X and Z to our advantage.

We employed the method in Lin and Carroll [2] with the Epanechnikov kernel
function to obtain β̂ and θ̂(•). Using these estimates we calculated κ̂(c) over a
grid of values for c. Also the true survival function was computed analytically. We
generated 1000 data sets, with results displayed in Figure 3. It is evident that the
estimated survival function given by our method is very close to the true function, as
one would expect for large sample size. Note that X is generated from a continuous
distribution and hence the use of naive estimator is not justified in this case.

4. Discussion

In this paper, we considered a general class of semiparametric models, with re-
sponses missing at random, where the primary goal was to estimate population-
level quantities κ0 such as the mean, probabilities, etc. For general semiparametric
regression models, the asymptotic distribution of a plug-in estimator of κ0 was
derived.
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Fig 3. Results for the simulation study based on 1000 simulated data sets. Plotted are the true
survival function (dashed line), the mean estimated survival function (1 − the cdf) (solid line),
along with a 95% confidence range(dash-dotted line).

We have considered the case that the unknown function θ0(Z) was a scalar
function of a scalar argument. The results though readily extend to the case of a
multivariate function of a scalar argument.

Appendix A: Sketch of technical arguments

A.1. Sketch of Theorem 2.1

We first show (2.3). First note that L is a loglikelihood function conditioned on
(X, Z), so that we have

E{δLjkθ(•)|X̃, Z̃} = −E{δLjθ(•)Lkθ(•)|X̃, Z̃};
E{δLjθB(•)|X̃, Z̃} = −E{δLjθ(•)LB(•)|X̃, Z̃}.(A.1)

Also, it follows from Lin and Carroll [2], and h = op(n−1/4) that

θ̂(z,B0) − θ0(z) = −n−1
n∑

i=1

m∑
j=1

δiKh(Zij − z)Lijθ(•)/Ω(z)

+n−1
n∑

i=1

m∑
j=1

δiLijθ(•)G(z, Zij)/Ω(z) + op(n−1/2);(A.2)

B̂ − B0 = M−1
1 n−1

n∑
i=1

δiεi + op(n−1/2).(A.3)
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By a Taylor expansion,

n1/2(κ̂ − κ0) = n−1/2
n∑

i=1

[
Fi(•) − κ0

+{FiB(•) +
m∑

j=1

Fijθ(•)θB(Zij ,B0)}T(B̂ − B0)

+
m∑

j=1

Fijθ(•){θ̂(Zij ,B0) − θ0(Zij)}
]

+ op(1)

= n−1/2
n∑

i=1

{Fi(•) − κ0} + MT
2 n1/2(B̂ − B0)

+n−1/2
n∑

i=1

m∑
j=1

Fijθ(•){θ̂(Zij ,B0) − θ0(Zij)} + op(1).

Because nh4 → 0, using (A.2), we see

n−1/2
n∑

i=1

m∑
j=1

Fijθ(•){θ̂(Zij ,B0) − θ0(Zij)}

= −n−1/2
n∑

i=1

m∑
j=1

Fijθ(•)[n−1
n∑

k=1

m∑
�=1

δkKh(Zk� − Zij)Lk�θ(•)/Ω(Zij)]

+n−1/2
n∑

i=1

m∑
j=1

Fijθ(•)[n−1
n∑

k=1

m∑
�=1

δkLk�θ(•)G(Zij , Zk�)/Ω(Zij)] + op(1)

= n−1/2
n∑

k=1

m∑
�=1

δkLk�θ(•)C1(Zk�)

+n−1/2
n∑

k=1

m∑
�=1

δkLk�θ(•)C2(Zk�) + op(1)

= n−1/2
n∑

i=1

δiDi(•) + op(1).

Result (2.3) now follows from (A.3).
Next, we show (2.4). Recall that, ε = LB(•)+

∑m
j=1 Ljθ(•)θB(Zj ,B0) and D(•) =∑m

j=1 Ljθ(•){C1(Zj) + C2(Zj)}. We use (2.1), (2.2) and (A.1) to derive that

E{δεD(•)} = −
m∑

j=1

E

[{
δLjθB(•) +

m∑
k=1

δLjkθ(•)θB(Zk,B0)
}

× {C1(Zj) + C2(Zj)}
]

= −E

[ m∑
j=1

E{δε#

j (θ0,B0)|Zj}{C1(Zj) + C2(Zj)}
]

= 0.

Also using the facts that E{D(•)|X̃, Z̃} = 0 and E(ε|X̃, Z̃) = 0, it is readily seen
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that

E[{F(•) − κ0}D(•)] = 0;
E[{F(•) − κ0}ε] = 0,

which in turn prove that all three terms in (2.3) are uncorrelated. Then (2.4) follows
easily from the central limit theorem.

A.2. Sketch of Corollary 2.1

By a Taylor’s series expansion,

κ̂gen − κgen = {g1(κ1, κ2)(κ̂1 − κ1) + g2(κ1, κ2)(κ̂2 − κ2)} + op(n−1/2).

Then, the normality follows from central limit theorem. The variance calculation
is straight forward since (2.3) together with the fact E(D|X, Z) = E(ε|X, Z) = 0
implies that

nE{(κ̂1 − κ1)(κ̂2 − κ2)} = E[{F1(•) − κ1}{F2(•) − κ2}].

A.3. Sketch of Lemma 2.1

We have that

κ̂1 = n−1
n∑

i=1

{δiG(Ỹi) + (1 − δi)F̂i(•)} = A1 + A2,

say. By a Taylor series expansion,

A2 = n−1
n∑

i=1

(1 − δi)F̂i(•)

= n−1
n∑

i=1

(1 − δi)[Fi(•)

+{FiB(•) +
m∑

j=1

Fijθ(•)θB(Zij ,B0)}T(B̂ − B0)

+
m∑

j=1

Fijθ(•){θ̂(Zij ,B0) − θ0(Zij)}] + op(1)

= n−1
n∑

i=1

(1 − δi)Fi(•) + MT
2,imp(B̂ − B0)

+n−1
n∑

i=1

m∑
j=1

(1 − δi)Fijθ(•){θ̂(Zij ,B0) − θ0(Zij)} + op(1).
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Using (A.2) and nh4 → 0, we see

n−1
n∑

i=1

m∑
j=1

(1 − δi)Fijθ(•){θ̂(Zij ,B0) − θ0(Zij)}

= −n−2
n∑

i=1

m∑
j=1

(1 − δi)Fijθ(•)
n∑

k=1

m∑
�=1

δkKh(Zk� − Zij)Lk�θ(•)/Ω(Zij)

+n−2
n∑

i=1

m∑
j=1

(1 − δi)Fijθ(•)
n∑

k=1

m∑
�=1

δkLk�θ(•)G(Zij , Zk�)/Ω(Zij) + op(n−1/2)

= n−1
n∑

k=1

m∑
�=1

δkLk�θ(•)C1,imp(Zk�)

+ n−1
n∑

k=1

m∑
�=1

δkLk�θ(•)C2,imp(Zk�) + op(n−1/2)

= n−1
n∑

i=1

δiDi,imp(•) + op(n−1/2).

The result now follows directly from (A.3).

A.4. Sketch of Lemma 2.2

We have that

κ̂2 = n−1
n∑

i=1

[
δi

π(X̃i, Z̃i, ζ̂)
G(Ỹi) +

{
1 − δi

π(X̃i, Z̃i, ζ̂)

}
F̂i(•)

]
= A1 + A2,

say. By a Taylor series expansion,

A1 = n−1
n∑

i=1

δiG(Ỹi)

π(X̃i, Z̃i, ζ)

−E

{
G(Y )

π(X̃, Z̃, ζ)
πζ(X̃, Z̃, ζ)

}T

n−1
n∑

i=1

ψiζ + op(n−1/2).

In addition,

A2 = B1 + B2 + op(n−1/2);

B1 = n−1
n∑

i=1

{
1 − δi

π(X̃i, Z̃i, ζ)

}
F̂i(•);

B2 = n−1
n∑

i=1

δiF̂i(•)
{π(X̃i, Z̃i, ζ)}2

πζ(X̃i, Z̃i, ζ)T(ζ̂ − ζ) + op(n−1/2).
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It follows easily that

B1 = n−1
n∑

i=1

{
1 − δi

π(X̃i, Z̃i, ζ)

}
Fi(•)

+n−1
n∑

i=1

m∑
j=1

{
1 − δi

π(X̃i, Z̃i, ζ)

}
Fijθ(•){θ̂(Zij ,B0) − θ0(Zij)}

+n−1
n∑

i=1

{
1 − δi

π(X̃i, Z̃i, ζ)

}
FT

iB(•)(B̂ − B0)

+n−1
n∑

i=1

{
1 − δi

π(X̃i, Z̃i, ζ)

} m∑
j=1

Fijθ(•)θT
B (Zi,B0)(B̂ − B0)

+op(n−1/2).

Using 0 = E{1 − δ

π(X̃,Z̃,ζ)
|X̃, Z̃} and B̂ − B0 = Op(n−1/2), we see that the third

and fourth terms are op(n−1/2). Also, using nh4 → 0 and (A.2) we see

n−1
n∑

i=1

m∑
j=1

{
1 − δi

π(X̃i, Z̃i, ζ)

}
Fijθ(•){θ̂(Zij ,B0) − θ0(Zij)}

= −n−1
n∑

i=1

m∑
j=1

{
1 − δi

π(X̃i, Z̃i, ζ)

}
Fijθ(•)

×
{

n−1
n∑

k=1

m∑
�=1

δkKh(Zk� − Zij)Lk�θ(•)/Ω(Zij)
}

−n−1
n∑

i=1

m∑
j=1

{
1 − δi

π(X̃i, Z̃i, ζ)

}
Fijθ(•)

×
{

n−1
n∑

k=1

m∑
�=1

δkLk�θ(•)G(Zij , Zk�)/Ω(Zij)
}

+ op(n−1/2)

= op(n−1/2).

The last step follows because E[{1 − δ

π(X̃,Z̃,ζ)
}Fjθ(•)|Z̃] = 0. Hence we see that

B1 = n−1
n∑

i=1

{
1 − δi

π(X̃i, Z̃i, ζ)

}
Fi(•) + op(n−1/2).

Similarly, using ζ̂ − ζ = Op(n−1/2), B̂ − B0 = Op(n−1/2) and θ̂(z,B0) − θ0(z) =
Op(n−1/2), it also follows that

B2 = E

{
1

π(X̃, Z̃, ζ)
F(•)πζ(X̃, Z̃, ζ)

}T

n−1
n∑

i=1

ψiζ(•) + op(n−1/2).

The result now follows by collecting the terms.
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