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Abstract: We review the advancement of nonstationary time series analy-
sis from the perspective of Cowles Commission structural equation approach.
We argue that despite the rich repertoire nonstationary time series analysis
provides to analyze how do variables respond dynamically to shocks through
the decomposition of a dynamic system into long-run and short-run relations,
nonstationarity does not invalid the classical concerns of structural equation
modeling — identification and simultaneity bias. The same rank condition
for identification holds for stationary and nonstationary data and some sort
of instrumental variable estimators will have to be employed to yield consis-
tency. However, nonstationarity does raise issues of inference if the rank of
cointegration or direction of nonstationarity is not known a priori. The usual
test statistics may not be chi-square distributed because of the presence of
unit roots distributions. Classical instrumental variable estimators have to be
modified to ensure valid inference.

1. Introduction

Let {w
˜ t} be a sequence of time series observations of random variables. Multi-

variate vector autoregressive model (VAR) has been suggested as a useful tool to
summarize the information contained in the data and to generate predictions (e.g.
Hsiao [21, 22], Sims [50]). These models treat all variables as joint dependent and
treat w

˜ t as a function of its past values, w
˜ t−j . On the other hand, Cowles Com-

mission approach assumes each equation in the system describes a behavioral or
technological relations. An essential element of the Cowles Commission approach
is to decompose w

˜ t into G endogenous variables, y
˜t

, and K exogenous variables,
x
˜t, w˜

′
t = (y

˜
′
t
, x
˜
′
t), G + K = m. The value of endogenous variables y

˜t
are determined

by the simultaneous interaction of the behavioral, technological or institutional re-
lations in the model given the value of the exogenous variables, x

˜t, and shock of the
system (say, ε

˜t). The value of x
˜t is assumed to be determined by the forces outside

of the model (e.g. Koopmans and Hood [19]). The Cowles Commission structural
equation approach is also referred as a structural equations model (SEM). It has
wide applications in education, psychology and econometrics, etc. (e.g. Browne and
Arminger [6], Hood and Koopmans [19], Muthen [39, 40], Yuan and Bentler [59]).
In this paper we will only focus on the aspects related to the time series analysis
of a SEM.

Since the observed data can only provide information on conditional distribution
of y

˜t
given past values of y

˜t−j
and current and past values of x

˜t−j , there is an issue of
if it is possible to infer from the data the true data generating process for the SEMs,
which is referred to as an identification issue. Another issue for the SEMs is because
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of the joint dependency of y
˜t

, the regressors of an equation are correlated with the
error (shock) of an equation which violates the condition for the regression method
to be consistent. This is referred to as simultaneity bias issue. The theory and
statistical properties of SEMs are well developed for stationary data (e.g. Amemiya
[2], Intriligator, Boskin and Hsiao [30]).

Nelson and Plosser [41] have shown that many economic and financial data con-
tain unit roots, namely, most are integrated of order 1 or 2, I(1) or I(2). Theories
for the time series analysis with unit roots have been derived by Anderson [4], Chan
and Wei [7], Johansen [31, 32], Phillips [45], Phillips and Durlauf [46], Sims, Stock
and Watson [51], Tiao and Tsay [57], etc. Among the major findings are that (i)
w
˜ t may be cointegrated in the sense that a linear combination of I(d) variables
may be of order I(d − c), where d and c are positive numbers, say 1 (Granger and
Weiss [14], Engle and Granger [11], Tiao and Box [54]); (ii) “Since these models
(VAR) don’t dichotomize variables into “endogenous” and “exogenous,” the exclu-
sion restrictions used to identify traditional simultaneous equations models make
little sense” (Watson [58]); (iii) Time series regressions with integrated variables can
behave very differently from those with stationary variables. Some of the estimated
coefficients converge to their true values at the speed of

√
T and are asymptoti-

cally normally distributed. Some converge to the true values at the speed of T but
have non-normal asymptotic distribution, and are asymptotically biased. Hence the
Wald test statistics under the null may not be approximated by chi-square distrib-
utions (Chan and Wei [7], Sims, Stock and Watson [51], Tsay and Tiao [57]); (iv)
Even though the I(1) regressors may be correlated with the errors, the least squares
regression consistently estimates the cointegrating relation, hence the simultaneity
bias issues may be ignored (Phillips and Durlauf [46], Stock [52]).

In this paper we hope to review the recent advances in nonstationary time series
analysis from the perspective of Cowles Commission Structural equation approach.
In section 2 we discuss the relationships between a vector autoregressive model
(VAR), a structural vector autoregressive model (SVAR), and Cowles Commission
structural equations model (SEM). Section 3 discusses issues of estimating VAR
with integrated variables. Section 4 discusses the least squares and instrumental
variable estimators, in particular, the two stage least squares estimator (2SLS) for
a SVAR. Section 5 discusses the modified and lag order augmented 2SLS estimators
for SVAR. Conclusions are in Section 6.

2. Vector autoregression, structural vector autoregression and
structural equations model

For ease of exposition, we shall assume that all elements of w
˜ t are I(1) processes.

We assume that w
˜ t are generated by the following p-th order structural vector

autoregressive process without intercept terms:1

(2.1) A(L)w
˜ t = ε

˜t

where A(L) = A0 + A1L + A2L
2 + · · ·+ ApL

p. We assume that initial observations
w
˜ 0, w˜−1, . . . , w˜−p are available and

A.1: A0 is nonsingular and A0 �= Im, where Im denotes an m rowed identity matrix.
A.2: The roots of |A(L)| = 0 are either 1 or outside the unit circle.

1The introduciton of intercept terms complicates algebraic manipulation without changing the
basic message. For detail, see [28].
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A.3: The m×1 error or innovation vector ε
˜t is independently, identically distributed

(i.i.d.) with mean zero, nonsingular covariance matrix Σεε and finite fourth
cumulants.

Premultiplying A−1
0 to (2.1) yields the conventional VAR model of Johansen

[31, 32], Phillips [45], Sims [50], Sims, Stock and Watson [51], Tsay and Tiao [57],
etc.,

(2.2) w
˜ t = Π1w

˜ t−1 + · · · + Πpw
˜ t−p + v

˜t,

where Πj = −A−1
0 Aj , j = 1, . . . , p, and v

˜t = A−1
0 ε

˜t. The difference between (2.1)
and (2.2) is that each equation in the former is supposed to describe a behavioral
or technological relation while the latter is a reduced form relation. Eq. (2.2) is use-
ful for generating prediction, but cannot be used for structural or policy analysis.
For instance, w1t, w2t, w3t, w4t may denote the price and quantity of a product, per
capita income and raw material price, respectively. The first and second equations
describe a demand relation which has quantity inversely related to price and posi-
tively related to income, and a supply relation which has price positively related to
quantity and raw material price, respectively. Only (2.1) can provide information
on demand and supply price elasticities but not (2.2). Equation (2.2) can only yield
expected value of price and quantity given past w

˜ t−j .
Let A = [A0, A1, . . . , Ap] and define a (p + 1)m-dimensional nonsingular matrix

M as

(2.3) M =




Im Im . . . Im

0
˜

Im . . . Im

0
˜

0
˜

. . . Im

. . . . .
0
˜

. .0
˜
. Im


 .

Postmultiplying A by M yields an error-correction representation of (2.1),

(2.4)
p−1∑
j=0

A∗
j � w

˜ t−j + A∗
pw˜ t−p = ε

˜t,

where � = (1−L), A∗
j =

∑j
�=0 A�, j = 0, 1, . . . , p. Let A∗ = [A∗

1, . . . , A
∗
p] = [Ã∗

1, A
∗
p],

then A∗ = AM . The coefficient matrices Ã∗
1 and A∗

p provide the implied short-run
dynamics and long-run relations of the system (2.1) as defined in [26].2

Similarly, we can post-multiply (2.2) by M to yield an error-correction represen-
tation of the reduced form (2.2)

(2.5) �w
˜ t = Π∗

1 � w
˜ t−1 + · · · + Π∗

p−1 � w
˜ t−p+1 + Π∗

pw˜ t−p + v
˜t,

where Πj =
∑j

i=1 Πi − Im.
In this paper we are concerned with statistical inference of (2.1). If the roots of

|A(L)| = 0 are all outside the unit circle, w
˜ t is stationary. It is well known that the

least squares estimator (LS) is inconsistent. The 2SLS and 3SLS using lagged w
˜ t as

instruments are consistent and asymptotically normally distributed (e.g. Amemiya
[2], Malinvaud [38]). Therefore, we shall assume that at least one root of |A(L)| = 0

2The long-run and short-run dichotomization defined here is derived from (2.1). They are
different from the those implied by Granger and Lin [13], Johansen [31, 32] or Pesaran, Shin and
Smith [43], etc.
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is equal to 1. More specifically,3

A4:(a) A∗
p = α

˜
β
˜
′ (or Π∗

p = a
˜
∗β
˜
∗′

) where α
˜

and β
˜

(or α
˜
∗ and β

˜
∗) are m × r

matrices of full column rank r, 0 ≤ r ≤ m − 1
(b) α

˜
′
⊥Jβ

˜⊥ or (α
˜
∗′

⊥J∗β
˜
∗
⊥) is nonsingular, where J =

∑p−1
j=0 A∗

j , (or J∗ =∑p−1
j=0 Π∗

j ), α
˜⊥ and β

˜⊥ (or α
˜
∗
⊥ and β

˜
∗
⊥) are m × (m − r) matrices of full

column rank such that α
˜
′
⊥α

˜
= 0

˜
= β

˜
′
⊥β

˜
, (or α

˜
∗′

⊥α
˜
∗ = 0

˜
= β

˜
∗′

⊥β
˜
) (If r = 0,

then we take α
˜⊥ = Im = β

˜⊥.)

Under A1-A4, w
˜ t has r cointegrating vectors (the columns of β

˜
) and m − r unit

roots. As shown by Johansen [31, 32] and Toda and Phillips [56] that A4 ensures
that the Granger representation theorem (Engle and Granger [11]) applies, so that
�w

˜ t is stationary, β
˜
′w
˜ t is stationary, and w

˜ t is an I(1) process when r < m.
The cointegrating vectors β

˜
provide information on the “long-run” or “equilib-

rium” state in which a dynamic system tends to converge over time after any of the
variables in the system being perturbed by a shock, α

˜
transmits the deviation from

such long-run relations, e
˜t = β

˜
′w
˜ t, into each of w

˜ t, and Ã∗
1 provides information

on how soon such “equilibrium” is restored. In economics, the existence of long-run
relationships and strength of attraction to such a state depends on the actions of a
market or on government intervention. In this sense, the concept of cointegration has
been applied in a variety of economic models including the relationships between
capital and output; real wages and labor productivity; nominal exchange rate and
relative prices, consumption and disposable income, long- and short-term interest
rates, money velocity and interest rates, price of shares and dividends, production
and sales, etc. (e.g. Banerjee, Dolado, Galbraith and Hendry [5], Hsiao, Shen and
Fujiki [29], King, Plosser, Stock and Watson [33]).

Since the data only provide information of the conditional density of w
˜ t given

past values of w
˜ t−j , j = 1, . . . , there is an issue of if it is possible to derive (2.1) from

(2.2) (or (2.4) from (2.5)). Without prior restrictions, there can be infinitely many
different SVAR that yield identical (2.2). To see this we note that premultiplying
(2.1) by any nonsingular constant matrix F yields

(2.6) Ã0w
˜ t + Ã1w

˜ t−1 + · · · + Ãpw
˜ t−p = ε̃

˜t,

where Ãj = FAj , ε̃
˜t = Fε

˜t. Equations (2.1) and (2.5) yield identical (2.2) since
Ã−1

0 Ãj = A−1
0 F−1FAj = Πj , v

˜t = Ã−1
0 ε̃

˜t = A−1
0 F−1Fε

˜t = A−1
0 ε

˜t. In other words,
(2.1) and (2.5) are observationally equivalent.

An equation in (2.1) is identified if and only if the g-th row of admissible trans-
formation matrix F = (f

˜
′
g
) takes the form that apart from the gth element being a

nonzero constant, the rest are all zeros, i.e., f
˜
′
g

= (0, . . . , 0, fgg, 0, . . . , 0) (e.g. Hsiao
[23]). The transformation matrix F is admissible if and only if (2.1) and (2.6) sat-
isfy the same prior restrictions. Suppose that the g-th equation of (2.1) satisfies the
prior restrictions a

˜
′
gΦg = 0

˜
′, where a

˜
′
g denotes the g-th row of A and Φg denotes a

(p+1)m×Rg matrix with known elements. Let Φ∗
g = M−1Φg, the existence of prior

restrictions a
˜
′
gΦg = 0

˜
′ is equivalent to the existence of prior restrictions a

˜
∗′

g Φ∗
g = 0

˜
′,

where a
˜
∗′

g is the g-th row of A∗. It is shown by Hsiao [26] that

3Since Π∗
p = A−1

0 A∗
p, A4 implies that (a) Π∗

p = α
˜
∗β
˜

∗′ , where α
˜
∗ and β

˜

∗ are m× r matrices of

full column rank r, 0 ≤ r ≤ m − 1, and (b) α
˜
∗′
⊥J∗β

˜

∗
⊥ is nonsingular, where J∗ =

∑p−1

j=0
Π∗

j .
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Theorem 2.1. Suppose that the g-th equation of (2.1) is subject to the prior re-
strictions a

˜
′
gΦg = 0

˜
′. A necessary and sufficient condition for the identification of

the g-th equation of (2.1) or (2.4) is that

(2.7) rank(AΦg) = m − 1,

or

(2.8) rank(A∗Φ∗
g) = m − 1.

Let w
˜
′
t = (y

˜
′
t
, x
˜
′
t), where y

˜
′
t

and x
˜
′
t are 1 × G and 1 × K, respectively, and

G + K = m. Let

A(L) =
[
A11(L) A12(L)
A21(L) A22(L)

]
,

and ε
˜
′
t = (ε

˜
′
1t, ε˜

′
2t) be the conformable partitions. Cowles Commission decomposi-

tion of w
˜ t into joint dependent variable variables y

˜t
and exogenous variables x

˜t is
equivalent to imposing the prior restrictions (Zellner and Palm [60]),

(2.9) A21(L) ≡ 0
˜

and Eε
˜1tε˜

′
2t = 0

˜
.

The prior restrictions (2.9) restrict the admissible transformation matrix F to be
block diagonal (e.g. Hsiao [23]). Therefore,

Corollary 2.1. Under (2.9) and a
˜
′
gΦg = 0

˜
′, a necessary and sufficient condition

for the identification of the g-th equation for g ≤ G is

(2.10) rank[(A11 A12)Φg] = G − 1,

where A11 and A12 are conformable partitions of A.

The identification condition (2.7) or (2.8) does not require any prior knowledge
of the direction of nonstationarity or the rank of cointegration. As a matter of
fact many macroeconometric models are identified without any prior knowledge of
location of unit roots or rank of cointegration, (e.g. the Klein [34] interwar model
and the large scale Wharton quarterly model (Klein and Evans [35]). Of course, if
such information is available, it can improve the efficiency of system estimators and
simplify the issues of inference considerably (e.g. King, Plosser, Stock and Watson
[33]).

3. Inference in VAR (or reduced form)

Consider the g-th equation of (2.2),

(3.1) w
˜ g = Xπ

˜g + v
˜g,

where w
˜ g is the T ×1 vector of the g-th element of w

˜ t, wgt, X = (W−1, . . . , W−p), is
the T ×mp vector of w

˜ t−1, . . . , w˜ t−p, π˜g is the corresponding vector of coefficients,
and v

˜g is the T × 1 vector of the g-th element of v
˜t, vgt.

Rewrite (3.1) in terms of linearly independent I(0) and full rank I(1) regressors
X∗

1 and X∗
2 , respectively, by postmultiplying a nonsingular transformation matrix



178 C. Hsiao

Mx to X,4 we have

w
˜ g = XMxM−1

x π
˜g + v

˜g

= X∗π
˜
∗
g + v

˜g(3.2)

= (X∗
1 , X∗

2 )
(

π
˜
∗
g1

π
˜
∗
g2

)
+ v

˜g,

where π
˜
∗
g = M−1

x π
˜g = (π

˜
∗′

g1, π˜
∗′

g2)
′. The least squares estimator of (3.1) is equal to

Mx times the least squares estimator of (3.2),

π̂
˜

= (X ′X)−1(X ′w
˜ g)

= Mx(X∗′
X∗)−1X∗′

w
˜ g(3.3)

= Mx[π
˜
∗
g + (X∗′

X∗)−1X∗′
v
˜g].

The statistical properties of (3.3) can be derived by making use of the funda-
mental functional central limit theorems proved by Chan and Wei [7], Phillips and
Durlauf [46], etc.:

Theorem 3.1. Let η
˜t

be an m × 1 vector of random variables with E(η
˜t

| η
˜t−1

,

. . . , ) = 0
˜
, E(η

˜t
η
˜
′
t
| η
˜t−1

, . . . , ) = Im, and bounded fourth moments. Let F (L) =∑∞
j=0 FjL

j and G(L) =
∑∞

j=0 GjL
j with

∑∞
j=0 j | Fj |< ∞ and

∑∞
j=0 j | Gj |< ∞.

Let ξ
˜t

=
∑t

s=1 ηs, and let B(r) denote an m × 1 dimensional Brownian motion
process.

Then

(a) T−1/2
∑T

t=1 F (L)η
˜t

=⇒ N(0, F (1)F (1)′),
(b) T−1

∑T
t=1 ξ

˜t−1
η
˜t

=⇒
∫

B(r)dB(r)′,

(c) T−1
∑T

t=1 ξ
˜t

[F (L)η
˜t

]′ =⇒ F (1)′ +
∫

B(r)dB(r)′F (1)′,
(d) T−1

∑T
t=1[F (L)η

˜t
][G(L)η

˜t
]′ −→

∑∞
j=0 FjG

′
j ,

(e) T−2
∑T

t=1 ξ
˜t

ξ
˜

′

t
=⇒

∫
B(r)B(r)′dr,

where to simplify notation
∫ 1

0
is denoted by

∫
and −→ and =⇒ denote convergence

in probability and distribution of the associated probability measure, respectively.
Making use of theorem 3.1, it follows that

Theorem 3.2. Under Assumptions A.1 - A.4, as T −→ ∞,

(3.4)
√

T (π̂
˜
∗
g1 − π

˜
∗
g1) =⇒ N(0

˜
, σ2

vg
M∗

x1x1
),

T (π
˜
∗
g2 − π

˜
∗
g2) =⇒

(∫
Bx∗

2
(r)Bx∗

2
(r)′dr

)−1

(3.5) (∫
Bx∗

2
(r)dBvg (r)

)
.

where M∗
x1x1

= plim 1
T

∑T
t=1 x

˜
∗
1tx˜

∗′

1t. Moreover, (3.4) and (3.5) are asymptotically
independent.

4Such a transformation always exist. However, it does not need to be known a priori. The use
of (3.2) is to facilitate the derivation of statistical properties of the estimators of (3.1) or (2.1).
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The least squares estimator (3.3) is a linear combination of π̂
˜
∗
g1 and π̂

˜
∗
g2. Its

limiting distribution is determined by the limiting distribution of the slower rate
of π̂

˜
∗
g included. Since the limiting distribution of π̂

˜
∗
g2 is nonstandard and involves a

matrix unit distribution, the usual Wald test statistic under the null may not be ap-
proximated by the chi-square distribution if the null hypothesis involves coefficients
in the direction of nonstationarity (e.g. Dolado and Lutkepohl [9], Sims, Stock and
Watson [51], Tsay and Tiao [57]). On the other hand, if w

˜ t is cointegrated and the
rank of cointegration is known a priori, Ahn and Reinsel [1] and Johansen [31, 32]
using the reduced rank framework proposed by Anderson [3] have shown that the
coefficients of cointegration vectors are asymptotically mixed normal, hence there
will be no inference problem. The Wald test statistics constructed from the reduced
rank regression will again be asymptotically chi-square distributed. This is because
imposing the reduced rank condition is equivalent to avoid estimating the unit roots
in the system.

Unfortunately, as discussed in section 2, prior information on the rank of cointe-
gration or direction of nonstationarity is usually lacking. One way to deal with it is
to pretest the data for the presence of cointegration and the rank of cointegration,
then apply the reduced rank regression of Ahn and Reinsel [1] or Johansen [31, 32].
However, statistic tests for the rank of cointegration have very poor finite sample
performance (e.g. Stock [53]). The first stage unit root test and second stage coin-
tegration test can induce substantial size distortion. For instance, Elliott and Stock
[10] consider a bivariate problem in which there is uncertainty about whether the
regressor has a unit root. In their Monte Carlo simulation they find that unit root
pretests can induce substantial size distortions in the second-stage test. If the in-
novations of the regressors and the second-stage regression error are correlated, the
first-stage Dickey-Fuller [8] t-statistic and the second-stage t-statistic will be depen-
dent so the size of the second stage in this two-stage procedure cannot be controlled,
even asymptotically. Many other Monte Carlo studies also show that serious size
and power distortions arise and the number of linearly independent cointegrating
vectors tend to be overestimated as the dimension of the system increases relative
to the time dimension (e.g. Ho and Sorensen [18], Gonzalo and Pitarakis [12]).

Another way is to correct the miscentering and skewness of the limiting distri-
bution of the least squares estimator due to the “endogeneities” of the predeter-
mined integrated regressors (e.g. Park [42], Phillips [44], Phillips and Hansen [47],
Robinson and Hualde [49]). However, since the rank of cointegration and direction
of nonstationarity are unknown, Phillips [45] proposes to deal with potential endo-
geneities by making a correction of the least squares regression formula that adjusts
for whatever endogeneities there may be in the predetermined variables that is due
to their nonstationarity by transforming the dependent variables w

˜ t into

(3.6) w
˜

+
t = w

˜ t − Ωv�wΩ−
�w�w � w

˜ t,

where Ω�w�w =
∑∞

j=−∞ E(�w
˜ t � w′

˜ t−j), Ωv�w =
∑∞

j=−∞ E(v
˜t � w′

˜ t−j) and
Ω−

�w�w denotes the Moore-Penrose generalized inverse.5 Using w
˜

+
t in place of w

˜ t

in (2.2) is equivalent to modifying the error term from v
˜t to v

˜t − Ω�wΩ−
�w � w

˜ t,
which now becomes serially correlated because �w

˜ t is serially correlated. To cor-
rect for this order (1/T) serial correlation bias term, Phillips [45] suggests fur-
ther adding (X ′X)−1(0

˜
, T∆+′

v�w) to the least squares regression estimator of w
˜

+
t

on �w
˜ t−1, . . . ,�w

˜ t−p+1, w˜ t−p, where ∆+
v�w = Ωv�wΩ−

�w�w∆�w�w, and ∆uv

5If w
˜

t are cointegrated, Ω�w�w does not have full rank.
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denotes the one-sided long-run covariances of two sets of I(0) variables (ut, vt),
∆uv =

∑∞
j=0 Γuv(j) where Γuv(j) = Eu

˜tv˜t−j .6 Consistent estimates of Ωuv or ∆uv

can be obtained by using Kernel method (e.g. Hannan [15], Priestley [48]).

(3.7) Ω̂uv =
T−1∑

j=−T+1

h(j/K)Γ̂uv(j),

(3.8) ∆̂uv =
T−1∑
j=0

h(j/K)Γ̂uv(j),

where Γ̂uv(j) is a consistent sample covariance estimator of Γuv(j), and h(·) is a
kernel function and K is a lag truncation or bandwidth parameter. Assuming that

Assumption 3.1. The kernel function h(·) : R −→ [−1, 1] is a twice continuously
differentiable even function with:

(a) h(0) = 1, h′(0) = 0, h′′(0) �= 0; and either
(b) h(x) = 0, | x |≥ 1, with lim|x|−→1

h(x)
(1−|x|)2 = constant, or

(b’) h(x) = O((1 − x)2), as | x |−→ 1.

Assumption 3.2. The bandwidth parameter K in the kernel estimates (3.7) and
(3.8) has an expansion rate K ∼ cT T k for some k ∈ (1/4, 2/3) and for some slowly
varying function cT and thus K/T 2/3+T 1/4/K −→ 0 and K4/T −→ ∞ as T −→ ∞.

Phillips [45] shows that the modified least squares estimates are either asymp-
totically normally distributed or mixed normal. However, because the direction of
nonstationarity is unknown, the conditional covariance matrix cannot be derived.
Therefore, if the test statistic involves some of the coefficients of nonstationary
variables, the limiting distribution becomes a mixture of chi-squares variates with
the weights between 0 and 1. In other words, if tests based on chi-square distrib-
ution rejects the null with significance level α, then the test rejects the null with
significance level less than α. In other words, tests based on chi-square distribution
provides a conservative test.

Toda and Yamamoto [55] have suggested a lag-order augmented approach to
circumscribe the issue of non-standard distributions associated with integrated re-
gressors by overfitting a VAR with additional dmax lags where dmax denotes the
maximum order of integration suspected. In our case, dmax = 1. In other words,
instead of estimating (2.2), we estimate

(3.9) w
˜ t = Π1w

˜ t−1 + · · · + Πpw
˜ t−p + Πp+1w

˜ t−p−1 + v
˜t,

Since we know a priori, Πp+1 ≡ 0, we are only interested in the estimates of
Πj , j = 1, . . . , p. The limiting distributions of the least squares estimates of (3.9)
can be derived from the limiting distributions of the least squares estimates of (the
error-correction form),

(3.10) w
˜ t = Π∗

1 � w
˜ t−1 + · · · + Π∗

p � w
˜ t−p + Π∗

p+1w˜ t−p−1 + v
˜t,

because Π∗
j =

∑j
i=1 Πi, j = 1, . . . , p + 1 or Πj = Π∗

j − Π∗
j−1 where Π∗

0 ≡ 0
˜
. Since

Π∗
j , j = 1, . . . , p are coefficients of stationary regressors, Theorem 3.2 shows that the

6Under A.3, ∆v�w = 0
˜
.
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least squares estimates of Π∗
j , j = 1, . . . , p converge to the true values at the speed of√

T and are asymptotically normally distributed. Only the least squares estimates
of Π∗

p+1 may be T -convergent and have non-normal limiting distributions. However,
since we know a priori that Πp+1 = 0

˜
, our interest is only in Πj , j = 1, . . . , p. The

least squares regression of (3.9) yields Π̂j = Π̂∗
j − Π̂∗

j−1, j = 1, . . . , p, therefore, they
are asymptotically normally distributed. Wald test statistics of the null hypothesis
constructed from regression estimates of (3.9) will again be asymptotically chi-
square distributed.

Phillips [45] modified estimator maintains the T -convergence part of the coeffi-
cients associated with full rank integrated regressors. The Toda-Yamamoto [55] lag
order augmented estimator is only

√
T -convergent. So Phillips [45] modified esti-

mator is likely to be asymptotically more efficient. However, computationally, the
Phillips modified estimator is much more complicated than the lag order augmented
estimator. Moreover, test statistics constructed from the modified estimators can
only give the bounds of the size of the test because the conditional variance is un-
known, while test statistics constructed from the lag order augmented estimator
asymptotically yield the exact size.

4. Least squares and two stage least squares estimation of SVAR

For ease of exposition, we assume that prior information is in the form of excluding
certain variables, both current and lagged, from an equation. Let the g-th equation
of (2.1) be written as

(4.1) w
˜ g = Zgδ

˜g + ε
˜g,

where w
˜ g and ε

˜g denote the T × 1 vectors of (wg1, . . . , wgT )′ and (εg1, . . . , εgT )′,
respectively, and Zg denotes the T × [(p + 1)g∆ − 1] dimensional matrix of g∆

included current and lagged variables of w
˜ t.

The least squares estimator of (4.1) is given by

(4.2) δ̂
˜g,�s = (Z ′

gZg)−1Z ′
gw˜ g

Phillips and Durlauf [46] and Stock [52] have shown that the least squares es-
timator with integrated regressors is consistent even when the regressors and the
errors are correlated. However, the basic assumption underlying their result is that
the regressors are not cointegrated. In a dynamic framework even though w

˜ t−j are
I(1), the current and lagged variables are trivially cointegrated. It was shown in
[21] when contemporaneous joint dependent variables also appear as explanatory
variables in (4.1), applying least squares method to (4.1) does not yield consistent
estimator for δ

˜g. To see this, let Mg be the nonsingular transformation matrix that
transforms Zg into Z∗

g = ZgMg = (Z∗
g1, Z

∗
g2), where Z∗

g1 denotes the 	g-dimensional
linearly independent I(0) variables and Z∗

g2 denotes the T observations of bg full
rank I(1) variables,7 then

(4.3)
w
˜ g = ZgMgM

−1
g δ

˜g + ε
˜g

= Z∗
g δ
˜
∗
g + ε

˜g

where δ
˜
∗
g = M−1

g δ
˜g = (δ

˜
∗′

g1, δ˜
∗′

g2)
′ with δ

˜
∗
g1 and δ

˜
∗
g2 denoting the 	g × 1 and bg × 1

vector, respectively. Such transformation always exists. For instance, if no cointe-
grating relation exists among the included w

˜ t, say w̃
˜ gt, then bg equals the dimension

7By full rank I(1) variables we mean that there is no cointegrating relation among Z∗
g2.
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of included joint dependent variables, g∆, and Z∗
g1 consists of the first differenced

current and p − 1 lagged included variables, Z∗
g2 is simply the T × bg (or T × g∆)

included w̃
˜ gt lagged by p periods, w̃

˜ g,t−p. On the other hand, if there exists g∆ − bg

linearly independent cointegrating relations among the g∆ included variables, w̃
˜ gt,

then Z∗
g1 consists of the current and p− 1 lagged �w̃

˜ gt and W̃g,−pd
˜g cointegrating

relations, where W̃g,−p is T × g∆ matrix of included w̃
˜ g,t−p, d˜g is g∆ × (g∆ − bg) of

constants, and Z∗
g2 consists of the T observed bg full rank I(1) variables W̃g2,−p.

The least squares estimator (4.2) can be written as δ̂
˜g,�s = Mg δ̂

˜
∗
g,�s, where δ̂

˜
∗
g,�s

denotes the least squares estimator of (4.3). Using Theorem 3.1, one can show that
1
T Z∗′

g1Z
∗
g1 −→ M∗

zg1zg1
, T−2/3Z∗′

g1Z
∗
g2 −→ 0

˜
, 1

T 2 Z∗′

g2Z
∗
g2 =⇒ M∗

zg2zg2
, 1

T 2 Z∗′

g2ε˜g −→ 0
˜
,

1
T Z∗

g1ε˜g −→ b
˜
, where b

˜
= [E(ε

˜gtw̃˜
′
gt), 0˜

′]′ = [(A−1
0

∑
εε,g)

′
g, 0˜

′]′,
∑

εε,g is the g-th
column of

∑
εε and (A−1

0

∑
εε,g)g is the (g∆ − 1) × 1 subvector of A−1

0

∑
εε,g that

corresponds to the g∆ − 1 included variables w̃
˜ gt in the g-th equation, and M∗

zg1zg1

and M∗
zg2zg2

are nonsingular. It follows that

(4.4) δ̂
˜
∗
g,�s =

[
δ̂
˜
∗
g1,�s

δ̂
˜
∗
g2,�s

]
−→

[
δ
˜
∗
g1

δ
˜
∗
g2

]
+
[

b
0̃
˜

]
.

Although the coefficients of Z∗
g2 can be consistently estimated, the coefficients of Z∗

g1

cannot. Since δ̂
˜g,�s is a linear combination of δ̂

˜
∗
g1,�s and δ̂

˜
∗
g2,�s, δ̂˜g,�s is inconsistent.

When the errors and regressors are correlated, a standard procedure is to use
instrumental variable method. Using lagged variables as instruments, the two stage
least squares estimator of δ

˜g is given by

(4.5) δ̂
˜g,2SLS = [Z ′

gX(X ′X)−1X ′Zg]−1[Z ′
gX(X ′X)−1Z ′

gw˜ g],

where X = (W−1, W−2, . . . , W−p) and W−j denotes the T×m matrix representation
of w

˜ t−j . Transforming X into linearly independent I(0) and full rank I(1) processes,
X∗

1 and X∗
2 , respectively, by Mx, XMx = [X∗

1 , X∗
2 ], the 2SLS estimator (4.5) is equal

to Mg δ̂
˜
∗
g,2SLS , where

(4.6) δ̂
˜
∗
g,2SLS = [Z∗′

g X∗(X∗′X∗)−1X∗′Z∗
g ]−1[Z∗′

g X∗(X∗′X∗)−1X∗′w
˜ g]

Since 1
T 2 Z∗′

g1X
∗
2 −→ 0

˜
, 1

T Z∗′
g2X

∗
1 =⇒ M∗

zg2x1
, 1

T 2 Z∗′
g2X

∗
1 −→ 0, 1

T X∗′
1 X∗

1 −→ M∗
x1x1

,
1
T X∗′

1 X∗
2 =⇒ M∗

x1x2
1

T 2 X∗′
1 X∗

2 −→ 0, 1
T 2 X∗′

2 X∗
2 =⇒ M∗

x2x2
1
T X∗′

1 ε
˜g −→ 0

˜
, and

1
T 2 X∗′

2 ε
˜g −→ 0

˜
, and M∗

x2x2
are nonsingular, it follows that δ̂

˜
∗
g,2SLS converges to δ

˜
∗
g.

Hence the 2SLS estimator of δ
˜g is consistent.

Let Hg =
[
T− 1

2 I�g 0
˜0

˜
T−1Ibg

]
and Hx =

[
T− 1

2 I�∗ 0
˜0

˜
T−1Ib∗

]
, where 	∗ and b∗ are

the column dimensions of X∗
1 and X∗

2 respectively. Under assumptions A.1 - A.4,
as T −→ ∞,

H−1
g (δ̂

˜
∗
g,2SLS − δ

˜
∗
g) =

[√
T (δ̂

˜
∗
g1,2SLS − δ

˜
∗
g1)

T (δ̂
˜
∗
g2,2SLS − δ

˜
∗
g2)

]
(4.7)

=⇒
[
(M∗

zg1x1
M∗−1

x1x1
M∗

x1zg1
)−1(M∗

zg1x1
M∗−1

x1x1
· T−1/2X∗′

1 ε
˜g)

(M∗
zg2x2

M∗−1
x2x2

M∗
x2zg2

)−1(M∗
zg2x2

M∗−1
x2x2

· T−1X∗′
2 ε

˜g)

]
.

By theorem 3.1, we have

(4.8)
1√
T

X∗′
1 ε

˜g =⇒ N(0
˜
, σ2

gM∗
x1x1

).
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and

(4.9)
1
T

X∗′
2 ε

˜g =⇒
∫

Bx∗
2
dBεg ,

where Bεg denotes the Brownian motion of εgt with variance σ2
g , Bx∗

2
denotes a b∗×1

vector Brownian motion of �x
˜
∗
2t with covariance matrix Ω�x∗

2�x∗
2

where Ω�x∗
2�x∗

2

is the long-run covariance matrix of �x
˜
∗
2t. The Brownian motion B∗

x2
and Bεg are

not independent because εgt and v
˜t are contemporaneously correlated. Following

Phillips [44], we can decompose the right hand side of (4.9) into two terms as

(4.10)
∫

Bx∗
2
dBεg·x∗

2
+
∫

Bx∗
2
Ωεg�x∗

2
Ω−1

�x∗
2�x∗

2
dBx∗

2
,

where Bεg·x∗
2

= Bεg − Ωεg�x∗
2
Ω−1

�x∗
2�x∗

2
Bx∗

2
≡ BM(σ2

g·�x∗
2
) with σ2

g.�x∗
2

= σ2
g −

Ωεg�x∗
2

Ω−1
�x∗

2�x∗
2
Ω�x∗

2εg , and Ωεg�x∗
2

denotes the long-run covariance between ε
˜g

and �x
˜
∗
2. The first term of (4.10) is a mixed normal. The second term involves a

matrix unit root distribution that arises from using lagged w
˜

as instruments when
w
˜

is I(1) and the contemporaneous correlation between ε
˜gt and w

˜ t is nonzero. The
“long-run endogeneity” of the nonstationary instruments X∗

2 leads to a skewness
of the limiting distribution of δ̂

˜
∗
g,2SLS and its dependence on nuisance parameters

that are impossible to eliminate by the 2SLS. Therefore,

Theorem 4.1. Under A.1 - A.4 the 2SLS estimator of δ
˜
∗
g is consistent and

(4.11)
√

T (δ̂
˜
∗
g1,2SLS − δ

˜
∗
g1) =⇒ N(0

˜
, σ2

g(M∗
zg1x1

M∗−1
x1x1

M∗
x1zg1

)−1),

T (δ̂
˜
∗
g2,2SLS − δ

˜
∗
g2) =⇒

{∫
Bz∗

g2
B′

x∗
2
dr(
∫

Bx∗
2
B′

x∗
2
dr)−1

∫
Bx∗

2
B′

z∗
g2

dr

}−1

{∫
Bz∗

g2
B′

x∗
2
dr(
∫

Bx∗
2
B′

x∗
2
dr)−1(4.12)

×
[∫

Bx∗
2
dBεg·x∗

2
+
∫

Bx∗
2
Ωεg�x∗

2
Ω−1

�x∗
2�x∗

2
dBx∗

2

]}
,

where Bz∗
g2

denotes a bg × 1 vector Brownian motion of �z
˜
∗
g2,t which appears in

the g-th equation. The distributions of (4.11) and (4.12) are asymptotically inde-
pendent.

Theorem 4.1 suggests that inference about the null hypothesis Pδ
˜g = c

˜
can

be tricky, where P and c
˜

are known matrix and vector of proper dimensions. If√
TP (δ̂

˜g,2SLS − δ
˜g) has a nonsingular covariance matrix, the limiting distribution

of P δ̂
˜g is determined by the limiting distribution of δ̂

˜
∗
g1, hence the Wald test statistic

(4.13) (δ̂
˜g,2SLS − δ

˜g)
′P ′ Cov (P δ̂

˜g,2SLS)−1P (δ̂
˜g,2SLS − δ

˜g)

under the null will be asymptotically chi-square distributed. On the other hand, if√
TP (δ̂

˜g,2SLS − δ
˜g) has a singular covariance matrix, it means that there exists a

nonsingular matrix L such that

(4.14) LPδ
˜g = LP ∗δ

˜
∗
g =

[
P̃11 P̃12

0
˜

P̃22

] [
δ
˜
∗
g1

δ
˜
∗
g2

]
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with nonzero P̃22. Then

(P δ̂
˜g,2SLS − c

˜
)′ Cov (P δ̂

˜g,2SLS)−1(P δ̂
˜g,2SLS − c

˜
)

=

{[
P̃11 P̃12

0
˜

P̃22

][
δ̂
˜
∗
g1,2SLS

δ̂
˜
∗
g2,2SLS

]
− Lc

˜

}′

Cov (LP δ̂
˜g,2SLS)−1

×
{[

P̃11 P̃12

0
˜

P̃22

] [
δ̂
˜
∗
g1,2SLS

δ̂
˜
∗
g2,2SLS

]
− Lc

˜

}
(4.15)

=⇒ T (P̃11δ̂
˜
∗
g1,2SLS + P̃12δ̂

˜
∗
g2,2SLS − c̃

˜1)
′ Cov (

√
T P̃11δ̂

˜
∗
g1,2SLS)−1

× (P̃11δ̂
˜
∗
g1,2SLS + P̃12δ̂

˜
∗
g2,2SLS − c̃

˜1)

+ T 2(P̃22δ̂
˜
∗
g2,2SLS − c̃

˜2)
′ Cov (T P̃22δ̂

˜
∗
g2,2SLS)−1(P̃22δ̂

˜
∗
g2,2SLS − c̃

˜2),

where Lc
˜

= (c̃
˜
′
1, c̃˜

′
2)′. The first term on the right hand side of (4.15) is asymp-

totically chi-square distributed. The second term, according to Theorem 3.1 has a
nonstandard distribution. Hence (4.15) is not asymptotically chi-square distributed.

If there exists prior information that satisfies (2.9) and w
˜ 1 and w

˜ 2 are cointe-
grated with x∗

2 contained in w
˜ 2, it was shown by Hsiao [22] that the 2SLS converges

to a mixed normal distribution. Then the Wald test statistic (4.13) can again be
approximated by a chi-square distribution. When variables cannot be dichotomized
into “endogenous” and “exogenous”, if we do not know the direction of nonstation-
arity, nor the rank of cointegration, we will not be able to know a priori if P22 is a
zero matrix, hence if (4.13) may be approximated by a chi-square distribution.

5. Modified and lag order augmented 2SLS estimators

We note that just like the least squares estimator for the VAR model, the application
of 2SLS does not provide asymptotically normal or mixed normal estimator because
of the long-run endogeneities between lagged I(1) instruments and the (current)
shocks of the system. But if we can condition on the innovations driving the common
trends it will allow us to establish the independence between Brownian motion of
the errors of the conditional system involving the cointegrating relations and the
innovations driving the common trends. The idea of the modified 2SLS estimator
is to apply the 2SLS method to the equation conditional on the innovations driving
the common trends. Unfortunately, the direction of nonstationarity is generally
unknown. Neither does the identification condition given by Theorem 2.1 requires
such knowledge. In the event that such knowledge is unavailable, Hsiao and Wang
[27] propose to generalize Phillips [45] fully modified VAR estimator to the 2SLS
estimator.

Rewrite (4.1) as

w
˜ g = ZgM̃gM̃

−1
g δ

˜g + ε
˜g

= (Z∗∗
g1 Z∗∗

g2 )
(

δ
˜
∗∗
g1

δ
˜
∗∗
g2

)
+ ε

˜g(5.1)

= Z∗∗
g δ

˜
∗∗
g + ε

˜g

where Z∗∗
g = ZgM̃g = (Z∗∗

g1 , Z∗∗
g2 ), Z∗∗

g1 = (�Wg,�W̃g,−1, . . . ,�W̃g,−p+1), Z∗∗
g2 =

W̃g,−p, δ
˜
∗∗
g = M̃−1

g δ
˜g,�W̃g,−j denoting the T × g∆ stacked first difference of the

included variable �w̃
˜ g,t−j and �Wg denoting the T × (g∆ − 1) first difference of
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the included variables �w̃
˜ gt excluding �wgt. The decomposition (Z∗∗

g1 , Z∗∗
g2 ) and

δ
˜
∗∗
g = (δ

˜
∗∗′
g1 , δ

˜
∗∗′
g2 )′ are identical to (Z∗

g1, Z
∗
g2) if there is no cointegrating relations

among w̃
˜ gt, d

˜g = 0
˜
. Unlike (Z∗

g1, Z
∗
g2), (Z

∗∗
g1 , Z∗∗

g2 ) are well defined and observable.
When Z∗

g1 �= Z∗∗
g1 , there exists a nonsingular transformation matrix Dg such that

(Z∗∗
g1 , Z∗∗

g2 )Dg = (Z∗
g1, Z

∗
g2). Then

(5.2) δ
˜
∗
g = D−1

g δ
˜
∗∗
g .

Let

(5.3) Cg = (W ′
−p � W−p − T∆�w�w)Ω−

�w�wΩ�wεg ,

where Ωuv and ∆uv denote the long-run covariance and the one-sided long-run
covariance matrix of two sets of I(0) variables, (u

˜t, v˜t),

(5.4) Ωuv =
∞∑

j=−∞
Γuv(j),

and

(5.5) ∆uv =
∞∑

j=0

Γuv(j),

where Γuv(j) = Eu
˜tv

′
˜ t−j . Let

(5.6) Ĉg = (W ′
−p � W−p − T ∆̂�w�w)Ω̂−1

�w�wΩ̂�wεg ,

where Ω̂uv and ∆̂uv are the kernel estimates of Ωuv and ∆uv, such as (3.7) and (3.8).
A modified 2SLS estimator following Phillips [45] fully modified VAR estimator can
be defined as

δ̂
˜
∗∗
g,m2SLS =

{
Z∗∗′

g X∗∗(X∗∗′X∗∗)−1X∗∗′Z∗∗
g

}−1

×
{

Z∗∗′
g X∗∗(X∗∗′X∗∗)−1

(
X∗∗′

1 w
˜ g

X∗∗′
2 w

˜ g − Ĉg

)}
,(5.7)

where X∗∗ = XM̃x = (X∗∗
1 , X∗∗

2 ), X∗∗
1 = (�W−1, . . . ,�W−p+1), and X∗∗

2 = W−p.
Just like (Z∗∗

g1 , Z∗∗
g2 ), (X∗∗

1 , X∗∗
2 ) are well defined and observable.

Theorem 5.2. Under assumptions A1-A4, 3.1 and 3.2, the modified 2SLS estima-
tor δ̂

˜
∗
g,m2SLS = D−1

g δ̂
˜
∗∗
g,m2SLS is consistent. Furthermore

(5.8)
√

T (δ̂
˜
∗
g1,m2SLS − δ

˜
∗
g1) =⇒ N(0

˜
, σ2

g(M∗
zg1x1

M∗−1
x1x1

M∗
x1zg1

)−1)

and is independent of

T (δ̂
˜
∗
g2,m2SLS − δ

˜
∗
g2) =⇒(M∗

zg2x2
M∗−1

x2x2
M∗

x2zg2
)−1

(5.9)
· M∗

zg2x2
M∗−1

x2x2

∫
Bx∗

2
dBεg.x∗

2
,

which is a mixed normal of the form

(5.10)
∫

M∗
x2x2

>0

N(0
˜
, σ2

g.�x∗
2
(M∗

zg2x2
M∗−1

x2x2
M∗

x2zg2
)−1)dP (M∗

x2x2
).

where σ2
g .�x∗

2
= σ2

g − �Lεg�x∗
2
�L�x∗

2�x∗
2
�L�x∗

2εg .
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The modified 2SLS estimator of δ
˜g can be obtained as

(5.11) δ̂
˜g,m2SLS = M̃g δ̂

˜
∗∗
g,m2SLS = M̃gDg δ̂

˜
∗
g,m2SLS ,

where M̃g is a known matrix but in general, not Dg. However, although the modified
2SLS estimator of δ

˜
∗
g is either asymptotically normal or mixed normal, the Wald

type test statistic

(5.12)
1
σ2

g

(P δ̂
˜g,m2SLS − c

˜
)′{P [Z ′

gX(X ′X)−1X ′Zg]P ′}−1(P δ̂
˜g,m2SLS − c

˜
)

does not always have the asymptotic chi-square distribution under the null hypoth-
esis Pδ

˜g = c
˜
, where P is a known k × g∆ matrix of rank k. To see this, rewrite

(5.12) in terms of δ̂
˜
∗
g,m2SLS

1
σ2

g

(P ∗Hg δ̂
˜
∗
g,m2SLS − c

˜
)′
{

P ∗Hg[Z∗′

g X∗(X∗′
X∗)−1X∗′

Z∗
g ]H ′

gP
∗′
}

(5.13)
× (P ∗Hg δ̂

˜
∗
g,m2SLS − c

˜
),

where P ∗ = PM̃gDgH
−1
g and Hg =

[
T−1/2Ilg 0

0 T−1Ibg

]
. The null hypothesis be-

comes P ∗Hgδ
˜
∗
g = c

˜
. Notice that the asymptotic covariance matrix of Hg δ̂

˜
∗
g,m2SLS

converges to(
σ2

g(M∗
z′

g1x1
M∗−1

x1x1
M∗

x1zg1
)−1 0

˜
0
˜

σ2
g.�x∗

2
(M∗

zg2x2
M∗−1

x2x2
M∗

x2zg2
)−1

)
,

while Hg[Z∗
gX∗(X∗′

X∗)−1X∗′
Z∗

g ]H ′
g in (5.13) converges to

(5.14) σ2
g

(
(M∗

zg1x1
M∗−1

x1x1
M∗

x1zg1
)−1 0

˜0
˜

(M∗
zg2x2

M∗−1
x2x2

M∗
x2zg2

)−1

)
.

Wald statistic (5.12) (or equivalently (5.13)) is asymptotically chi-square distributed
with k degrees of freedom if and only if P δ̂

˜g,m2SLS (or equivalently P ∗Hg δ̂
˜
∗
g,m2SLS)

in the hypothesis does not involve the T -consistent component δ̂
˜
∗
g2,m2SLS . Other-

wise, Hg[Z∗′
g X∗(X∗′

X∗)−1X∗′
Z∗′

g ]H ′
g would overestimate the asymptotic covari-

ance matrix of Hg δ̂
˜
∗
g,m2SLS because σ2

g·�x∗
2
≤ σ2

g for the submatrix corresponding
to x

˜
∗
2 and z

˜
∗
g2. In general, the test statistic (5.12) is a conservative test, with its

asymptotic distribution a weighted sum of k independent χ2
1 variables with weights

between 0 and 1.
The construction of the modified 2SLS estimator requires nonparametric esti-

mation of the long-run covariance matrix and the one-sided long-run covariance
matrix. It is well known that kernel estimator and hence the finite sample per-
formance of the modified 2SLS estimator could be affected substantially by the
choice of the bandwidth parameter. In addition, since we can not approximate the
asymptotic covariance matrix of the modified 2SLS estimator properly, Wald test
statistics based on the modified 2SLS estimator using the formula of (5.12) may
not be chi-square distributed and critical values that are based on chi-square dis-
tributions can be used for conservative tests only. However, as noted by Toda and
Yamamoto [55], if we augment the order of a p-th order autoregressive process by
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the maximum order of integration then the miscentering and skewness of the limit-
ing distribution of the least squares estimator will be concentrated on the coefficient
matrices associated with the augmented lagged vectors which are known a priori to
be zero, therefore can be ignored. Standard inference procedure can still be applied
to the coefficients of the first p coefficient matrices. Hsiao and Wang [28] follow this
idea by proposing a lag augmented 2SLS.

The p-th order structural VAR (2.1) can be written as a (p+1)-th order structural
VAR,

(5.15) A0w
˜ t + A1w

˜ t−1 + · · · + Apw
˜ t−p + Ap+1w

˜ t−p−1 = ε
˜t,

where Ap+1 ≡ 0
˜
. Transforming (5.15) into an error-correction form, we have

(5.16)
p∑

j=0

A∗
j � w

˜ t−j + A∗
p+1w˜ t−p−1 = ε

˜t,

where A∗
j =

∑j
�=0 A�, j = 0, 1, . . . , p and A∗

p+1 = A∗
p. It follows that A = [A0,

. . . , Ap] = [A∗
0, . . . , A

∗
p]M̃−1.

Let the g-th equation of (5.15) be written as

(5.17) w
˜ g = ZA

g δ
˜

A
g + ε

˜g,

where ZA
g = (Zg, w̃

˜ g,−(p+1)), δ˜
A
g = (δ′

˜ g,−a′
˜ g,p+1)′ with w̃

˜ g,−(p+1) denoting the
T × g∆ vector of included w̃

˜ gt lagged by (p + 1) periods and a
˜g,p+1 is the g-th

row of Ap+1 excluding those elements subject to exclusion restrictions. Just like
(4.1), there exists a nonsingular transformation matrix MA

g that transforms ZA
g

into Z∗A
g = ZA

g MA
g = (Z∗A

g1 , Z∗A
g2 ), and δ

˜
∗A
g = (MA

g )−1δ
˜

A
g = (δ

˜
∗A′

g1 , δ
˜
∗A′

g2 )′ where
Z∗A

g1 = (�Zg, W̃g,−(p+1)π˜g) is stationary and Z∗A
g2 = W̃g2,−(p+1) consists of T ob-

served bg linearly independent I(1) variables, w̃
˜ g2,t−(p+1). Rewrite (5.17) in terms

of the transformed variables,

(5.18) w
˜ g = ZA

g MA
g (MA

g )−1δ
˜

A
g + ε

˜g = (Z∗A
g1 Z∗A

g2 )


δ

˜
∗A
g1

δ
˜
∗A
g2


+ ε

˜g

Let XA = (X, W−(p+1)). The 2SLS estimator of (5.17) is defined as

(5.19) δ̂
˜

A

g,2SLS = [ZA′

g XA(XA′
XA)−1XA′

ZA
g ]−1[ZA′

g XA(XA′
XA)−1XA′

w
˜ g].

The LA2SLS of (4.1) is defined as

(5.20) δ̂
˜g,LA2SLS = QA

g δ̂
˜

A

g,2SLS ,

where QA
g = (I(p+1)g∆−1, 0˜g∆

), where 0
˜g∆

denotes a [(p + 1)g∆ − 1] × g∆ matrix of

zeros. Since δ̂
˜

A

g,2SLS = MA
g δ̂

˜
∗A

g,2SLS , we have

δ̂
˜g,LA2SLS = QA

g MA
g δ̂

˜
∗A

g,2SLS

= (M̃g, 0
˜g∆

)δ̂
˜
∗A

g,2SLS(5.21)

= (M̃g, 0
˜g)δ̂˜

∗A

g1,2SLS ,
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where M̃g is a [(p + 1)g∆ − 1] × [(p + 1)g∆ − 1] matrix of the form,8

(5.22) M̃g =




Ig∆−1 0
˜

. . . . . . . . . 0
˜(

−Ig∆−1

0′
˜

)
Ig∆ . . . . . . . . . . . .

. . . −Ig∆ Ig∆ . . . . . . . . .

. . . . . . . . . . . . Ig∆ 0
˜. . . . . . . . . . . . −Ig∆ Ig∆




,

with wgt being put as the last element of w̃
˜ gt, Ig∆ denoting the identity matrix of the

dimension of included variables in the g-th equation, and 0
˜g is a [(p+1)g∆−1]×rg

matrix with rg denoting the number of cointegrating relations among w̃
˜ gt such that

w
˜
′
gtπ˜g is I(0). Then δ

˜g = (M̃g, 0
˜g)δ˜

∗A
g1 .

Since

(5.23)
√

T (δ̂
˜
∗A

g1,2SLS − δ
˜
∗A
g1 ) −→ N [0

˜
, σ2

g(MA∗
zg1x1

MA∗−1
x1x1

MA∗
x1zg1

)−1],

where MA∗
zg1x1

= plim 1
T Z∗A′

g1 X∗A
1 , MA∗

x1x1
= plim 1

T X∗A′

1 X∗A
1 , with X∗A

1 = (�X,
W−(p+1)d˜

) being the T × (mp + r) linearly independent I(0) variables. It follows
that

Theorem 5.3. The LA2SLS of δ
˜g is consistent and

√
T (δ̂

˜g,LA2SLS − δ
˜g)(5.14)

=⇒ N

{
0
˜
, σ2

g(M̃g 0
˜g)[M

A∗
zg1x1

MA∗−1
x1x1

MA∗
x1zg1

]−1

(
M̃ ′

g

0
˜
′
g

)}
.

The LA2SLS estimators of the coefficients of the original structural VAR model
(2.1) converge to the true value at the speed of T 1/2 and are asymptotically normally
distributed with nonsingular covariance matrix. Therefore, Wald type test statistics
based on LA2SLS estimates are asymptotically chi-square distributed. Compared
to the conventional 2SLS or modified 2SLS, the LA2SLS estimator loses the T-
convergence component and ignores the prior restrictions that the coefficients on
w̃
˜ g,t−(p+1) are zero, hence may lose some efficiency. However, since distribution of

δ̂
˜g is a linear combination of δ̂

˜
∗
g1 and δ̂

˜
∗
g2 and the limiting distribution of δ̂

˜g,LA2SLS

is given by the components of the slower rate of convergence, the loss of efficiency
in estimating δ̂

˜g by LA2SLS may not be that significant, as reported in a Monte
Carlo Study by Hsiao and Wang [28].

6. Conclusions

As demonstrated by Nelson and Plosser [41] that many economic time series are
nonstationary. The advancement of nonstationary time series analysis provides a
rich reportoire of analytic tools for economists to analyze how do variables respond
dynamically to shocks through the decomposition a dynamic system into long-run
and short-run relations and allow economists to extract common stochastic trends
present in the system that provide information on the important sources of economic
fluctuation (e.g. Banerjee, Dolado, Galbraith and Hendry [5], King, Plosser, Stock
and Watson [33]). However nonstationarity does not invalid the main concerns of

8For ease of notation, we assume all the included variables appear with the same lag order.
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Cowles Commission structural approach — identification and simultaneity bias. As
shown by Hsiao [26], whether the data is stationary or nonstationary, the same
rank condition holds for the identification of an equation in a system. Ignoring
the correlations between the regressors and the errors of the equation that arise
from the joint dependency of economic variables can lead to severe bias in the least
squares estimator even though the regressors are I(1) (Hsiao [21], also see the Monte
Carlo study by Hsiao and Wang [28]). Instrumental variable methods have to be
applied to obtain consistency.

However, nonstationarity does raise the issue of statistical inference. Standard
instrumental variable method can lead to estimators that have non-normal asymp-
totic distributions and are asymptotically biased and skewed. If there exists prior
knowledge to dichotomize the set of variables into joint dependent and exogenous
variables and the nonstationarity in the dependent variables is driven by the nonsta-
tionarity in the exogenous variables through cointegration relations, standard 2SLS
developed for the stationary data can also be used for the analysis of nonstationary
data (Hsiao [21, 22]). Wald test statistics for the null are asymptotically chi-square
distributed. There is no inference issue. On the other hand, if all the variables are
treated as joint dependent as in the time series context, although 2SLS is consistent,
the limiting distribution is subject to miscentering and skewness associated with
the unit root distribution. Modified or lag order augmented 2SLS will have to be
used to ensure valid inference. The modified 2SLS is asymptotically more efficient.
However, it also suffers more size distortion in finite sample. On the other hand,
the lag order augmented 2SLS does not suffer much efficiency loss, at least in a
small scale SVAR model (e.g. Hsiao and Wang [28]), and chi-square distribution is
a good approximation for the test statistic.

All above discussions were based on the assumption that no knowledge of coin-
tegration or direction of nonstationarity is known a priori. If such information is
available, (e.g. King, Plosser, Stock and Watson [33]) estimators incorporating the
knowledge of the rank of cointegration presumably will not only lead to efficient
estimators of structural form parameters, but also avoid the inference issues arising
from the matrix unit roots distrubutions in the system. Unfortunately, structural
form estimation methods incorporating reduced rank restrictions appear to be fairly
complicated.

The focus of this review is to take a SVAR model as a maintained hypothesis,
search for better estimators and understand their properties. We have not looked
at the issues of modeling strategy. There is a vast literature on the interactions
between structural and non-structural time series analysis to uncover the data-
generation process, including testing, estimation, model-combining and prediction
(e.g. Hendry and Ericsson [16], Hendry and Krolzig [17], King, Plosser, Stock and
Watson [33], Zellner and Palm [61]).
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