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Abstract: We study a regression model with a huge number of interacting
variables. We consider a specific approximation of the regression function un-
der two assumptions: (i) there exists a sparse representation of the regression
function in a suggested basis, (ii) there are no interactions outside of the set of
the corresponding main effects. We suggest an hierarchical randomized search
procedure for selection of variables and of their interactions. We show that
given an initial estimator, an estimator with a similar prediction loss but with
a smaller number of non-zero coordinates can be found.

1. Introduction

Suppose that we observe (Yi,Xi), i = 1, . . . , n, an i.i.d.sample from the joint distri-
bution of (Y,X), where Y ∈ R, and X = (X1, . . . , Xd) ∈ X1 × · · · × Xd = X , with
Xj being some subsets of finite-dimensional Euclidean spaces. Our purpose is to es-
timate the regression function f(X) = E(Y |X) nonparametrically by constructing
a suitable parametric approximation of this function, with data-dependent values
of the parameters. We consider the situation where n is large, or even very large
and the dimension d is also large. Without any assumptions, the problem is cursed
by its dimensionality even when Xj = R for all j. For example, a histogram ap-
proximation has p = 320 > 109 parameters when the number of variables is d = 20,
and the range of each is divided into the meager number of three histogram bins.

It is common now to consider models where the number of parameters p is much
larger than the sample size n. The idea is that the effective dimension is defined not
by the number of potential parameters p but by the (unknown) number of non-zero
parameters that are needed. This number may be much smaller than p. Methods
like thresholding in white noise model, cf. [1] or [11], LASSO, LARS or Dantzig
selector in regression, cf, [23], [7], [9], [6], are used, and it is proved that if the
vector of estimated parameters is sparse (i.e., the number of non-zero parameters
is relatively small) then the model can be estimated with reasonable accuracy,
cf. [3, 4, 5, 6, 8, 10, 15, 14, 12, 16, 17, 25, 26, 27]. A direct selection of a small
number of non-zero variables is relatively simple for the white noise model. There,
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each variable is processed separately, and the parameters can be ordered according
to the likelihood that they are non-zero. The situation is more complicated in
regression problems. Methods like LASSO and LARS yield numerically efficient
ways to construct a sparse model, cf. [13, 18, 20, 19, 9, 24]. However, they have
their limits, and are not numerically feasible with too many parameters, as for
instance in the simple example considered above.

Our aim is to propose a procedure that can work efficiently in such situations. We
now outline its general scheme. We follow [22] in using tensor products. Consider a
collection of functions (ψi,j)i=1,...,d, j=0,1,...,L where ψi,j : Xi → R. For example, for
fixed i this can be a part of a basis (ψi,j)j=0,1,... for L2(Xi). For simplicity, we take
the same number L of basis functions for each variable. We assume that ψi,0 ≡ 1.
Consider an approximation fβ of regression function f given by:

fβ(X) =
∑

j∈{0,1,...,L}d

βj

d∏
i=1

ψi,ji(Xi),

where j = (j1, . . . , jd) and βj are unknown coefficients. Note that fβ is nothing but
a specific model with interactions between variables, such that all the interactions
are expressed by products of functions of a single variable. In fact, since ψi,0 ≡ 1,
the multi-indices j with only one non-zero coefficient yield all the functions of a
single variable, those with only two non-zero coefficients yield all the products of
two such functions, etc. Clearly, this covers the above histogram example, wavelet
approximations and others.

The number of coefficients βj in the model is (L+1)d. The LASSO type estimator
can deal with a large number of potential coefficients which grows exponentially in
n. So, theoretically, we could throw all the factors into the LASSO algorithm and
find a solution. But p ∼ Ld is typically a huge number, so that the LASSO can
become numerically infeasible. Therefore, a systematic search is needed.

Since there is no way to know in advance which factors are significant, we suggest
a hierarchical selection: we build the model in a tree fashion. At each step of the
iteration we apply a LASSO type algorithm to a collection of candidate functions,
where we start with all functions of a single variable. Then, from the model selected
by this algorithm we extract a sub-model which includes only K functions, for some
predefined K. The next step of the iteration starts with the same candidate func-
tions as its predecessor plus all the interactions between the K functions selected
at the previous step.

Formally we consider the following hierarchical model selection method. For
a set of functions F with cardinality | F | ≥ K, let M SK be some procedure to
select K functions out of F . We denote by M SK(F ) the selected subset of F ,
| M SK(F )| = K. Also, for a function f : X → R, let N(f) be the minimal set of
indices such that f is a function of (Xi)i∈N(f) only. The procedure is defined as
follows.

(i) Set F0 =
⋃d

i=1{ψi,1, . . . , ψi,L}.
(ii) For m = 1, 2, . . . , let

Fm = Fm−1 ∪ {fg : f, g ∈ M SK(Fm−1), N(f) ∩ N(g) = ∅}.

(iii) Continue until convergence is declared. The output of the algorithm is the set
of functions M SK(Fm) for some m.

This search procedure is valid under the dictum of no interaction outside of the
set of the corresponding main effects: a term is included only if it is a function of
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one variable or it is a product of two other included terms. If this is not a valid
assumption one can enrich the search at each step to cover all the coefficients βj of
the model. However, this would be cumbersome.

Note that | Fm| ≤ K2 + | Fm−1| ≤ mK2 + | F0| = mK2 + Ld. Thus, the set Fm

is not excessively large. At every step of the procedure we keep for selection all
the functions of a single variable, along with not too many interaction terms. In
other words, functions of a single variable are treated as privileged contributors.
On the contrary, interactions are considered with a suspicion increasing as their
multiplicity grows: they cannot be candidates for inclusion unless their “ancestors”
were included at all the previous steps.

The final number of selected effects is K by construction. We should choose K
to be much smaller than n if we want to fit our final model in the framework of the
classical regression theory.

One can split the sample in two parts and do model selection and estimation
separately. Theoretically, the rate of convergence of the LASSO type procedures
suffers very little when the procedures are applied only to a sub-sample of the
observations, as long as the sub-sample size nMS used for model selection is such
that nMS/n converges slowly to 0. We can therefore, first use a sub-sample of size
nMS to select, according to (i)–(iii), a set of K terms that we include in the model.
The second stage will use the rest of the sample and estimate via, e.g., standard
least-square method the regression coefficients of the K selected terms.

This paper has two goals. The first one, as described already, is suggesting a
method to build highly complex models in a hierarchial fashion. The second purpose
is arguing that a reasonable way to do model selection is a two stage procedure. The
first stage can be based on the LASSO, which is an efficient way to obtain sparse
representation of a regression model. We argue, however, by a way of example in
Section 2, that using solely the LASSO can be an non-optimal procedure for model
selection. Therefore, in Section 3 we introduce the second stage of selection, such
that a model of a desired size is obtained at the end. At this stage we suggest
to use either randomized methods or the standard backward procedure. We prove
prediction error bounds for two randomized methods of pruning the result of the
LASSO stage. Finally, in Section 4 we consider two examples that combine the
ideas presented in this paper.

2. Model selection: an example

The above hierarchical method depends on a model selection procedure M SK that
we need to determine. For high-dimensional case that we are dealing with, LASSO
is a popular model selection tool. It is shown that under some conditions the set
of non-zero coefficients of LASSO estimator coincides with the true set of non-zero
coefficients in linear regression, with probability converging to 1 as n → ∞ (see,
e.g., [16, 27]). However, these results depend on strong assumptions that essentially
rule out anything close to multicolinearity. These conditions are often violated in
practice when there are many variables representing a plentitude of highly related
one to another demographic and physical measurements of the same subject. They
are also violated in a common statistical learning setup where the variables of the
analysis are values of different functions of one real variable (e.g., different step
functions). Note that for our procedure we do not need to retain all the non-zero
coefficients but just to extract the K “most important” ones. To achieve this, we
first tried to tune the LASSO in some natural way. However, this approach failed.
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We start with an example. We use this example to argue that although the
LASSO does select a small model (i.e., typically many of the coordinates of the
LASSO estimator are 0), it does a poor job in selecting the relevant variables. A
naive approach for model selection when the constraint applies to the number of
non-zero coefficients, is to relax the LASSO algorithm until it yields a solution with
the right number of variables. We believe that this is a wrong approach. The LASSO
is geared for L1 constraints and not for L0 ones. We suggest another procedure in
which we run the LASSO until it yields a model more complex than wished, but not
too complex, so that a standard model selection technique like backward selection
can be used. This was the method considered in [12] to argue that there are model
selection methods which are persistent under general conditions.

We first recall the basic definition of LASSO. Consider the linear regression
model

y = Zβ0 + ε,

where y = (Y1, . . . , Yn)′ ∈ Rn is the vector of observed responses, Z ∈ Rn×p is the
design matrix, β0 ∈ Rp is an unknown parameter and ε = (ξ1, . . . , ξn)′ ∈ Rn is a
noise. The LASSO estimator β̂L of β0 is defined as a solution of the minimization
problem

(1) min
β: ‖β‖1≤T

‖y − Zβ‖2,

where T > 0 is a tuning parameter, ‖β‖1 is the �1-norm of β and ‖ · ‖ is the empirical
norm associated to the sample of size n:

‖y‖2 = n−1
n∑

i=1

Y 2
i .

This is the formulation of the LASSO as given in [23]. Another formulation, given
below in (8), is that of minimization of the sum of squares with L1 penalty. Clearly,
(1) is equivalent to (8) with some constant r dependent on T and on the data,
by the Lagrange argument. The standard LARS-like algorithm of Efron et al. [9],
which is the algorithm we used, is based on gradual relaxation of the constraint T
of equation (1), and solves therefore simultaneously both problems. The focus of
this paper is the selection of a model of a given size. Hence we apply the LARS
algorithm until we get for the first time a model of a prescribed size.

Example 1. We consider a linear regression model with 100 i.i.d. observations of
(Y, Z1, . . . , Z150) where the predictors (Z1, . . . , Z150) are i.i.d.standard normal, the
response variable is Y =

∑150
j=1 βjZj +ξ =

∑10
j=1

10
25+j2Zj +ξ, and the measurement

error is ξ ∼ N(0, σ2), σ = 0.1.
Note that we have more variables than observations but most of the βj are zero.
Figure 1a presents the regularization path, i.e. the values of the coefficients of

β̂L as a function of T in (1). The vertical dashed lines indicate the values of the
T for which the number of non-zero coefficients of β̂L is for the time larger than
the mark value (multiple values of 5). The legend on the right gives the final value
of the 20 coefficients with the highest values (sorted by the absolute value of the
coefficient).

Figure 1b presents a similar situation. In fact, the only difference is that the
correlation between any two Zi’s is now 0.5. Again, the 10 most important variables
are those with non-zero true values.
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Fig 1. Selecting variables. Coefficients vs. L1
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Suppose we knew in advance that there are exactly 10 non-zero coefficients. It
could be assumed that LASSO can be used, stopped when it first finds 10 non-zero
coefficients (this corresponds to T ≈ 0.5 in Figure 1b). However, if that was the
algorithm, then only three coefficients with non-zero true value, β3, β8, and β10,
were included together with some 7 unrelated variables. For T ≈ 2 the 10 largest
coefficients do correspond to the 10 relevant variables, but along with them many
unrelated variables are still selected (8 variables in Figure 1b), and moreover this
particular choice of T cannot be known in advance if we deal with real data.

3. Randomized selection

The approach to design the model selector M SK that we believe should be used
is the one applied in the examples of Section 4. It acts as follows: run the LASSO
for a large model which is strictly larger than the model we want to consider, yet
small enough so that standard methods for selecting a good subset of the variables
can be implemented. Then run one of such methods, with given subset size K: in
the examples of Section 4 we use the standard backward elimination procedure. We
do not have a mathematical proof which is directly relevant to such a method. We
can prove, however, the validity of an inferior backward method which is based on
random selection (with appropriate weights) of the variable to be dropped at each
stage. We bound the increase in the sum of squares of the randomized method. The
same bounds are applied necessarily to the standard backward selection.

Suppose that we have an arbitrary estimator β̃ with values in Rp, not necessarily
the LASSO estimator. We may think, for example, of any estimator of parameter
β0 in the linear model of Section 2, but our argument is not restricted to that case.
We now propose a randomized estimator β̂ such that:

(A) the prediction risk of β̂ is on the average not too far from that of β̃,
(B) β̂ has at most K non-zero components,
(C) large in absolute value components of β̂ coincide with those of β̃.

Definition of the randomization distribution

Let I be the set of non-zero coordinates of the vector β̃ = (β̃1, . . . , β̃p). We suppose
that its cardinality K̃ = | I | ≥ 2. Introduce the values

pi = min{1, c(K̃ − 1)|β̃i|/‖β̃‖1}, i ∈ I,

where c ≥ 1 is a solution of
∑

i∈I pi = K̃ − 1. Such c exists since the function

t �→ p̄i(t) ≡ min{1, t(K̃ − 1)|β̃i|/‖β̃‖1}
is continuous and non-decreasing, limt→∞

∑
i∈I p̄i(t) = K̃ and

∑
i∈I p̄i(1) ≤ K̃ − 1.

From
∑

i∈I pi = K̃ − 1 we get

(2)
∑
i∈I

(1 − pi) = 1,

so that the collection {1 − pi}i∈I defines a probability distribution on I that
we denote by P∗. Note that there exists a pi not equal to 1 (otherwise we have∑

i∈I pi = K̃), in particular, we have always pi < 1 for the index i that corre-
sponds to the smallest in absolute value β̃i. On the other hand, pi > 0 since β̃i �= 0
for i ∈ I. Therefore, 0 < pi < 1 for at least two indices i corresponding to the two
smallest in absolute values coordinates of β̃.
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Definition of the randomized selection procedure

Choose i∗ from I at random according to distribution P∗: P∗(i∗ = i) = 1 − pi,
i ∈ I. We suppose that the random variable i∗ is independent of the data y. Define
a randomized estimator β∗ = (β∗

1 , . . . , β∗
p) where β∗

i∗ = 0, β∗
i = β̃i/pi for i ∈ I \ {i∗ },

and β∗
i = 0 for i /∈ I. In words, we set to zero one coordinate of β̃ chosen at random,

and the other coordinates are either increased in absolute value or left intact. We
will see that on the average we do not loose much in prediction quality by dropping
a single coordinate in this way.

We then perform the same randomization process taking β∗ as initial estimator
and taking randomization independently of the one used on the first step. We thus
drop one more coordinate, etc. Continuing iteratively after K̃ − K steps we are
left with the estimator which has exactly the prescribed number K of non-zero
coordinates. We denote this final randomized estimator by β̂. This is the one we
are interested in.

Denote by E∗ the expectation operator with respect to the overall randomization
measure which is the product of randomization measures over the K̃ − K iterations.

Theorem 1. Let Z ∈ Rn×p be a given matrix. Suppose that the diagonal elements
of the corresponding Gram matrix Z′Z/n are equal to 1, and let β̃ be any estimator
with K̃ ≥ 3 non-zero components. Then the randomized estimator β̂ having at most
K < K̃ non-zero coordinates has the following properties.

(i) For any vector f ∈ Rn,

E∗ ‖f − Zβ̂‖2 ≤ ‖f − Zβ̃‖2 + ‖β̃‖2
1

(
1

K − 1
− 1

K̃ − 1

)
.

(ii) Let β̃(j) be the coordinates of β̃ ordered by absolute value: |β̃(1)| ≥ |β̃(2)| ≥
· · · ≥ |β̃(p)|. Suppose that |β̃(k)| > ‖β̃‖1/(K̃ − 1) for some k. Then the estima-
tor β̂ coincides with β̃ in the k largest coordinates: β̂(j) = β̃(j), j = 1, . . . , k.

(iii) Suppose that |β̃(k+1)| = 0 and |β̃(k)| > ‖β̃‖1/(K̃ − 1) for some k. Then β̂ keeps
all the non-zero coordinates of β̃.

Proof. Recalling that the norm ‖ · ‖ is defined with scaling 1/n, it is easy to see
that E∗(β∗

i ) = β̃i for all i and, for any vector f ∈ Rn,

E∗ ‖f − Zβ∗ ‖2 = ‖f − Zβ̃‖2 +
1
n

trace(Z′ZΣ∗)

= ‖f − Zβ̃‖2 +
1
n

n∑
i=1

z′
iΣ

∗zi(3)

≤ ‖f − Zβ̃‖2 +
p∑

j=1

β̃2
j

1 − pj

p2
j

,

where z′
i are the rows of matrix Z and Σ∗ = E∗[(β∗ − β̃)(β∗ − β̃)′] is the random-

ization covariance matrix. We used here that Σ∗ is of the form

Σ∗ = diag

(
β̃2

j

1 − pj

p2
j

)
− (Bβ̃)(Bβ̃)′ with B = diag

(
1 − pi

pi

)
,

and the diagonal elements of Z′Z/n are equal to 1, by assumption of the theorem.
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Recall that c ≥ 1, and 1 − pj > 0 implies |β̃j |/pj ≤ ‖β̃‖1/(K̃ − 1). Hence,
(β̃j/pj)2(1 − pj) ≤ (‖β‖1/(K̃ − 1))2(1 − pj) for all j ∈ I. Therefore:

∑
j∈I

β̃2
j

1 − pj

p2
j

≤ ‖β̃‖2
1

(K̃ − 1)2
∑
j∈I

(1 − pj)

(4)
=

‖β̃‖2
1

(K̃ − 1)2
.

Thus, the randomized estimator β∗ with at most K̃−1 non-zero components satisfies

E∗ ‖f − Zβ∗ ‖2 ≤ ‖f − Zβ̃‖2 +
‖β̃‖2

1

(K̃ − 1)2
.(5)

Note also that β∗ has the same �1 norm as the initial estimator β̃:

(6) ‖β∗ ‖1 = ‖β̃‖1

In fact, the definition of β∗ yields

‖β∗ ‖1 − ‖β̃‖1 =
∑
j∈I

(
|β̃j |
pj

− |β̃j |
)

− |β̃j∗ |
pj∗

=
∑
j∈I

|β̃j |
pj

(1 − pj) − |β̃j∗ |
pj∗

=
‖β̃‖1

c(K̃ − 1)

∑
j∈I

(1 − pj) − ‖β̃‖1

c(K̃ − 1)

= 0,

in view of (2).
Using (5) and (6) and continuing by induction we get that the final randomized

estimator β̂ satisfies

E∗ ‖f − Zβ̂‖2 ≤ ‖f − Zβ̃‖2 +
K̃−K∑
j=1

‖β̃‖2
1

(K̃ − j)2

≤ ‖f − Zβ̃‖2 + ‖β̃‖2
1

(
1

K − 1
− 1

K̃ − 1

)
.

This proves part (i) of the theorem. Part (ii) follows easily from the definition of
our procedure, since pj = 1 for all the indices j corresponding to β̃(1), . . . , β̃(k) and
the �1 norm of the estimator is preserved on every step of the iterations. The same
argument holds for part (iii) of the theorem.

Consider now the linear model of Section 2. Let β̃ be an estimator of parameter
β0. Using Theorem 1 with f = Zβ0 we get the following bound on the prediction
loss of the randomized estimator β̂:

(7) E∗ ‖Z(β̂ − β0)‖2 ≤ ‖Z(β̃ − β0)‖2 + ‖β̃‖2
1

(
1

K − 1
− 1

K̃ − 1

)
.



64 Bickel et al.

We see that if K is large enough and the norm ‖β̃‖2
1 is bounded, the difference

between the losses of β̃ and β̂ is on the average not too large. For β̃ = β̂L we can
replace ‖β̃‖2

1 by T 2 in (7).
As β̃ we may also consider another LASSO type estimator which is somewhat

different from β̂L described in Section 2:

(8) β̃ = arg min
β∈Rp

{
‖y − Zβ‖2 + r‖β‖1

}
,

where r = A
√

(log p)/n with some constant A > 0 large enough. As shown in [3],
for this estimator, as well as for the associated Dantzig selector, under general con-
ditions on the design matrix Z the �1 norm satisfies ‖β̃‖2

1 = ‖β0‖2
1+op(s

√
(log p)/n)

where s is the number of non-zero components of β0. Thus, if β0 is sparse and has
a moderate �1 norm, the bound (7) can be rather accurate.

Furthermore, Theorem 1 can be readily applied to nonparametric regression
model

y = f + ε,

where f = (f(X1), . . . , f(Xn))′ and f is an unknown regression function. In this case
Zβ = fβ(X) is an approximation of f(X), for example as the one discussed in the
Introduction. Then, taking as β̃ either the LASSO estimator (8) or the associated
Dantzig selector we get immediately sparsity oracle inequalities for prediction loss of
the corresponding randomized estimator β̂ that mimic (to within the residual term
O(‖β̃‖2

1/K)) those obtained for the LASSO in [4, 3] and for the Dantzig selector in
[3].

It is interesting to compare our procedure with the randomization device usually
referred to as the “Maurey argument”, cf. [21]. It is implemented as a tool to prove
approximation results over convex classes of functions [2]. Maurey’s randomization
has been used in statistics in connection to convex aggregation [18], pages 192–193
(K-concentrated aggregation), and [4], Lemma B.1.

The Maurey randomization can be also applied to our setting. Define the esti-
mator β̂M as follows:

(i) choose K ≤ K̃; draw independently at random K coordinates from I with
the probability distribution { |β̃i|/‖β̃‖1}i∈I ,

(ii) set the jth coordinate of β̂M equal to

β̂Mj =

{
sgn(β̃j)‖β̃‖1kj/K if j ∈ I,

0 if j /∈ I,

where kj ≤ K is the number of times the jth coordinate is selected at step
(i).

Note that, in general, none of the non-zero coordinates of β̂M is equal to the corre-
sponding coordinate of the initial estimator β̃. The prediction risk of β̂M is on the
average not too far from that of β̃ as the next theorem states.

Theorem 2. Under the assumptions of Theorem 1 the randomized estimator β̂M

with at most K < K̃ non-zero coordinates satisfies

(9) E∗ ‖f − Zβ̂M ‖2 ≤ ‖f − Zβ̃‖2 +
‖β̃‖2

1

K
.



Hierarchical variable selection 65

Proof. Let η1, . . . , ηK be i.i.d. random variables taking values in I with the prob-
ability distribution { |β̃i|/‖β̃‖1}i∈I . We have kj =

∑K
s=1 I(ηs = j) where I(·) is

the indicator function. It is easy to see that E∗(β̂Mj) = β̃j and the randomization
covariance matrix Σ∗ = E∗[(β̂M − β̃)(β̂M − β̃)′] has the form

(10) Σ∗ =
‖β̃‖1

K
diag|β̃i| − 1

K
|β̃| |β̃| ′,

where |β̃| is the vector of absolute values |β̃i|. Acting as in (3) and using (10) we
get

E∗ ‖f − Zβ̂M ‖2 = ‖f − Zβ̃‖2 +
1
n

n∑
i=1

z′
iΣ

∗zi

≤ ‖f − Zβ̃‖2 +
‖β̃‖1

K

∑
j∈I

|β̃j |

which yields the result.

The residual term in (9) is of the same order of magnitude O(‖β̃‖2
1/K) as the

one that we obtained in Theorem 1. In summary, β̂M does achieve the properties
(A) and (B) mentioned at the beginning of this section, but not the property (C):
it does not preserve the largest coefficients of β̃.

Note that applying (5) with f = y we get an inequality that links the residual
sums of squares (RSS) of β∗ and β̃:

(11) E∗ ‖y − Zβ∗ ‖2 ≤ ‖y − Zβ̃‖2 +
‖β̃‖2

1

(K̃ − 1)2
.

The left hand side of (11) is bounded from below by the minimum of the RSS over
all the vectors β with exactly K̃ −1 non-zero entries among the K̃ possible positions
where the entries of the initial estimator β̃ are non-zero. Hence, the minimizer β∗ ∗

of the residual sums of squares ‖y − Zβ‖2 over all such β is an estimator whose
RSS does not exceed the right hand side of (11). Note that β∗ ∗ is obtained from
β̃ by dropping the coordinate which has the smallest contribution to R2. Iterating
such a procedure K̃ − K times we get nothing but a standard backward selection.
This is exactly what we apply in Section 4. However, the estimator obtained by this
non-randomized procedure has neither of the properties stated in Theorem 1 since
we have only a control of the RSS but not necessarily of the prediction loss, and
the �1 norm of the estimators is not preserved from step to step, on the difference
from our randomized procedure.

4. Examples

We consider here two examples of application of our method. The first one deals
with simulated data.

Example 2. We considered a sample of size 250 from (Y, X1, . . . , X10), where
X1, . . . , X10 are i.i.d.standard uniform, Y = β11( 1

8 < X1 ≤ 1
4 ) + β21( 1

8 < X2 ≤
1
2 )1( 1

8 < X3 ≤ 3
8 )1( 1

8 ≤ X4 ≤ 5
8 ) + ε, where 1(·) denotes the indicator function

and ε is normal with mean 0 and variance such that the population R2 is 0.9. The
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Fig 2. The final path of the LASSO algorithm for the simulation of Example 2.

coefficients β1 and β2 were selected so that the standard deviation of the second
term was three times that of the first.

We followed the hierarchical method (i)–(iii) of the Introduction. Our initial set
F0 was a collection of L = 32 step functions for each of the ten variables (d = 10).
The jump points of the step functions were equally spaced on the unit interval.
The cardinality of F0 was 279 (after taking care of multicolinearity). At each step
we run the LASSO path until K̃ = 40 variables were selected, from which we
selected K = 20 variables by the standard backward procedure. Then the model
was enlarged by including interaction terms, and the iterations were continued until
there was no increase in R2.

The first step (with single effects only) ended with R2 = 0.4678, and the cor-
relation of the predicted value of Y with the true one was 0.4885. The second
iteration (two way interactions) ended with R2 = 0.6303 and correlation with the
truth of 0.6115. The third (three and four ways interactions were added) ended with
R2 = 0.7166 and correlation of 0.5234 with the truth. The process stopped after
the fifth step. The final predictor had correlation of 0.5300 with the true predictor.

The LASSO regularization path for the final (fifth) iteration is presented in
Figure 2. The list of 20 terms included in the model is given in the legend where ik
denotes the the kth step function of variable i. The operator × denotes interaction
of variables. We can observe that the first 12 selected terms are functions of variables
1 to 4 that are in the true model. Some of the 20 terms depend also on two other
variables (8 and 10) that do not belong to the true model.

Example 3 (The abalone data). The abalone data set, taken from ftp://ftp.
ics.uci.edu/pub/machine-learning-databases/abalone/, gives the age of
abalone (as determined by cutting the shell and counting the number of rings) and
some physical measurements (sex, length, diameter, height, whole weight, weight of
meat, gut weight, and shell weight after being dried). The data was described ini-
tially by Nash, et al in 1994. We selected at random 3500 data points as a training
set. The 677 remaining points were left as a test bed for cross-validation.
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Fig 3. The final path of the LASSO algorithm for the abalone data set.

We used as a basic function of the univariate variable the ramp function (x −
a)1(x > a). The range of the variables was initially normalized to the unit interval,
and we considered all break points a on the grid with spacing 1/32. However, after
dropping all transformed variables which are in the linear span of those already
found, we were left with only 17 variables. We applied the procedure with LASSO
which ends with at most K̃ = 60 variables, from which at most K = 30 were
selected by backward regression.

The first stage of the algorithm ends with R2 = 0.5586 (since we started with
17 terms and we were ready to leave up to 30 terms, nothing was gained in this
stage). The second stage, with all possible main effects and two-way interactions,
dealt already with 70 variables and finished with only slightly higher R2 (0.5968).
The algorithm stopped after the fifth iteration. This iteration started with 2670
terms, and ended with R2 = 0.5779. The correlation of the prediction with the
observed age of the test sample was 0.5051. The result of the last stage is given
in Figure 3. It can be seen that the term with the largest coefficient is that of the
whole weight. Then come 3 terms involving the meat weight, and its interaction
with the length. The shell weight which was most important when no interaction
terms were allowed, became not important when the interactions were added.
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