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Modified empirical CLT’s under only

pre-Gaussian conditions

Shahar Mendelson1,∗ and Joel Zinn2,†

ANU & Technion I.I.T and Texas A&M University

Abstract: We show that a modified Empirical process converges to the lim-
iting Gaussian process whenever the limit is continuous. The modification de-
pends on the properties of the limit via Talagrand’s characterization of the
continuity of Gaussian processes.

1. Introduction

Given a class of functions F ⊂ L2(µ), a now standard method to use (iid) data
to uniformly estimate or predict the mean of one of the functions in the class, is
through the use of empirical processes. One has to bound the random variable

sup
f∈F

∣∣∣∣∣ 1
n

n∑
i=1

f(Xi) − Ef

∣∣∣∣∣ ≡ ‖Pn − P‖F .

One possibility that comes to mind is to use the fact that there is a bounded
Gaussian process indexed by F to bound

√
n‖Pn −P‖F . To illustrate the difficulty

one encounters, note that to use the classical Central Limit Theorem in finite dimen-
sions, one only needs finite variance or, equivalently, the existence of the (Gaussian)
limit. However, when working in the infinite dimensional situation there are some-
times non-trivial side conditions other than just the set being pregaussian. Those
are connected to the random geometry of the set F that are needed to ensure the
existence of a useful bound. For example, one such situation is when the class is
a collection of indicators of sets. If such a class does not satisfy the VC (Vapnik-
Červonenkis) condition, then, in addition to knowing that the limiting Gaussian
process is continuous, one has to check, for example, the following:

log #{C ∩ {X1, . . . , Xn} : C ∈ C}√
n

→ 0 in outer probability .

In this note we try to get around this problem by looking at a variant of the
standard empirical process for which only the existence of the limiting Gaussian
process is required to obtain both tail estimates and the Central Limit Theorem
for the modified process.

The motivation for our study were the articles [7, 8], which focus on the following
problem. Consider a density p(x) on R which has a support that is a finite union
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of intervals, and on this support p satisfies that c−1 ≤ p(x) ≤ c and |p(x)− p(y)| ≤
c|x − y|. It was shown in [7, 8] that under this assumption there is a histogram
rule P̃n for which the following holds. If F is a P -pregaussian class of indicator
functions, or if F is a P -pregaussian class of functions bounded by 1 which satisfy a
certain metric entropy condition, then

√
n(P̃n−P ) converges weakly to the limiting

Gaussian process.
It seems that the method used in [7, 8] can not be extended to densities in

R
2, and even in the one-dimensional case the convergence result holds for a very

restricted set of densities. Thus, our aim is to find some other empirical estimator
for which the existence of the limiting Gaussian would imply convergence as above.
Our estimator is based on Theorem 1 in [9] (see also Theorem 1.3 [4] and Theorem
14.8 [6]).

We begin with several facts and notation we will use throughout this note. If
G is a (centered) Gaussian process indexed by the set T , then for every s, t ∈ T ,
ρ2(s, t) =

(
E(Gs − Gt)2

)1/2.
To prove that a process (and in particular, the modified empirical process we

define) converges to the Gaussian process indexed by F , we require the notion of
asymptotic equicontinuity.

Definition 1.1. A net Xα : Ωα −→ �∞(T ) is asymptotically uniformly ρ-equi-
continuous in probability, if for every ε, η > 0, there exists a δ > 0 such that

limsupαPr∗( sup
ρ(s,t)<δ

|Xα(s) − Xα(t)| > ε) < η.

Theorem 1.2 ([13], 1.5.10). Let G be a Gaussian process and let Xα be a net
of random variables with values in �∞(T ). Then there exists a version of G which
is a tight Borel measurable map into �∞(T ), and Xα converges weakly to G if and
only if

(i) the finite dimensional distributions of Xα converge weakly to the corresponding
finite dimensional distributions of G,

(ii) Xα is asymptotically uniformly equicontinuous in probability with respect to
ρ2,

(iii) (T, ρ2) is totally bounded.

The main technical tool we require is generic chaining which was developed by
Talagrand (see [11] for the most recent survey on this topic).

Definition 1.3. For a metric space (T, d), an admissible sequence of T is a collection
of subsets of T , {Ts : s ≥ 0}, such that for every s ≥ 1, |Ts| = 22s

and |T0| = 1. For
p ≥ 1, we define the γp functional by

γp(T, d) = inf sup
t∈T

∞∑
s=0

2s/pd(t, Ts),

where the infimum is taken with respect to all admissible sequences of T .

For every integer s define the function πs : T → Ts, which maps every t ∈ T to
a nearest element to t in Ts.

Using the γp functionals one can bound the supremum of a process which satisfies
an increment condition. As an example, recall the well known Bernstein inequality.
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Theorem 1.4. There exists an absolute constant c for which the following holds.
Let (Ω,S, P ) be a probability space, let f ∈ L∞(P ) and let X1, . . . , Xn be indepen-
dent random variables distributed according to P . Then

Pr

({∣∣∣∣∣ 1
n

n∑
i=1

f(Xi) − Ef

∣∣∣∣∣ ≥ t

})
≤ 2 exp

(
−cnmin

{
t2

‖f‖2
L2

,
t

‖f‖L∞

})
.

When one combines Bernstein’s inequality with the generic chaining method,
the following corollary is evident:

Corollary 1.5 ([11]). There exists an absolute constant c for which the following
holds. Let F be a class of functions on a probability space (Ω, P ). Then, for every
integer n,

E‖Pn − P‖F ≤ c

(
γ2(F, ‖ · ‖2)√

n
+

γ1(F, ‖ · ‖∞)
n

)
.

A key result, which follows from the generic chaining method, is that the expec-
tation of the supremum of the Gaussian process indexed by F and has a covariance
structure endowed by L2(P ) is finite if and only if γ2(F, L2(P )) is finite. Moreover,
the result is quantitative in nature.

Theorem 1.6. There exist absolute constants c1 and c2 for which the following
holds. Let F be a class of functions on (Ω, P ), and let G be the Gaussian process
indexed by F . Then,

c1γ2(F, L2(P )) ≤ E sup
f∈F

|Gf | ≤ c2γ2(F, L2(P )).

The upper bound is due to Fernique [3], while the lower bound in due to Ta-
lagrand [10]. A proof of both parts can be found in [11]. From here on we denote
E supf |Gf | by E‖G‖F .

In a similar fashion one can formulate a continuity condition for the Gaussian
process indexed by F using the generic chaining machinery.

Theorem 1.7 ([11] Theorem 1.4.1). Consider a Gaussian process, {Gf : f ∈
F}, where F is countable. Then the following are equivalent:

(1) The map f −→ Gf (ω) is uniformly continuous on (F, ‖ · ‖2) with probability
one.

(2) We have
lim
ε→0

E sup
‖Gf−G

f
′ ‖2≤ε

|Gf − Gf ′ | = 0.

(3) There exist an admissible sequence of partitions of F such that

lim
s0→∞

sup
f∈F

∑
s≥s0

2s/2d(f, Fs) = 0.

Note that the admissible sequence in (3) can be taken as an almost optimal ad-
missible sequence in the definition of γ2(F, ‖·‖2), at a price of an absolute constant.
Indeed, by combining the two admissible sequences (Ts) and (T ′

s) - the first - an
almost optimal one from the definition of γ2 and the second from (1.7), we obtain a
new admissible sequence for which Ts ∪ T ′

s ⊂ T ′′
s+1. Thus, we may assume that the

almost optimal sequence in (3) satisfies that supf∈F

∑∞
s=0 2s/2d‖·‖2(t, Ts) ∼ E‖G‖F .

Finally, a notational convention. Throughout, all absolute constants will be de-
noted by c, C or K. Their values may change from line to line. We write a ∼ b if
there are absolute constants c and C such that ca ≤ b ≤ Ca.
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2. The main theorems

Let F ⊂ L2(P ) and assume that there exists a Gaussian process indexed by F
such that E‖G‖F < ∞. By Theorem 1.6, γ2(F, L2(P )) ∼ E‖G‖F , and let (Fs)∞s=0,
Fs ⊂ F be an almost optimal admissible sequence with respect to the L2(P ) norm
as described above, that is,

sup
f∈F

∞∑
s=0

2s/2‖f − πs(f)‖L2(P ) ≤ cγ2(F, L2(P )),

and
lim

s0→∞
sup
f∈F

∑
s≥s0

2s/2‖f − πs(f)‖L2(P ) = 0.

Set ∆s(f) = πs(f)−πs−1(f). For every s, f and λ ≥ 0 consider a truncated part
of ∆s(f), defined by ∆′

s(f, λ) = ∆s(f)1{|∆s(f)|≤λ}. As will be made clear shortly,
the truncation level λ depends both on the specific f ∈ F , as well as on the size of
the sample n and the index s.

Lemma 2.1. There exist absolute constants c1, c2 and c3 for which the follow-
ing holds. Let F be a class of functions on the probability space (Ω, P ), and set
X1, . . . , Xn to be independent, distributed according to P . Let (Fs)∞s=0 be an ad-
missible sequence in F with respect to L2(P ), and for every f ∈ F set λ =
c1
√

n‖∆s(f)‖2/2s/2. Then, for every u > 1/2 and every integer s, with probability
at least 1 − 2 exp(−c22s min{u2, u}), for every f ∈ F .

(2.1)

∣∣∣∣∣ 1
n

n∑
i=1

(∆′
s(f, λ)) (Xi) − E∆′

s(f, λ)

∣∣∣∣∣ ≤ c3u
2s/2‖∆s(f)‖2√

n
.

Proof. Let c1 and c2 be constants to be named later. By Bernstein’s inequality [2],
for t = c12s/2u‖∆s(f)‖2/

√
n, it is evident that for any λ > 0,

Pr

(∣∣∣∣∣ 1
n

n∑
i=1

(∆′
s(f, λ)) (Xi) − E∆′

s(f, λ)

∣∣∣∣∣ ≥ t

)

≤2 exp
(
−cnmin

{
t2

‖∆′
s(f, λ)‖2

2

,
t

λ

})
.

Since ‖∆′
s(f, λ)‖2 ≤ ‖∆s(f)‖2 and λ = c2

√
n‖∆s(f)‖2/2s/2, then for the choice of

t, it follows that with probability at least 1 − 2 exp(−c32s min{u2, u}),∣∣∣∣∣ 1
n

n∑
i=1

(∆′
s(f, λ)) (Xi) − E∆′

s(f, λ)

∣∣∣∣∣ ≤ c4u
2s/2‖∆s(f)‖2√

n
,

where c3 and c4 depend only on c1 and c2. Thus, for an appropriate choice of these
constants and since |{∆s(f) : f ∈ F}| ≤ |Fs| · |Fs−1| ≤ 22s+1

the claim follows.

Note that there is nothing magical with the lower bound of 1/2 on u. Any other
absolute constant would do, and would lead to changed absolute constants c1, c2

and c3.
Using the Lemma we can define a process Φn for which ‖Pn (Φn) − P‖F ≤

cE‖G‖F /
√

n, and thus, the fact that the limiting Gaussian process exists suffices
to yield a useful bound on the way in which the empirical estimator approximates
the mean.
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Definition 2.2. Let λ(f, n, s) ≡ λ = c0
√

n‖∆s(f)‖2/2s/2, where c0 was determined
in Lemma 2.1, and for each s0 let

Φn,s0(f) =
∞∑

s=s0+1

∆′
s(f, λ)

and

Φn(f) =
∞∑

s=1

∆′
s(f, λ)

Theorem 2.3. There exist absolute constants c1 and c2 for which the following
holds. Let F and X1, . . . , Xn be as above. Then, the mapping Φn : F → L1(P ), and
for every u > 1/2, with probability at least

1 − 2 exp(−c1 min{u2, u}),

for every f ∈ F

(2.2)

∣∣∣∣∣ 1
n

n∑
i=1

(Φn(f)) (Xi) − Ef

∣∣∣∣∣ ≤ c2(u + 1)
E‖G‖F√

n
.

and also with probability at least 1 − 2 exp(−c12s0 min{u2, u})

(2.3) sup
f∈F

∣∣∣∣∣ 1
n

n∑
i=1

(
Φn,s0(f)(Xi) − EΦn,s0(f)

)∣∣∣∣∣ ≤ c2u√
n

sup
f∈F

∞∑
s=s0+1

2s/2‖∆s(f)‖2.

Proof. Without loss of generality, assume that 0 ∈ F and that π0 = 0. Let (Fs)∞s=1

be an almost optimal admissible sequence, and in particular, by Theorem 1.6

sup
f∈F

∞∑
s=1

2s/2‖∆s(f)‖2 ≤ KE‖G‖F

for a suitable absolute constant K.
Note that as π0(f) = 0 for every f ∈ F one can write f =

∑∞
s=1 ∆s(f).

Let us show that Φn, and therefore Φn,s0 , are well defined and maps F into
L1(P ). Indeed, since

∑∞
s=1 ∆s(f) converges in L2(P ), it suffices to prove that∑∞

s=1

(
∆s(f)−∆′

s(f, λ)
)
≡

∑∞
s=1 ∆′′

s (f) converges in L1(P ). Observe that for every
f ∈ F ,

E|∆′′
s (f, λ)| = E|∆s(f)|1{|∆s(f)|>λ}

≤ ‖∆s(f)‖2 (Pr (|∆s(f)| > λ))1/2 ≤ ‖∆s(f)‖2
2

λ
(2.4)

≤ 2s/2‖∆s(f)‖2

c0
√

n
.

Since
∑∞

s=1 2s/2‖∆s(f)‖2 converges for every f , it implies that Φn is well defined
and takes values in L1.

By Lemma 2.1, with probability at least

(2.5) 1 − 2
∞∑

s=s0+1

exp(−c12s min{u2, u}) ≥ 1 − 2 exp(−c22s0 min{u2, u}),
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sup
f∈F

∞∑
s=s0+1

∣∣∣∣∣ 1
n

n∑
i=1

(∆′
s(f, λ)) (Xi) − E∆′

s(f, λ)

∣∣∣∣∣
≤ c3u√

n
sup
f∈F

∞∑
s=s0+1

2s/2‖∆s(f)‖2,

and when s0 = 0 we’ll use that by Theorem 1.6 this last quantity is

≤ c4u
E‖G‖F√

n
.

Hence, with that probability, for every f ∈ F ,

∣∣∣∣∣ 1
n

n∑
i=1

(Φn(f)(Xi) − Ef)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1
n

n∑
i=1

(Φn(f)(Xi) − EΦn(f))

∣∣∣∣∣ + |Ef − EΦn(f)|

≤ c5u
E‖G‖F√

n
+

∣∣∣∣∣E
∞∑

s=1

∆′′
s (f)

∣∣∣∣∣ ≤ c6(u + 1)
E‖G‖F√

n
,

where the last term is estimated using the same argument as in (2.4) and the
inequality (2.2) in Theorem 2.3.

We also have that with the promised lower bound on the probability,

sup
f∈F

∣∣∣∣∣ 1
n

n∑
i=1

(
Φn,s0(f)(Xi) − EΦn,s0(f)

)∣∣∣∣∣ ≤ c3u√
n

sup
f∈F

∞∑
s=s0+1

2s/2‖∆s(f)‖2.

Next, we prove a limit theorem for {√n(Pn − P )(Φn)(f) : f ∈ F} and show
that we can replace EΦn(f) with Ef and still obtain a limit theorem. For this we
need to prove an inequality for the oscillation of the process

√
n(Pn − P )(Φn(f)).

To that end, define Qn :=
√

n (Pn − P ).

Proposition 2.4. Let F be a class of functions on (Ω, P ), such that the Gaussian
process indexed by F exists and is continuous. If Φn is as above, then for any η > 0,

lim
δ→0

lim
n→∞

Pr

(
sup

‖f−f̃‖2<δ

∣∣∣Qn(Φn(f) − Φn(f̃))
∣∣∣ > η

)
= 0.

Proof. By the definition of Φn which uses an almost optimal admissible sequence,
for every δ > 0 there is some s0 such that

sup
f∈F

∞∑
s=s0

2s/2‖f − πs(f)‖2 ≤ δ,

hence for any f, f̃ ∈ F , ‖πs0(f) − πs0(f̃)‖2 < 2δ + ‖f − f̃‖2. Using the notation of
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Theorem 2.3, put Φn,s0(f) :=
∑∞

s=s0+1 ∆′
s(f, λ) and Ψn,s0 = Φn−Φn,s0 . Therefore,

I : = Pr

(
sup

‖f−f̃‖2<δ

∣∣∣Qn

(
Φn(f) − Φn(f̃)

)∣∣∣ > η

)

= Pr

(
sup

‖f−f̃‖2<δ

∣∣∣Qn

(
Ψn,s0(f) − Ψn,s0(f̃)

)

+ Qn(Φn,s0(f)) − Qn(Φn,s0(f̃))
∣∣∣ > η

)

≤ Pr

(
sup

‖πs0f−πs0 f̃‖2<3δ

∣∣∣Qn

(
Ψn,s0(f) − Ψn,s0(f̃)

)∣∣∣ >
η

3

)

+ 2Pr

(
sup

f
|Qn(Φn,s0(f))| >

η

3

)

:= (II) + (III)

From the proof of Theorem 2.3 by integrating tail probabilities

E sup
f∈F

|Qn (Φn,s0(f)) | ≤ c sup
f∈F

∑
s>s0

2s/2‖f − πs(f)‖2

which by Theorem 1.7(3) and our choice of the admissible sequence converges
to 0 as s0 → ∞. Furthermore, by the finite dimensional Central Limit Theorem
limδ→0 limn→∞(II) = 0, which completes the proof.

Hence, we know that Qn is asymptotically uniformly equicontinuous. We’ll now
prove the other necessary ingredients needed to show that Qn converges to the
original Gaussian process.

Proposition 2.5. Let F and Φn be as in Proposition 2.4. Then the following holds:

(i) limn→∞
√

n supf∈F |EΦn(f) − Ef | = 0,
(ii) For every f ∈ F , limn→∞ ‖Φn(f) − f‖2 = 0,

(iii) For every f ∈ F , limn→∞ E maxj≤n
|Φn(f)(Xj)|2

n
= 0.

Proof.

1. Let s0 be an integer to be named later and set

λ = c0

√
n‖∆s(f)‖2/2s/2

as in Lemma 2.1. In particular, the set {∆s(f) : s ≤ s0, f ∈ F} is finite and
for every f ∈ F ,

√
nE|∆s(f)|1{|∆s(f)|>λ} ≤ 2s/2

c0‖∆s(f)‖2
E|∆s(f)|21{|∆s(f)|>λ}

which, by the definition of λ tends to 0 as n tends to infinity. Hence, for every
fixed s0,

lim
n→∞

s0∑
s=1

√
nE|∆s(f)|1{|∆s(f)|>λ} = 0.
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Therefore, for every s0,

lim
n→∞

√
n sup

f∈F
|EΦn(f) − Ef |

≤ lim
n→∞

√
n sup

f∈F

(
s0∑

s=1

E|∆s(f)|1{|∆s(f)|>λ} +
∑
s>s0

E|∆s(f)|1{|∆s(f)|>λ}

)

≤ c2 sup
f∈F

∑
s>s0

2s/2‖∆s(f)‖2,

where the last inequality is evident from (2.4) and the choice of a suitable
absolute constant c2.

2. Again, we shall use the fact that for every fixed f and s, λ depends on n and
tends to 0 as n tends to infinity. Clearly, for every fixed s0,

‖f − Φn(f)‖2 ≤
∑
s≤s0

‖∆s(f)1{|∆s(f)|>λ}‖2 +
∑
s>s0

‖∆s(f)‖2

≤
∑
s≤s0

‖∆s(f)1{|∆s(f)>λ}‖2 + c3γ2(F, L2)
∑
s>s0

2−s/2

For an absolute constant c3. Indeed, this follows from the fact that for every
s,

2s/2‖∆s(f)‖2 ≤
∞∑

s=0

2s/2‖∆s(f)‖2 ≤ c3γ2(F, L2),

and of course the constant c3 does not depend on s.
Hence, for every fixed f ∈ F ,

lim sup
n→∞

‖f − Φn(f)‖2 ≤ c3γ2(F, L2)
∑
s>s0

2−s/2

for every s0, and this last quantity goes to zero as s0 → ∞.
3. If f(X) is square integrable then for any b > 0,

lim sup
n→∞

E max
j≤n

|f(Xj)|2
n

≤ lim sup
n→∞

E
(b2

n
+

1
n

∑
j≤n

f2(Xj)1{|f(Xj)|>b}
)

= Ef2(X)1{|f(X)|>b}.

Since the left hand side does not depend on b and the right hand side converges
to zero as b tends to ∞, limn→∞ E maxj≤n

|f(Xj)|2
n = 0. Therefore, to complete

the proof it suffices to show that

E max
j≤n

|f(Xj) − Φn(f)(Xj)|2
n

→ 0.

But, using (2),

E max
j≤n

|f(Xj) − Φn(f)(Xj)|2
n

≤ 1
n

∑
j≤n

E|f(Xj) − Φn(f)(Xj)|2

= E|(f − Φn(f))(X)|2 → 0.

The final ingredient we require is the following result on triangular arrays.
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Lemma 2.6. For each n, let {ξn,j}n
j=1 by nonnegative, square integrable, indepen-

dent random variables for which limn→∞ E maxj≤n ξ2
n,j = 0. Then, for every δ > 0,

limn→∞
∑n

j=1 Eξ2
n,j1{ξn,j≥δ} = 0.

Proof. Consider the stopping times

τ = τn =

{
inf{k ≤ n : ξn,k > δ} if maxr≤n ξn,r > δ

∞ if maxr≤n ξn,r ≤ δ.

Then, (see [12]) for every n

E max
j≤n

ξ2
n,j ≥ Eξ2

n,τn
1{τn<∞} =

n∑
l=1

Eξ2
n,l1{ξn,l>δ,maxi≤l−1 ξn,i≤δ}

=
n∑

l=1

Eξ2
n,l1{ξn,l>δ} Pr(max

i≤l−1
ξn,i ≤ δ)

≥
n∑

l=1

Eξ2
n,l1{ξn,l>δ} Pr(max

i≤n
ξn,i ≤ δ)

The result now follows, since the hypothesis implies that this last probability con-
verges to one as n tends to infinity.

We now can conclude

Theorem 2.7. If the Gaussian process indexed by F is continuous then
{√n(Pn(Φn(f)) − Pf) : f ∈ F} converges to {Gf : f ∈ F}.

Proof. By Theorem 1.2 and Proposition 2.4 we only need to show that

(i) the finite dimensional distributions of Qn converge to those of G and
(ii) (F, ρ2) is totally bounded.

For (i) we need to check that for any {fi}k
i=1 ⊆ F ,

(Qn (Φn(f1)) , . . . , Qn (Φn(fk)))

converges in distribution to (Gf1 , . . . , Gfk
). To see this we apply the Cramer-Wold

device, that is, by noting that to show the convergence in distribution, we only have
to check that the characteristic function (on R

k) converges, and hence it suffices to
show that any finite linear combination of {Qn(Φn(fi))}k

i=1, say,
∑k

i=1 aiQn(Φn(fi))
converges in distribution to

∑k
i=1 aiGfi . To verify this, recall the classical Central

Limit Theorem for triangular arrays (see, e.g, [5] or [1] Theorem 3.5). Namely, it
suffices to prove that

(a) for any η > 0, limn→∞ Pr(maxj≤n |
∑k

i=1 aiΦn(fi(Xj))| > η) = 0 and
(b) limn→∞ Var((

∑k
i=1 aiΦn(fi))1{|

∑k

i=1
aiΦn(fi)|>η}) = Var(

∑k
i=1 aifi).

(a) follows from Proposition 2.5(iii) and (ii) and (b) follows from 2.5(ii) and Lemma
2.6.
(ii) follows from the assumed continuity of {Gf : f ∈ F} with respect to ρ2 (see p.
41 [13]).
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3. Changing the level of truncation

The question we wish to tackle here is whether it is possible to find different “uni-
versal” truncation levels instead of

√
n, and still have a process Ψ which is tight,

and satisfies that n−1
∑n

i=1 (ψn(f)) (Xi) uniformly approximates Ef (that is, one
can replace EΨn(f) with Ef). We show that such a uniform level of truncation has
to be asymptotically larger than

√
n.

Definition 3.1. Given a class of functions F and a non-decreasing sequence of
positive numbers, b = {bn}∞n=1, let

Φn,b =
∞∑

s=1

∆s(f)1{|∆s(f)|≤bn‖∆s(f)‖2/2s/2}.

Definition 3.2. A sequence of processes {Un(f) : f ∈ F} is said to be stochasti-
cally bounded if for every ε > 0 there is a constant C < ∞ such that

Pr(sup
f∈F

|Un(f)| > C) < ε.

Theorem 3.3. Assume that {bn}n is an increasing sequence of positive numbers
and that the probability space, (Ω,S, P ), is continuous. Assume also that for every
pregaussian class of functions on (Ω,S, P ), the process

{sup
f∈F

√
n|Pn(Φn,b(f)) − Ef |}n

is stochastically bounded. Then, there exists δ > 0 such that infn
bn√
n

> δ.

Proof. Clearly, if {√n (P ′
n(Φn,b(f)) − Ef) : f ∈ F} is based on an independent

copy, {X ′
j}, then {supf∈F

√
n|P ′

n(Φn,b(f))−Ef |}∞n=1 is also stochastically bounded.
Hence, the difference is stochastically bounded, and thus,

{sup
f∈F

√
n|Pn(Φn,b(f)) − EΦn,b(f)|}n

is stochastically bounded, implying that
√

n supf∈F |Ef − EΦn,b(f)| is bounded.
In particular, for every nonnegative f ∈ L2(P ), if we let F = {f, 0}, then the

sequence {√n|Ef−EΦn,b(f)|}∞n=1 is bounded. Note that in this case we may assume
that πs(f) = f for s ≥ 1 and π0(f) = 0, implying that

√
nEf1{f>bn‖f‖2/

√
2} is

bounded.
Observe that this implies that

√
nEf1{f>bn} is bounded. Indeed, choose bk0

such that ‖f1{f>bk0}‖2 ≤
√

2. Applying the above to the function h = f1{f>bk0},
it follows that ‖h‖2 ≤

√
2 and

√
nEh1{h>bn} =

√
nEf1{f>bk0}1{f1{f>bk0

}>bn} =
√

nEf1{f>bmax(k0,n)}.

Hence,
√

nEf1{f>bn} is bounded, as claimed.
For every sequence {ak}k for which

∑
k |ak|/k < ∞, consider a function f with

Pr(f = bk) = b2
1
|ak|
kb2

k

. Such a function exists by the continuity of the probability
space (Ω,S, P ). Then,

Ef2 =
∑

k

b2
kb2

1

|ak|
kb2

k

< ∞.
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Therefore, Ef1{f>bk} =
∑

l>k blb
2
1
|al|
lb2

l

, implying that for every sequence {ak}∞k=1 as

above, supk

√
k

∑
l>k

|al|
l < ∞.

Consider the Banach spaces B1 and B2, endowed with the norms ‖{ak}‖1

:=
∑∞

k=1
|ak|
k and ‖{ak}‖2 := supk≥1

√
k

∑
l>k

|al|
lbl

. Note that the identity map
I : B1 −→ B2 is bounded using the Closed Graph Theorem. Indeed, for An :=
{an,k}∞k=1, B := {bk}∞k=1 and C := {ck}∞k=1 assume that ‖An − B‖1 → 0 and
‖An − C‖2 → 0. These conditions respectively imply convergence coordinate-wise,
that is, for every r, limn→∞ an,r = br and limn→∞ an,r = cr. Thus, B = C, and
the graph is closed, implying that the map is bounded.

Therefore, there exists a constant, C, such that

(3.1) sup
k≥1

√
k

∑
l>k

|al|
lbl

≤ C

∞∑
k=1

|ak|
k

.

Applying (3.1) to the sequence for which the nth term is one and others zero shows
that for n > 1: √

n − 1
nbn

≤ C
1
n

,

from which the claim follows.
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