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Consistent scoring functions for quantiles

Kyrill Grant1 and Tilmann Gneiting1,∗

Universität Heidelberg

Abstract: A scoring function is consistent for the α-quantile functional if, and
only if, it is generalized piecewise linear (GPL) of order α, up to equivalence.
Expressed differently, loss functions that yield quantiles as Bayes rules are
GPL functions. We review and discuss this basic decision-theoretic result with
focus on Thomson’s pioneering characterization.

1. Introduction

As is well known, if F is a probability measure on the real line, R, with finite first
moment, the function

h : R → R, x �→ h(x) = EF |x− Y |,

where the random variable Y has distribution F , attains a global minimum in any
median of F . Equivalently, the median is the Bayes rule or Bayes predictor under
the linear loss function. Our preferred way of stating this basic decision-theoretic
fact is that the scoring function S(x, y) = |x−y| is strictly consistent for the median
functional relative to the class of probability measures on R with finite first moment.

In this paper, we study scoring functions that are consistent for quantiles. Given
an interval I ⊆ R, we refer to the corresponding Borel σ-algebra as B(I). A scoring
function is any map S : I × I → R that is measurable from B(I) to B(R) in the
second argument, for each fixed value of the first argument. Given a family F of
probability measures on (I,B(I)), a statistical functional, or simply a functional, is
a map T : F → P(I), where P(I) denotes the power set of the interval I. Statistical
functionals feature prominently in Jon Wellner’s widely circulated lecture notes
[13], where a wealth of examples can be found.

We distinguish four types of consistency, which can be traced to the fundamental
work of Savage [11], Thomson [12] and Osband [9].

Definition 1.1. Let I ⊆ R be an interval, F a family of probability measures on
(I,B(I)), T : F → P(I) a statistical functional, and S : I× I → R a scoring function.

(a) The scoring function S is consistent for the functional T relative to the class
F , if EF S(x, Y ) exists and is finite for all F ∈ F and x ∈ I, and if

EF S(t, Y ) ≤ EF S(x, Y )

for all F ∈ F , all t ∈ T(F ), and all x ∈ I.
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(b) The scoring function S is strictly consistent for the functional T relative to the
class F , if S is consistent for T relative to F , and if EF S(t, Y ) = EF S(x, Y ),
where t ∈ T(F ), implies that x ∈ T(F ).

(c) The scoring function S is weakly consistent for the functional T relative to
the class F , if EF [S(x1, Y ) − S(x2, Y )] exists and is finite for all F ∈ F and
x1, x2 ∈ I, and if

EF

[
S(t, Y )− S(x, Y )

]
≤ 0

for all F ∈ F , all t ∈ T(F ), and all x ∈ I.
(d) The scoring function S is strictly weakly consistent for the functional T relative

to the class F , if S is weakly consistent for T relative to F , and if EF [S(t, Y )−
S(x, Y )] = 0, where t ∈ T(F ), implies that x ∈ T(F ).

We consider the following classes F .

Definition 1.2. Let I ⊆ R be an interval, and let FI denote the class of the
probability measures on (I,B(I)).
(a) Given a measurable function g : I → R, the class Fg consists of the probability

measures F ∈ FI for which EF g(Y ) exists and is finite.
(b) The class Dn consists of the discrete n-point measures within FI.
(c) The class L consists of the probability measures in FI that are absolutely

continuous with respect to the Lebesgue measure. The subclass L+ comprises
the members that admit strictly positive densities.

As noted, we study scoring functions that are consistent for the α-quantile func-
tional. Equivalently, we are concerned with loss functions that lead to quantiles as
Bayes rules or optimal point forecasts. The characterization of these functions has
an interesting and varied history, for which we refer to [2].1

Concise results and proofs become available if one puts smoothness conditions
on the scoring function and uses the notion of a generalized piecewise linear (GPL)
function of order α, that is, a function Sg : I× I → [0,∞) of the form

Sg(x, y) =

{
(1− α)

(
g(x)− g(y)

)
, y ≤ x,

α
(
g(y)− g(x)

)
, y > x,

where g : I → R is nondecreasing. When g is linear, we recover the asymmetric
piecewise linear loss function that lies at the heart of quantile regression [7].

We then have the following characterization. The sufficiency part (Theorem 1.3)
is well known and does not depend on smoothness conditions, as opposed to the
necessity part (Theorem 1.4), which we state in the form given in [2].

Theorem 1.3. Let I be an interval, and let S be a GPL function of order α. Then
S is a scoring function and the following holds:

(a) The scoring function S is consistent for the α-quantile relative to the class
Fg.

(b) If g is strictly increasing, then S is strictly consistent for the α-quantile rel-
ative to the class Fg.

Theorem 1.4. Suppose that the scoring function S : I × I → R is consistent for
the α-quantile relative to the class D2, and such that

1Being unaware of the work of Thomson [12] and Saerens [10], various authors described the
characterization as an open problem, including Cervera and Muñoz [1], Gneiting and Raftery [4]
and Jose and Winkler [6].
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(S0) S(x, y) ≥ 0 for all x, y ∈ I with equality if x = y,
(S1) S(x, y) is continuous in x,
(S2) the partial derivative ∂S

∂x (x, y) exists and is continuous in x if x 	= y.

Then S is a GPL function of order α.

There is an asymmetry in the characterization, in that the necessity part depends
on stringent regularity conditions. In a pioneering yet little known paper, Thomson
[12] established a characterization under much weaker conditions. However, his
results are complicated and do not readily reveal the GPL structure. In the balance
of the paper, we review his proof and characterization and provide analogues of
Theorems 1.3 and 1.4 that depend on minimal conditions only.

2. Thomson’s characterization

In what ways can the regularity conditions (S0), (S1) and (S2) of Theorem 1.4 be
relaxed? The nonnegativity condition (S0) is standard and not restrictive. Indeed, if
S0 is such that S0(x, y) ≥ S0(y, y) for all x, y ∈ I, which is a natural assumption on
a loss or scoring function, then S(x, y) = S0(x, y)− S0(y, y) satisfies (S0) and leads
to the same Bayes rule, subject to integrability conditions. In contrast, assumptions
(S1) and (S2) are restrictive.

If we abandon any assumption of continuity on the scoring function, it is natural
to let I = (a, b) be an open interval, where possibly a = −∞ and/or b = ∞, and
to consider consistency relative to the class L of the probability measures with
Lebesgue densities. The following result then is nearly immediate.

Theorem 2.1. Let I be an open interval. Suppose that Sg : I × I → [0,∞) is a
GPL function of order α, and let h : I → R be measurable. Suppose that the scoring
function S : I× I → R is such that for all x ∈ I,

S(x, y) = Sg(x, y) + h(y)

for all y ∈ I \Nx, where Nx is a Lebesgue null set. Then the following holds:

(a) The scoring function S is consistent for the α-quantile relative to the class
L ∩ Fg ∩ Fh.

(b) If g is strictly increasing, then S is strictly consistent for the α-quantile rel-
ative to the class L ∩ Fg ∩ Fh.

(c) The scoring function S is weakly consistent for the α-quantile relative to the
class L.

(d) If g is strictly increasing, then S is strictly weakly consistent for the α-quantile
relative to the class L.

As regards sufficiency, the following theorem assumes consistency relative to the
subclass L+. While the result and the proof are due to Thomson [12], there are
distinctions in detail, as summarized in [5, p. 36].

Theorem 2.2 (Thomson 1979). Let I be an open interval. Suppose that the scoring
function S : I × I → R is weakly consistent for the α-quantile relative to the class
L+. Then there exist a GPL function Sg : I × I → R and a measurable function
h : I → R such that, for any x ∈ I,

S(x, y) = Sg(x, y) + h(y)

for all y ∈ I \Nx, where Nx is a Lebesgue null set.
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Any such result depends on a delicate trade-off, in that any assumptions on the
scoring function S, the choice of the class F , and the notion of consistency employed
need to be balanced. In this regard, Thomson’s choices appear to be usefully general
and achieving a reasonable balance. That said, a careful inspection of the proof in
Section 4 shows that Theorem 2.2 remains valid relative to smaller classes F , with
the class of piecewise Gaussian probability measures being one such example.

3. Proof of Theorem 2.1

For completeness, we prove parts (c) and (d) of this well known result. Let F ∈ L.
If x1, x2 ∈ I with x1 < x2 then

EF

[
S(x1, Y )− S(x2, Y )

]
= (1− α)

(
g(x1)− g(x2)

)
F ((a, x1])

+

∫ x2

x1

[
g(y)− αg(x1)− (1− α)g(x2)

]
dF (y)

+ α
(
g(x2)− g(x1)

)
F
(
(x2, b)

)
exists and is finite. In particular, if x1 = qα is an α-quantile of F and x2 = x > qα,
then F ((x, b)) = F ((qα, b)) − F ((qα, x])) = (1 − α) − F ((qα, x]) so that the above
equality simplifies to

EF

[
S(qα, Y )− S(x, Y )

]
=

∫ x

qα

[
g(y)− g(x)

]
dF (y),

where the right-hand side is nonnegative, and strictly positive if g is strictly in-
creasing and x is not an α-quantile of F . An analogous argument applies when
x < qα.

4. Proof of Theorem 2.2

To recall the setting, we let I = (a, b) an open interval, where possibly a = −∞
and/or b = ∞. Given α ∈ (0, 1), we suppose that the scoring function S : I× I → R

is weakly consistent for the α-quantile relative to the class L+ of the probability
measures on (I,B(I)) that admit a strictly positive density with respect to the
Lebesgue measure, λ. All results stated in this section depend on these assumptions.
In what follows, densities are Lebesgue densities, null sets are Lebesgue null sets,
and the term almost everywhere is used with respect to the Lebesgue measure.
As noted, we review the ingenious proof of Thomson [12], tying up loose ends and
closing a few minor gaps, with our contributions being summarized in [5, p. 36].

For x1, x2 ∈ I with x1 < x2, and ml,Ml,mr,Mr ∈ R with ml < Ml and mr <
Mr, we consider the function

Δ(x1, x2, y) = S(x1, y)− S(x2, y)

and the Borel sets

L≤ml
(x1, x2) =

{
y ∈ I : y ≤ x1,Δ(x1, x2, y) ≤ ml

}
,

L≥Ml
(x1, x2) =

{
y ∈ I : y ≤ x1,Δ(x1, x2, y) ≥ Ml

}
,

R≤mr (x1, x2) =
{
y ∈ I : y ≥ x2,Δ(x1, x2, y) ≤ mr

}
,

R≥Mr (x1, x2) =
{
y ∈ I : y ≥ x2,Δ(x1, x2, y) ≥ Mr

}
.

For notational convenience, we frequently suppress the dependence on x1 and x2,
and write Δ(y), and L≤ml

, L≥Ml
, R≤mr and R≥Mr , respectively.
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Lemma 4.1. There are no x1, x2 ∈ I with x1 < x2, and ml,Ml,mr,Mr ∈ R with
ml < Ml and mr < Mr, such that

λ
(
L≤ml

(x1, x2)
)
> 0, λ

(
R≤mr(x1, x2)

)
> 0,

λ
(
L≥Ml

(x1, x2)
)
> 0, λ

(
R≥Mr (x1, x2)

)
> 0.

Proof. For a contradiction, suppose that the above inequalities hold. If we let

(1) c > max

(
α

1− α
,
1− α

α

)

be a fixed constant, there exists a sequence (Fn)n=1,2,... of probability measures in
L+ with densities (fn)n=1,2,... such that

Fn(L≥Ml
) = α− 1

n+ c
, Fn((a, x1]) = α, Fn(R≥Mr ) = 1− α− 1

n+ c
,

and

fn(y) =
1 + c

n+ c
f1(y) for y ∈ I \(L≥Ml

∪R≥Mr ).

As x1 is an α-quantile of F and S is weakly consistent for the α-quantile relative
to the class L+, we have

0 ≥ EFn

[
Δ(x1, x2, Y )

]
=

∫
L≥Ml

Δ(y) dFn(y) +

∫
R≥Mr

Δ(y) dFn(y) +

∫
I \(L≥Ml

∪R≥Mr )

Δ(y) dFn(y)

≥Ml

(
α− 1

n+ c

)
+Mr

(
1− α− 1

n+ c

)
+

1 + c

n+ c

∫
I \(L≥Ml

∪R≥Mr )

Δ(y) dF1(y)

for n = 1, 2, . . . In the limit as n → ∞ we get Mlα + Mr (1 − α) ≤ 0, and an
analogous argument leads to mlα+mr (1−α) ≥ 0. Combining the two inequalities,
we obtain

(ml −Ml)α + (mr −Mr)(1− α) ≥ 0,

contrary to the assumption that ml < Ml and mr < Mr.

Lemma 4.2. There are no x1, x2 ∈ I with x1 < x2 and ml,Ml,mr,Mr ∈ R with
ml < Ml and mr < Mr, such that

λ
(
L≤ml

(x1, x2)
)
> 0, λ

(
R≤mr(x1, x2)

)
> 0,

λ
(
L≥Ml

(x1, x2)
)
> 0, λ

(
R≥Mr (x1, x2)

)
= 0.

Proof. For a contradiction, suppose that the stated relations hold. If there is no
constant d ∈ R such that

(2) λ
({

y ≥ x2 | Δ(y) 	= d
})

= 0,

we can find constants m′
r,M

′
r ∈ R with m′

r < M ′
r such that both λ(R≤m′

r
) and

λ(R≥M ′
r
) are strictly positive, contrary to Lemma 4.1. Thus, we may assume that

there is some d ∈ R for which (2) holds.
Then there exist a constant c satisfying (1) and a sequence (Fn)n=1,2,... of prob-

ability measures in L+ with densities (fn)n=1,2,..., such that

Fn(L≥Ml
) = α− 1

n+ c
, Fn

(
(a, x1]) = α, Fn

(
[x2, b

))
= 1− α− 1

n+ c
,
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and

fn(y) =
1 + c

n+ c
f1(y) for y ∈ I \

(
L≥Ml

∪ [x2, b
)
).

As x1 is an α-quantile of F and S is weakly consistent for the α-quantile relative
to the class L+, we have

0 ≥ EFn

[
Δ(x1, x2, Y )

]
=

∫
L≥Ml

Δ(y) dFn(y) +

∫ b

x2

Δ(y) dFn(y) +

∫
I\(L≥Ml

∪(x2,b])

Δ(y) dFn(y)

≥Ml

(
α− 1

n+ c

)
+ d

(
1− α− 1

n+ c

)
+

1 + c

n+ c

∫
I \(L≥Ml

∪R≥Mr )

Δ(y) dF1(y)

for n = 1, 2, . . . In the limit as n → ∞ we get Mlα+d(1−α) ≤ 0, and an analogous
argument leads to mlα+ d(1− α) ≥ 0. Combining the two inequalities, we obtain
(ml −Ml)α ≥ 0, contrary to the assumption that ml < Ml.

Lemma 4.3. There are no x1, x2 ∈ I with x1 < x2, and ml,Ml,mr,Mr ∈ R with
ml < Ml and mr < Mr, such that

λ
(
L≤ml

(x1, x2)
)
> 0, λ

(
R≤mr (x1, x2)

)
= 0,

λ
(
L≥Ml

(x1, x2)
)
> 0, λ

(
R≥Mr (x1, x2)

)
> 0.

Proof. For a contradiction, suppose that the stated relations hold. Then there is
an m′

r ∈ R such that λ(R≤m′
r
) > 0. Pick any M ′

r > m′
r. If λ(R≥M ′

r
) > 0, we

have a contradiction to Lemma 4.1; if λ(R≥M ′
r
) = 0, we have a contradiction to

Lemma 4.2.

Lemma 4.4. There are no x1, x2 ∈ I with x1 < x2, and ml,Ml,mr,Mr ∈ R with
ml < Ml and mr < Mr, such that

λ
(
L≤ml

(x1, x2)
)
> 0, λ

(
R≤mr (x1, x2)

)
= 0,

λ
(
L≥Ml

(x1, x2)
)
> 0, λ

(
R≥Mr (x1, x2)

)
= 0.

Proof. For a contradiction, suppose that the stated relations hold. Then λ(R≥Mr ) =
0 yields λ(R≤Mr ) > 0, and any M ′

r > Mr incurs λ(R≥M ′
r
) = 0, contrary to

Lemma 4.2.

Summarizing the above, we obtain part (a) of the following result, with the proof
of part (b) being analogous.

Proposition 4.5.

(a) There are no x1, x2 ∈ I with x1 < x2 and ml,Ml ∈ R with ml < Ml such that
λ(L≤ml

(x1, x2)) > 0 and λ(L≥Ml
(x1, x2)) > 0.

(b) There are no x1, x2 ∈ I with x1 < x2 and mr,Mr ∈ R with mr < Mr such
that λ(R≤mr (x1, x2)) > 0 and λ(R≥Mr (x1, x2)) > 0.

The next result shows that for all x1, x2 ∈ I with x1 < x2 the function Δ(x1, x2, y)
is almost everywhere constant outside [x1, x2].

Proposition 4.6. Suppose that x1, x2 ∈ I with x1 < x2. Then there exist a constant
Gl(x1, x2) such that

Δ(x1, x2, y) = Gl(x1, x2) for almost all y ∈ (a, x1],
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and a constant Gr(x1, x2) such that

Δ(x1, x2, y) = Gr(x1, x2) for almost all y ∈ [x2, b).

Proof. There exists a real number Ml such that both λ(L≤Ml
(x1, x2)) > 0 and

λ(L≥Ml
(x1, x2)) > 0. This choice is unique, because by part (a) of Proposition 4.5

there is no ml 	= Ml such that λ(L≤ml
(x1, x2)) > 0 and λ(L≥ml

(x1, x2)) > 0.
Therefore, Δ(x1, x2, y) = Ml = Gl(x1, x2) for almost all y ∈ (a, x1]. The proof of the
second statement invokes part (b) of Proposition 4.5 and otherwise is analogous.

Proposition 4.7. There exist functions A1 : I → R, A2 : I → R and measurable
functions B1 : I → R, B2 : I → R such that, for each x ∈ I,

S(x, y) =

{
A1(x) + B1(y), y ≤ x,

A2(x) + B2(y), y > x,

for all y ∈ I \Nx, where Nx is a null set.

Proof. Suppose that an ↓ a and bn ↑ b are strictly monotone sequences in I such
that a1 < b1. By Proposition 4.6, it is true for n = 1, 2, . . . and all x ∈ (an, bn) that

S(x, y) =

{
Gl(x, bn) + S(bn, y), y ≤ x,

−Gr(an, x) + S(an, y), y > x,

for all y ∈ I \Nx, where Nx is a null set. Thus, we have for n = 1, 2, . . .

Gl(x, bn)−Gl(x, bn+1) = S(bn+1, y)− S(bn, y),

for all x ∈ (an, bn) and all y ∈ I \ N, where N is a null set. Thus, Gl(x, bn) −
Gl(x, bn+1) does not depend on x, and S(bn+1, y)− S(bn, y) does not depend on y,
and both equal a constant, say cn. Put c0 = 0. Let I1 = (a1, b1) and for n ≥ 2 let
In = (an, bn) \ (an−1, bn−1), so that the family {In : n = 1, 2, . . .} forms a partition
of I. If we define

A1(x) =

∞∑
n=1

(
Gl(x, bn) +

n−1∑
k=0

ck

)
1(x ∈ In)

and let

B1(y) =

∞∑
n=1

(
S(bn, y)−

n−1∑
k=0

ck

)
1(y ∈ In),

the desired representation holds. Analogously, we find the desired functions A2 :
I → R and B2 : I → R.

Proposition 4.8. For all x1, x2 ∈ I,

α
(
A1(x1)−A1(x2)

)
= (1− α)

(
A2(x2)−A2(x1)

)
.

Proof. Without loss of generality, we may consider x1, x2 ∈ I with x1 < x2. There
exist a constant c satisfying (1), and a sequence (Fn)n=1,2,... of probability measures
in L+ with densities (fn)n=1,2,..., such that

Fn((a, x1]) = α, Fn((x2, b]) = 1− α− 1

n+ c
,
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and

fn(y) =
1 + c

n+ c
f1(y) for y ∈ (x1, x2].

As x1 is an α-quantile of F and S is weakly consistent for the α-quantile relative
to L+, we have

0 ≥ EFn

[
Δ(x1, x2, Y )

]
=

∫ x1

a

Δ(y) dFn(y) +

∫ x2

x1

Δ(y) dFn(y) +

∫ b

x2

Δ(y) dFn(y)

= α
(
A1(x1)−A1(x2)

)
+

1 + c

n+ c

∫ x2

x1

Δ(y) dF1(y)

+

(
1− α− 1

n+ c

)(
A2(x1)−A2(x2)

)
for n = 1, 2, . . . In the limit as n → ∞ we obtain

α
(
A1(x1)−A1(x2)

)
≤ (1− α)

(
A2(x2)−A2(x1)

)
.

An analogous argument with Fn((a, x1]) = α − 1
n+c and Fn((a, x2]) = α for n =

1, 2, . . . yields the opposite inequality, thereby completing the proof.

For subsequent use we define, for c ∈ R, the Borel set

Mc(x1, x2) =
{
y ∈ [x1, x2] : B2(y)− B1(y) ≤ c

}
,

where we frequently abbreviate Mc = Mc(x1, x2), with the arguments understood
to be fixed.

Proposition 4.9. For all x1, x2 ∈ I with x1 < x2,

ess inf [x1, x2]

(
B2(y)− B1(y)

)
≥ A1(x1)−A2(x1)

and
ess sup[x1, x2]

(
B2(y)− B1(y)

)
≤ A1(x2)−A2(x2).

Proof. We first show that ess inf [x1, x2](B2(y)−B1(y)) is finite. For a contradiction,
suppose there are x1, x2 ∈ I with x1 < x2 with the property that

ess inf [x1, x2](B2(y)− B1(y)) = −∞.

Let β ∈ (0, α). Then there exists a sequence cn ↓ −∞ such that c1 < − (x2 −
x1)/(α− β), λ(Mc1) < x2 − x1 and λ(Mcn) > 0 for n = 1, 2, . . . , whence

1

|cn|
λ
(
[x1, x2] \Mcn

)
<

1

|c1|
(x2 − x1) < α− β for n = 1, 2, . . .

Thus, there is a sequence (Fn)n=1,2,... of probability measures in L+ with densities
(fn)n=1,2,..., such that Fn((a, x2]) = α, Fn(Mcn) = β, and fn(y) ≤ 1/|cn| for
y ∈ [x1, x2] \Mcn . As x2 is an α-quantile of Fn and S is weakly consistent for the
α-quantile relative to the class L+, we have

0 ≤ EFn

[
Δ(x1, x2, Y )

]
=

(
A1(x1)−A1(x2)

) ∫ x1

a

dFn(y) +
(
A2(x1)−A2(x2)

) ∫ b

x2

dFn(y)

+

∫ x2

x1

[(
A2(x1) + B2(y)

)
−
(
A1(x2) + B1(y)

)]
dFn(y)
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=
(
A1(x1)−A1(x2)

) ∫ x2

a

dFn(y) +
(
A2(x1)−A2(x2)

) ∫ b

x2

dFn(y)

+

∫ x2

x1

[(
A2(x1) + B2(y)

)
−

(
A1(x1) + B1(y)

)]
dFn(y)

=

∫ x2

x1

[(
B2(y)− B1(y)

)
+

(
A2(x1)−A1(x1)

)]
dFn(y)

=

∫
Mcn

(
B2(y)− B1(y)

)
dFn(y) +

∫
[x1,x2]\Mcn

(
B2(y)− B1(y)

)
dFn(y)

+
(
A2(x1)−A1(x1)

)[
Fn(Mcn) + Fn

(
[x1, x2] \Mcn

)]
≤ cnβ +

1

|cn|

∫ x2

x1

|B2(y)− B1(y)| dλ(y) + |A2(x1)−A1(x1)|
(
β +

x2 − x1

|cn|

)

for n = 1, 2, . . . , where the equalities stem from Propositions 4.7 and 4.8, and the
inequality contradicts our assumption that cn ↓ −∞.

We now prove the lower estimate. Suppose first that B2(y) − B1(y) is almost
everywhere constant on [x1, x2]. Pick β ∈ (0, α) and a probability measure F ∈ L+

such that F ((x1, x2]) = β and F ((a, x2]) = α, whence

0 ≤ EF

[
Δ(x1, x2, Y )

]
=

∫ x2

x1

(
B2(y)−B1(y)

)
dF (y) +

(
A2(x1)−A1(x1)

)
F ((x1, x2])

= β
(
ess inf [x1,x2]

(
B2(y)−B1(y)

)
+
[
A2(x1)−A1(x1)

])
.

If B2(y)−B1(y) is not almost everywhere constant on [x1, x2], let

γ = ess inf [x1, x2]

(
B2(y)− B1(y)

)
= inf

{
c ∈ R : λ(Mc) > 0

}
,

which is finite by the above. Let β ∈ (0, α) and pick any sequence εn ↓ 0 where
ε1 < (α−β)/(x2−x1) is sufficiently small to ensure that λ(Mγ+ε1) < x2−x1. Since

εn λ
(
[x1, x2] \Mγ+εn

)
< ε1(x2 − x1) < α− β for n = 1, 2, . . .

there exists a sequence (Fn)n=1,2,... of probability measures in L+ with densities
(fn)n=1,2,..., such that Fn((a, x2]) = α, Fn(Mγ+εn) = β, and fn(y) ≤ εn for all
y ∈ [x1, x2] \Mγ+εn . Familiar arguments imply that

0 ≤ EFn

[
Δ(x1, x2, Y )

]
=

∫
Mγ+εn

(
B2(y)− B1(y)

)
dFn(y) +

∫
[x1,x2]\Mγ+εn

(
B2(y)− B1(y)

)
dFn(y)

+
(
A2(x1)−A1(x1)

)[
Fn(Mγ+εn) + Fn

(
[x1, x2] \Mγ+εn

)]
≤ (γ + εn)β + εn

∫ x2

x1

|B2(y)− B1(y)| dλ(y)

+
(
A2(x1)−A1(x1)

)
β + |A2(x1)−A1(x1)|εn(x2 − x1)

for n = 1, 2, . . ., which yields the claim in the limit as n → ∞. Analogous arguments
imply the upper estimate.

Proposition 4.10. It is true that A1(·)−A2(·) is nondecreasing everywhere, and
that

B2(·)− B1(·) = A1(·)−A2(·)
almost everywhere.
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Proof. The first claim is immediate from Proposition 4.9. Further, let x1, x, x2 ∈ I
with x1 < x < x2. Again by Proposition 4.9,

ess sup[x1, x]

(
B2(y)− B1(y)

)
≤ A1(x)−A2(x) ≤ ess inf [x, x2]

(
B2(y)− B1(y)

)
,

and it follows readily that

B2(x)− B1(x) ≤ A1(x)−A2(x) ≤ B2(x)− B1(x)

for all x ∈ I up to a null set, thereby proving the second claim. A more detailed
proof is given in [5].

We are now ready to complete the proof. By Proposition 4.8, there exists a
constant C such that αA1(x) + (1− α)A2(x) = C everywhere, whence

(3) A1(x) =
C

α
− 1− α

α
A2(x) for all x ∈ I.

Invoking Proposition 4.10, we see that

A2(x)−A1(x) = A2(x)−
(
C

α
− 1− α

α
A2(x)

)
=

1

α
A2(x)−

C

α

is nonincreasing. By the same result,

B1(x)− B2(x) = A2(x)−A1(x) =
1

α
A2(x)−

C

α

almost everywhere, which gives

(4) B1(y) = B2(y) +
1

α
A2(y)−

C

α
for almost all y ∈ I.

Combining (3) and (4) with Proposition 4.7 we find that, for all x ∈ I,

S(x, y) =

⎧⎨
⎩−1− α

α
A2(x) +

1

α
A2(y) + B2(y), y ≤ x,

A2(x) + B2(y), y > x,

for all y ∈ I \Nx, where Nx is a null set. Define

g(x) = − 1

α
A2(x) and h(y) = B2(y) +A2(y)

and note that g is nondecreasing since A2 is nonincreasing, thereby completing the
proof of Theorem 2.2.

5. Discussion

We have reviewed Thomson’s [12] pioneering characterization of the scoring func-
tions that are consistent for quantiles. This fundamental decision-theoretic result
deserves broad attention, and our goal here was to make it accessible to an audience
of probabilists and statisticians.

Closely related questions arise in the case of the mean or expectation functional.
Subject to conditions (S0), (S1) and (S2) of Theorem 1.4, a scoring function is



Consistent scoring functions for quantiles 173

consistent for the mean functional relative to the class D2 if and only if it is a
Bregman function of the form

Sφ(x, y) = φ(y)− φ(x)− φ′(x)(y − x),

where φ is convex with subgradient φ′ [3, 11]. Savage [11] suggested that the char-
acterization continues to hold if conditions (S1) and (S2) are dropped, but his proof
lacks detail and we have not been able to verify the claim. For a detailed discussion,
see Section 3 in [5]. Still greater technical challenges arise in the case in which F
is a class of multivariate distributions, for which we refer to [8] and [3] along with
references therein.
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