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Bias correction and confidence intervals

following sequential tests

Tze Leung Lai1,∗ Zheng Su1 and Chin Shan Chuang2

Stanford University and Millennium Partners

Abstract: An important statistical inference problem in sequential analysis
is the construction of confidence intervals following sequential tests, to which
Michael Woodroofe has made fundamental contributions. This paper reviews
Woodroofe’s method and other approaches in the literature. In particular it
shows how a bias-corrected pivot originally introduced by Woodroofe can be
used as an improved root for sequential bootstrap confidence intervals.

1. Introduction and overview

Estimation following sequential tests is an important but difficult problem in se-
quential analysis. When the sample size is not fixed in advance but is a random
variable T that depends on the data collected so far, the sample moments and
maximum likelihood estimates of population parameters can have substantial bias.
For example, while the sample mean X̄n is an unbiased estimate of the population
mean µ based on a sample of n i.i.d. observations X1, . . . , Xn, X̄T is clearly biased
upwards if T is the first time when Sn = nX̄n exceeds some threshold. How can
one correct for the bias due to data-dependent sample size and how should one con-
struct a confidence interval for µ? Following Siegmund’s seminal paper [18] on this
problem, there have been many important developments in the literature, among
which are the fundamental contributions of Woodroofe and his collaborators.

The simplest method to construct a confidence interval for the population mean
µ is to use the naive normal approximation that treats

√
T (X̄T −µ)/σ̂T as approx-

imately standard normal, where σ̂2
n is a consistent estimate of Var(X1). Although

one can justify the normal approximation by appealing to Anscombe’s theorem [1]
when

(1.1) T/a
P→ c as a → ∞

for some nonrandom constant c > 0 and design parameter a > 0, the normal
approximation essentially treats T as nonrandom and has been found to be unsat-
isfactory in practice. This led Siegmund to develop exact methods for constructing
confidence intervals for µ in the normal case by using a certain ordering of the
sample space of (T, ST ) when T is the stopping time of a repeated significance test.
Earlier Armitage used [3] numerical methods to evaluate exact confidence inter-
vals for a Bernoulli parameter following sequential tests. Siegmund’s approach was
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subsequently extended to other stopping rules and to alternative orderings of the
sample space by Tsiatis, Rosner and Mehta [20], Chang and O’Brien [5], Rosner
and Tsiatis [17] and Emerson and Fleming [12].

Woodroofe [22] introduced “very weak” asymptotic expansions to correct for
Anscombe’s normal approximation in a one-parameter exponential family of densi-
ties fθ(x) = eθx−ψ(θ) with natural parameter space Θ. Denoting the stopping rule
T by Ta to indicate its dependence on a, he strengthened (1.1) into

lim
a→∞

Eθ| a/Ta − κ(θ)| = 0 for a.e. θ ∈ Θo,(1.2a)

lim
a→∞

a

∫
C

Pθ{Ta ≤ aηC} dθ = 0
(1.2b)

for some ηC > 0 and every compact C ⊂ Θo,

where Θo denotes the interior of Θ and κ : Θo → R is continuous. Let µ =
ψ̇(θ) and σ2 = ψ̈(θ). Let θ̂n be the maximum likelihood estimate of θ based on
X1, . . . , Xn, and µ̂n = ψ̇(θ̂n) = X̄n, σ̂2

n = ψ̈(θ̂n). Consider a Bayesian model in
which θ has a twice continuously differentiable prior density function ξ with compact
support [θ0, θ1] ⊂ Θo. With T = Ta satisfying (1.2a,b), Woodroofe [22] developed
an asymptotic expansion for

(1.3)
∫

Pθ{
√

T (X̄T − µ)/σ̂T ≤ c + b(θ̂T )/
√

T}ξ(θ) dθ,

where b is a piecewise continuous function on Θo, and used it to construct a confi-
dence interval I for µ whose integrated coverage error

(1.4)
∫

Pθ{µ �∈ I}ξ(θ) dθ

differs from the nominal value 2α by o(a−1). Subsequently, Woodroofe [23, 25, 26]
showed how a version of Stein’s identity [19] could be used to derive expressions for
posterior expectations from which asymptotic expansions for (1.3) could be readily
guessed. Moreover, for normal Xi with known variance 1, Woodroofe [25] made use
of these expansions to derive bias-corrected and renormalized pivots of the form

(1.5) R(µ) = {
√

T (X̄T − µ) − T−1/2b(X̄T )}/{1 + (2T )−1b2(X̄T )},

where b(µ) = (
√

κ(µ))′/
√

κ(µ) = κ′(µ)/{2κ(µ)}, in which κ is given by (1.2a),
noting that µ = ψ̇(θ) = θ in the normal case.

Instead of using the Wald-type statistic
√

T (X̄T − µ)/σ̂T as in (1.3), Coad and
Woodroofe [8] and Weng and Woodroofe [21] considered confidence intervals based
on signed-root likelihood ratio statistics, for which they developed very weak ex-
pansions leading to renormalized and bias-corrected signed-root likelihood ratio
statistics as pivotal quantities. Woodroofe and his collaborators have also devel-
oped very weak asymptotic expansions to construct confidence sets in other se-
quential/adaptive experiments; see [9, 10, 23, 24, 27, 28].

The preceding methods assume parametric models, and more precisely, exponen-
tial families. For samples of fixed size, an important methodology for constructing
confidence intervals without distributional assumptions is Efron’s bootstrap method
[11]. The bootstrap methodology can be extended as follows from the fixed sam-
ple size case to the case where the sample size is determined by a stopping rule
T . Let X1, X2, . . . be i.i.d. random variables with a common unknown distribution
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function F . Given a randomly stopped sample (X1, . . . , XT ), let F̂ denote the em-
pirical distribution that puts probability mass 1/T at each of the sample values
Xi. Let X∗

1 , X∗
2 , . . . be i.i.d. random variables with common distribution F̂ and let

T ∗ denote the corresponding stopping time for the sequence {X∗
i }. The sequential

bootstrap sample (X∗
1 , . . . , X∗

T∗) can be used to construct confidence intervals as in
the nonsequential case, and Chuang and Lai [6] have studied the coverage probabil-
ities of these bootstrap confidence intervals in the setting where T is the stopping
rule of a group sequential test, for which stopping can only occur at a prespecified
subset {n1, . . . , nK} of positive integers, and have shown that the bootstrap method
does not yield reliable confidence intervals because

√
T (X̄T − µ)/σ̂T is no longer

an approximate pivot. There are “pockets” of the parameter space where T/a has
a nondegenerate limiting distribution that varies with µ, thus violating (1.1) and
making the distribution of

√
T (X̄T − µ) highly dependent on µ even when the Xi

are normal with known unit variance. This difficulty can be resolved by replacing F̂ ,
from which the bootstrap method resamples, by a more versatile resampling family
F̂µ. Specifically, assuming Var(Xi) = 1, the unknown distribution G of Xi − µ can
be estimated by the empirical distribution Ĝ of Xi − X̄T . Let F̂µ(·) = Ĝ(· − µ) so
that F̂µ has mean µ, and let ûα(µ) be the α-quantile of the sampling distribution
of

√
T ∗(X̄∗

T∗ − µ), where the X∗
i are i.i.d. random variables from F̂µ. By analogy

with the exact confidence set {µ : uα(µ) ≤
√

T (X̄T − µ) ≤ u1−α(µ)} proposed by
Rosner and Tsiatis [17] when the Xi are normal, for which the quantiles uα(µ) and
u1−α(µ) of the sampling distribution of

√
T (X̄T −µ) can be determined by recursive

numerical integration, Chuang and Lai [6] define the “hybrid” confidence set

(1.6) {µ : ûα(µ) <
√

T (X̄T − µ) < û1−α(µ)}

as a hybrid of the exact and bootstrap methods. The hybrid confidence set is shown
to be second-order accurate by making use of an Edgeworth expansion involving a
k-variate normal distribution.

This derivation of second-order accuracy requires k to be fixed and breaks down
in the case of fully sequential (instead of group sequential) procedures, for which
Edgeworth-type expansions are considerably more complicated and involve, be-
sides the usual cumulants of Xi (or X∗

i ), certain fluctuation-theoretic quantities
that are related to the random walk {Sn} (or {S∗

n}), as shown by Woodroofe and
Keener [29] and Lai and Wang [14]. On the other hand, (1.1) is usually satisfied
by fully sequential truncated tests such as those studied by Woodroofe and his
collaborators. Although this implies that

√
T (X̄T − µ) is an asymptotic pivot in

these fully sequential settings when T becomes infinite, the finite-sample behavior
of

√
T (X̄T − µ) still varies substantially with µ, as will be shown in the simulation

studies in Section 3. In the context of exponential families, the asymptotic theory
and the numerical studies of Woodroofe and his collaborators, however, suggest
that suitable bias correction of

√
T (X̄T − µ) can improve its pivotal nature sub-

stantially, making the sampling distribution much less dependent on µ. In Section
2 we first develop bias-corrected pivots in a nonparametric setting and then make
use of them to construct nonparametric bootstrap confidence intervals. Numerical
results are given in Section 3, where we also compare the different approaches to
constructing confidence intervals following fully sequential tests. Further discussion
of these results and some concluding remarks are given in Section 4.
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2. Bias correction for a modified pivot and bootstrap confidence
intervals under optional stopping

In this section we first review Woodroofe’s pivot [25, 26] that corrects
√

T (X̄T −µ)
for optional stopping in the case of a normal population with unknown mean µ and
known variance 1. We then extend this method to nonparametric problems in which
the normal mean µ is replaced by smooth functions of mean vectors of possibly non-
normal populations. Note that the quantity of interest here is an approximate pivot
for constructing confidence intervals, rather than point estimates of µ for which
Siegmund [18], Emerson and Fleming [12] and Liu and Hall [15] have introduced
bias-corrected or unbiased estimators following sequential tests.

Suppose the stopping rule is of the form

(2.1a) T = min{n0(a), max(ta, n1(a))},

where n0(a) ∼ a/ε0 and n1(a) ∼ a/ε1, with 0 < ε0 < ε1, and

(2.1b) ta = inf{n ≥ 1 : ng(Sn/n) ≥ a},

in which g is continuously differentiable. A naive pivot is

(2.2) R0(µ) =
√

T (X̄T − µ).

Whereas
√

n(X̄n −µ) has mean 0 and variance 1 for a fixed sample size n, optional
stopping affects the first two moments of

√
T (X̄T −µ). First note that a/ta

P→ g(µ)
and therefore a/Ta

P→ κ(µ) := max{ε0, min(g(µ), ε1)}. As shown by Woodroofe [25],

(2.3) ER0(µ) .= a−1/2[(d/dµ)κ1/2(µ)] = (κ(µ)/a)1/2b(µ),

where b(µ) = [(d/dµ)κ1/2(µ)]/κ1/2(µ) = κ̇(µ)/{2κ(µ)}. This suggests the bias-
corrected pivot

(2.4) R1(µ) = R0(µ) − T−1/2b(X̄T )

as an improvement over (2.2). Moreover, Woodroofe [22] has shown that

(2.5) P (R1(µ) ≤ x) .= Φ(x) − (2a)−1xφ(x)[(d/dµ)κ1/2(µ)]2

in a very weak sense, i.e., the integral of the left-hand side of (2.5) with respect
to ξ(µ) dµ has an asymptotic expansion given by that of the right hand side (see
(1.3)), where φ and Φ denote the standard normal density and distribution function,
respectively. This in turn yields∫

x2 dP (R1(µ) ≤ x) .=
∫

x2φ(x)

+ (2a)−1x2(x2 − 1)φ(x)[(d/dµ)κ1/2(µ)]2 dx(2.6)
= 1 + a−1[(d/dµ)κ1/2(µ)]2.

Since {ER2
1(µ)}1/2 .= 1 + (2a)−1κ(µ)b2(µ) by (2.6) and since T−1 .= κ(µ)/a, these

calculations led Woodroofe [25] to the approximate pivot (1.5).
We next remove the assumption of normality on the Xi which we also extend to d-

dimensional vectors. Instead of the mean vector µ, we consider more general smooth
functions h of µ while the stopping time T is still assumed to be of the form (2.1a,b).
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Let X, X1, X2, . . . be i.i.d. d × 1 random vectors with EX = µ, Cov(X) = V and
E||X||r < ∞ for some r > 3. Let h : Rd → R be twice continuously differentiable in
some neighborhood of µ. Consider a stopping rule T of the form (2.1a,b), in which
g : Rd → R is continuously differentiable in some neighborhood of µ. Suppose
ε0 < g(µ) < ε1. Then application of the strong law of large numbers in conjunction
with Taylor’s theorem yields
√

T{h(X̄T ) − h(µ)} .=
√

T (∇h(µ))′(X̄T − µ) +
√

T (X̄T − µ)′∇2h(µ)(X̄T − µ)/2
.=

1√
a
g1/2(ST /T )(ST − µT )′∇h(µ)(2.7)

+
1

2
√

T
{T (X̄T − µ)′∇2h(µ)(X̄T − µ)},

in which the last approximate equality follows from Tg(ST /T ) .= a (ignoring over-
shoot) so that

√
T

.=
√

a/g1/2(ST /T ) .= {a/g(µ)}1/2. By Wald’s lemma, E{g1/2(µ)×
(ST − µT )′∇h(µ)} = 0. Moreover,

(2.8) g1/2(ST /T ) − g1/2(µ) .= {(∇g(µ))′(ST − Tµ)}/{2g1/2(µ)T}.

By Anscombe’s theorem [1],
√

T (X̄T − µ) = (ST − µT )/
√

T has a limiting N(0, V )
distribution. Combining (2.7) with (2.8) and taking expectations, it can be shown
by uniform integrability arguments that

E[
√

T{h(X̄T ) − h(µ)}]
(2.9)

=
(∇g(µ))′V ∇h(µ)

2(ag(µ))1/2
+

1
2

(
g(µ)

a

)1/2

tr(∇2h(µ)V ) + o(a−1/2).

The second term on the right-hand side of (2.9) follows from E(Z ′AZ) = tr(AV )
if A is a nonrandom matrix and Z is a random vector with E(ZZ ′) = V .

The difficult part of the proof of (2.9) lies in the technical arguments related to
uniform integrability. For the case h(x) = x, Aras and Woodroofe [2] have provided
such arguments to develop asymptotic expansions for the first four moments of
ST /T . Particularly relevant to our present problem are their Propositions 1, 2 and
Section 5, which we can modify and refine to prove (2.9) when ε0 < g(µ) < ε1. The
details are omitted here. For g(µ) < ε0 (or g(µ) > ε1), stopping occurs at n0(a) (or
n1(a)) with probability approaching 1 and uniform integrability can again be used
to show that

(2.10) E[
√

T{h(X̄T ) − h(µ)}] =
1
2
(ni(a))−1/2tr(∇2h(µ)V ) + o(a−1/2),

with i = 0 or 1 according as g(µ) < ε0 or g(µ) > ε1. Since κ(µ) = max{ε0,
min(g(µ), ε1)}, ∇κ1/2(µ) = 1

2∇g(µ)/(g(µ))1/2 if ε0 < g(µ) < ε1, and ∇κ1/2(µ) = 0
if g(µ) < ε0 or g(µ) > ε1. Recalling that 1/n0(µ) ∼ ε0/a and 1/n1(µ) ∼ ε1/a, we
can combine (2.9) and (2.10) into

(2.11) E[
√

T{h(X̄T ) − h(µ)}] = b(µ, V )(κ(µ)/a)1/2 + o(a−1/2),

where

(2.12) b(µ, V ) = (∇κ1/2(µ))′V ∇h(µ)/κ1/2(µ) + tr(∇2h(µ)V )/2.

For the special case d = 1, h(µ) = µ and V = 1, b(µ, V ) = [(d/dµ)κ1/2(µ)]/κ1/2(µ),
which agrees with Woodroofe’s [25] approximation for E{

√
T (X̄T − µ)} derived

from very weak asymptotic expansions for normal X.
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Since µ is unknown, replacing µ by X̄T and κ(µ)/a by 1/T in the last term of
(2.3) leads to Woodroofe’s [25] bias-corrected pivot R1(µ) in (2.4). In the present
nonparametric setting, V is typically also unknown and has to be estimated to
define both the naive pivot R0(µ) and its bias-corrected version R1(µ). Using the
consistent estimates

(2.13) V̂T =
T∑

i=1

(Xi − X̄T )(Xi − X̄T )′/(T − 1), σ̂2
T = (∇h(X̄T ))′V̂T∇h(X̄T )

of V and the asymptotic variance σ2 := (∇h(µ))′V ∇h(µ) of
√

T{h(X̄T ) − h(µ)},
define

(2.14) R0(µ) =
√

T{h(X̄T ) − h(µ)}/σ̂T ,

(2.15) R1(µ) = [
√

T{h(X̄T ) − h(µ)} − T−1/2b(X̄T , V̂T )]/σ̂T ,

where b(µ, V ) is defined in (2.12).
For the case of normal mean with known variance 1, Woodroofe [25] further

refined R1(µ) by scaling it with an asymptotic approximation to the standard devi-
ation that he derived by very weak expansions; see (2.6) and (1.5). In the nonpara-
metric setting with unknown covariance matrix V considered here, such refinements
are considerably much more complicated. In particular, better approximations to
the asymptotic standard error than σ̂T (which is derived by linearizing h around µ)
are needed. We therefore forgo such refinements and simply use the bias-corrected
pivot R1(µ) instead. The following example, which deals with the same testing
problem as that considered in Woodroofe’s [25] simulation study, shows that there
is not much loss in the quality of the normal approximation to the distribution of
R1(µ) in comparison with that of R(µ).

Example 1. Suppose X is normal with mean µ and known variance 1. Let

g(x) = (2δ)−1(δ2 + x2)1{|x|≤δ} + |x|1{|x|>δ},

which is symmetric and continuously differentiable, with ġ = x/δ for 0 ≤ x ≤ δ
and ġ = 1 for x > δ. Take a = 9, n0(a) = 72 and n1(a) = 1 in (2.1a), as in Section
4 of [25]. Table 1 gives the α-quantiles of R(µ), R0(µ) and R1(µ), respectively,
computed from 10000 simulations, over different values of µ ranging from 0 to 1 as
in Woodroofe’s study. In this known variance setting, R(µ), R0(µ) and R1(µ) are
defined by (1.5), (2.2) and (2.4). Without assuming the variance to be known, we
can use the version (2.15) for R1(µ), which we denote by R

1,σ̂
(µ) to indicate that

the variance V (= σ2) is replaced by the sample variance σ̂2
T . Table 1 also gives

the α-quantile of R
1,σ̂

(µ) and the standard normal quantiles zα for comparison. It
shows that when α ≤ 10% or α ≥ 90%, qα(R) does not differ much from zα and
does not change much as µ varies between 0 and 1. The normal approximation is
somewhat worse for qα(R1) or qα(R

1,σ̂
) which, however, still does not change much

as µ varies between 0 and 1. The normal approximation deteriorates substantially
for qα(R0); moreover, qα(R0) is also markedly more variable with µ, making it less
“pivotal”.

Since the stopping rule T is assumed to be of the form (2.1a,b), T/a
P→ 1/κ(µ)

and (1.1) is clearly satisfied. Therefore, by Anscombe’s theorem, R0(µ) is an asymp-
totic pivot and so is R1(µ) that introduces a correction of the order Op(a−1/2) for
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Table 1.
Quantiles zα, qα(R), qα(R1), qα(R

1,̂σ
) and qα(R0) of the standard normal distribution, R(µ), R1(µ), R

1,̂σ
(µ) and R0(µ), respectively

α (in %) 2.5 5 10 20 50 80 90 95 97.5
zα −1.96 −1.645 −1.28 −0.84 0 0.84 1.28 1.645 1.96

(a) µ = 0
qα(R) −1.9327 −1.6280 −1.2902 −0.9053 0.0035 0.8878 1.2832 1.6265 1.9880
qα(R1) −1.9904 −1.6581 −1.3344 −0.9372 −0.0223 0.9491 1.3206 1.6498 1.9721

qα(R
1,̂σ

) −2.0007 −1.6929 −1.3351 −0.9163 0.0045 0.9205 1.3012 1.7062 2.0083

qα(R0) −2.2449 −1.9255 −1.6466 −1.2218 0.0075 1.1677 1.6419 1.9464 2.2369
(b) µ = 0.25

qα(R) −1.9913 −1.6558 −1.2373 −0.8129 0.0029 0.8257 1.2795 1.6803 1.9698
qα(R1) −2.0807 −1.5996 −1.2508 −0.8376 −0.0322 0.8413 1.3063 1.6397 1.9515

qα(R
1,̂σ

) −1.9457 −1.6106 −1.2441 −0.8274 −0.0263 0.8462 1.3106 1.6641 2.0033

qα(R0) −1.9320 −1.4949 −1.0682 −0.5817 0.2862 1.0911 1.5139 1.8418 2.1377
(c) µ = 0.5

qα(R) −1.8817 −1.6496 −1.2685 −0.8450 −0.0091 0.8208 1.2448 1.6156 1.9321
qα(R1) −2.0758 −1.7250 −1.3613 −0.8840 −0.0235 0.8333 1.3260 1.6396 1.9818

qα(R
1,̂σ

) −2.0272 −1.7000 −1.3314 −0.8745 −0.0209 0.8374 1.2769 1.6494 1.9985

qα(R0) −1.7005 −1.4107 −1.0305 −0.6237 0.1894 1.0435 1.4668 1.8104 2.1436
(d) µ = 0.75

qα(R) −1.9435 −1.6190 −1.3004 −0.8758 −0.0188 0.8284 1.3224 1.6094 1.9519
qα(R1) −2.0479 −1.6768 −1.3027 −0.8684 −0.0089 0.8555 1.3153 1.6574 1.9600

qα(R
1,̂σ

) −2.0041 −1.7406 −1.3314 −0.8787 −0.0035 0.8228 1.2873 1.6292 1.9441

qα(R0) −1.7241 −1.4270 −1.1190 −0.6657 0.1415 1.0247 1.4202 1.8004 2.1070
(e) µ = 1

qα(R) −1.9281 −1.6617 −1.2650 −0.8719 −0.0257 0.7956 1.2505 1.6780 1.9335
qα(R1) −2.0028 −1.6963 −1.3056 −0.8719 −0.0412 0.8106 1.2514 1.6840 1.9542

qα(R
1,̂σ

) −2.0062 −1.6821 −1.3314 −0.8344 −0.0190 0.8424 1.2520 1.6669 1.9506

qα(R0) −1.8202 −1.5173 −1.1161 −0.6909 0.1150 0.9394 1.4222 1.8004 2.0165
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R0(µ). Although bootstrap confidence intervals based on R0(µ) or R1(µ) are there-
fore asymptotically valid, Example 1 suggests that R1(µ) is more “pivotal” and
may therefore provide substantial improvements over R0(µ) for the finite-sample
coverage errors. Simulation studies comparing both types of bootstrap confidence
intervals are given in Section 3 to confirm this. A theoretical comparison would in-
volve higher-order asymptotic expansions. While Woodroofe’s very weak expansions
are not applicable to the present nonparametric setting, the much more complicated
Edgeworth-type expansions of Woodroofe and Keener [29] and Lai and Wang [14]
can still be applied and will be presented elsewhere.

3. Numerical comparisons of various confidence intervals following
sequential tests

Let T be a stopping rule of the form (2.1a,b). Based on the sample X1, . . . , XT of
random size T , the normal confidence interval

(3.1) (h(X̄T ) − z1−ασ̂T /
√

T , h(X̄T ) − zασ̂T /
√

T )

simply uses the normal quantiles zα and z1−α to approximate the corresponding
quantiles of R0(µ), invoking Anscombe’s theorem for its asymptotic justification.
Similarly we can apply the normal approximation to the α- and (1 − α)-quantiles
of R1(µ), leading to the interval(

h(X̄T ) − {z1−ασ̂T + T−1/2b(X̄T , V̂T )}√
T

,

(3.2)
h(X̄T ) − {zασ̂T + T−1/2b(X̄T , V̂T )}√

T

)
.

Instead of approximating the quantiles of R0(µ) or R1(µ) by normal quantiles,
we can approximate them by the quantiles of the sequential bootstrap sample
(X∗

1 , . . . , X∗
T∗) described in the penultimate paragraph of Section 1, leading to the

bootstrap confidence intervals based on R0(µ) or R1(µ).
The second paragraph of Section 1 has reviewed previous works on the exact

method. As described more generally by Chuang and Lai [7, p. 2], the exact method
involves (i) a family of distributions Fθ indexed by a real-valued parameter θ and
(ii) a statistic r(θ; T, X1, . . . , XT ) for every given value of θ, called a root. Let uα(θ)
be the α-quantile of r(θ; T, X1, . . . , XT ) under Fθ. An exact equal-tailed confidence
set for θ with coverage probability 1 − 2α is

(3.3) {θ : uα(θ) < r(θ; T, X1, . . . , XT ) < u1−α(θ)}.

For the normal mean example (with θ = µ) considered by Siegmund [18], r(µ; T,
X1, . . . , XT ) = (T, ST ), for which he introduced a total ordering to define the p-
quantile up(θ). An obvious alternative choice is r(µ; T, X1, . . . , XT ) =

√
T (X̄T −µ)

that has been considered by Rosner and Tsiatis [17].
The exact method applies only when there are no nuisance parameters. In prac-

tice, however, not only do parametric models usually involve nuisance parame-
ters, but one may also have difficulties in coming up with realistic parametric
models. Without distributional assumptions on X, a 1 − 2α level bootstrap confi-
dence interval for a functional θ(F ) of the distribution F of X, based on the root
r(θ; T, X1, . . . , XT ), is of the form

(3.4) {θ : u∗
α < r(θ; T, X1, . . . , XT ) < u∗

1−α},
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where u∗
α is the α-quantile of the distribution of r(θ̂; T ∗, X∗

1 , . . . , X∗
T∗) in which

θ̂ = θ(F̂ ) and (X∗
1 , . . . , X∗

T∗) is a bootstrap sample with random size T ∗ drawn
from the empirical distribution F̂ of (X1, . . . , XT ). The bootstrap confidence inter-
val (3.4) is tantamount to replacing uα and u1−α in (3.3) by u∗

α and u∗
1−α when

r(θ; T, X1, . . . , XT ) is an approximate pivot, so that the quantile u∗
p evaluated under

F̂ can approximate the quantile under the true distribution F .
The hybrid method mentioned in Section 1 is based on reducing the nonpara-

metric family F containing F to another family F̂θ, where θ = θ(F ) is the unknown
parameter of interest. It is particularly useful in situations where the sampling dis-
tribution of the root r(θ; T, X1, . . . , XT ) may depend on θ but is approximately
constant over {F ∈ F : θ(F ) = θ}, as in group sequential clinical trials studied by
Chuang and Lai [6] and in possibly nonstationary first-order autoregressive models
considered in Section 5 of Chuang and Lai [7]. Applying the exact method to the
family {F̂θ} yields the hybrid confidence set

(3.5) {θ : ûα(θ) < r(θ; T, X1, . . . , XT ) < û1−α(θ)}.

Note that hybrid resampling is a generalization of bootstrap resampling that uses
the singleton {F̂} as the resampling family.

In the following simulation studies we compare the hybrid confidence interval
(3.5); the bootstrap confidence intervals Boot(R0) and Boot(R1) that use R0 and
R1, respectively, as the root in (3.4); their direct normal approximation counterparts
(3.1) and (3.2), denoted by Normal(R0) and Normal(R1), respectively; the exact
confidence interval (3.3); and Woodroofe’s [25] interval, denoted by Normal(R),
that uses the normal approximation to the renormalized pivot R(µ) in (1.5) derived
under the parametric model. The quantiles in the bootstrap (or hybrid) confidence
intervals are computed from 1000 samples drawn from F̂ (or F̂θ).

Example 2. Let X1, X2, . . . be i.i.d. N(µ, 1) random variables and let T be the
stopping rule of the form (2.1a,b) with g(x) = x2/2, a = 4.5, n1(a) = 15 and
n0(a) = 75. This corresponds to [4] repeated significance test (RST) of H0 : µ = 0
that stops sampling at T = inf{n ≥ 15 : |Sn| ≥ 3

√
n} ∧ 75. Table 2 gives the

coverage errors of the upper (U) and the lower (L) confidence bounds for µ following
the RST, constructed by the various methods reviewed above with the nominal
coverage error α = 5%. Each result is based on 10000 simulations. It shows that the
hybrid confidence limits have coverage errors similar to those of the exact method
(which should be 5%, with departures from 5% due to the Monte Carlo sampling
variability). Woodroofe’s method using normal approximation for the pivot R also
works well, except for a case (µ = 1.2). While the normal confidence interval (3.1)
using R0 as the pivot has inaccurate coverage for certain values of µ, the confidence
interval (3.2), which uses R1 as the pivot, and the bootstrap confidence intervals
Boot(R0) and Boot(R1) show substantial improvement.

Example 3. The “exact” method for constructing the confidence interval (3.3)
requires precise specification of a one-parameter family Fθ, which we have assumed
to be N(θ, 1) in Example 2. Woodroofe’s pivot R(µ) is also derived under such para-
metric assumption. On the other hand, the pivots R0(µ) and R1(µ) can be derived
nonparametrically. Suppose the underlying distribution F is actually a mixture of
N(µ, 1) and µ + (Exp(1)− 1), putting mixing probability 0.2 on N(µ, 1) and 0.8 on
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Table 2.
Coverage errors (in %) for confidence limits of a normal mean µ

Exact Hybrid Normal(R0) Boot(R0) Normal(R1) Boot(R1) Normal(R)

µ L U L U L U L U L U L U L U
0.0 5.29 5.19 4.85 5.64 5.51 5.49 3.55 3.44 4.95 5.25 6.14 6.28 5.51 5.49
0.2 5.19 4.79 5.44 4.76 11.47 4.77 9.40 3.78 5.86 5.33 5.61 4.23 5.01 4.77
0.4 4.96 4.67 5.26 5.14 5.68 4.61 5.75 4.54 5.55 4.85 5.64 4.54 5.66 4.61
0.6 5.02 5.04 5.43 4.68 5.01 2.61 5.12 2.96 4.76 5.27 5.12 6.22 5.01 4.57
0.8 5.08 4.75 4.69 5.20 5.06 2.77 5.10 3.44 4.90 5.50 5.10 4.14 5.06 4.54
1.0 5.13 5.14 4.98 4.80 5.11 3.18 4.86 4.69 4.91 6.35 4.86 4.77 5.11 5.30
1.2 4.86 5.07 4.73 5.29 4.86 3.66 4.97 7.09 5.07 3.59 4.97 3.26 4.86 3.66
1.6 4.84 5.03 5.30 4.79 4.87 5.02 4.78 6.40 4.84 5.11 4.78 6.32 4.87 5.02



54 T. L. Lai, Z. Su and C. S. Chuang

the other component of the mixture distribution, where Exp(1) denotes the expo-
nential distribution with mean 1. Although the mixture distribution still has mean
µ and variance 1, the skewness of the exponential component adversely affects the
coverage errors of the “exact” confidence interval that assumes normality and those
of the confidence intervals based on the normal approximation to R(µ), R0(µ) and
R1(µ), respectively, as shown in Table 3 that uses the same stopping rule as that
of Example 2, α = 5% and 10000 simulations to compute each coverage error.
The bootstrap confidence interval Boot(R1) shows substantial improvement and
the hybrid confidence interval performs even better.

Example 4. The stopping rule T in Examples 2 and 3 is associated with the
RST when the variance is known. In the case of unknown variance, an obvious
modification is

(3.6) T = inf{n ≥ 15 : |Sn|/σ̂n ≥ 3
√

n} ∧ 75,

where σ̂2
n = n−1

∑n
i=1(Xi − X̄n)2. Note that T is still of the form (2.1a,b), with

a = 4.5 and g : R × (0,∞) → [0,∞) defined by

g(η, b) =
{

η2/{2(b − η2)} if b ≥ η2,
0 otherwise,

since ng(
∑n

1 Xi/n,
∑n

1 X2
i /n) = S2

n/(2nσ̂2
n). Let µ = EX and µj = EXj for

j ≥ 1. Then the covariance matrix of (X, X2)′ has µ2 − µ2 and µ4 − µ2
2 as its

diagonal elements, and its off-diagonal elements are both equal to µ3 − µµ2. More-
over, (∇g)(µ, µ2) = (µµ2,−µ2/2)′/(µ2 −µ2)2. To construct confidence intervals for
µ in the case of unknown variance, the bias-corrected pivot R1(µ) in (2.15) can
be computed easily by setting ∇h(µ, µ2) = (1, 0)′ in (2.12), which corresponds to
h(µ, µ2) = µ. Table 4 gives the coverage errors of the confidence limits for µ, using
R0 and R1, respectively, and also by bootstrapping R1. The quantiles t(R0) and
t(R1) of the t-distribution with T degrees of freedom for the pivots R0 and R1 are
used in lieu of normal quantiles, following Woodroofe and Coad [28, Section 4].
Again, α = 5% and each result is based on 10000 simulations. It shows consider-
able improvement of Boot(R1) over the confidence limits based on t-distribution
approximations for the approximate pivots R0 and R1.

4. Conclusion

In their discussion on pp. 33–36 of [7], Woodroofe and Weng have given some
comparative studies of the hybrid method with the approach based on very weak
expansions for constructing confidence intervals following group sequential tests.
Their simulation studies have shown that the expansions “do not work very well
for the repeated significance tests in Example 1 of the paper” and that “with
large horizons, however, expansions work very well for triangular tests in which
g(x) = δ + |x|.” They also raised the issue concerning “robustness with respect
to the normality assumption.” Their approach based on very weak expansions was
subsequently extended by Morgan [16] to more general group sequential tests. This
paper continues their investigation in other directions. First we consider fully se-
quential instead of group sequential tests. Secondly, we show the robustness of the
bias correction, which Woodroofe derived by very weak expansions, by rederiving
it without the parametric assumption. Thirdly, instead of applying directly normal
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Table 3.
Coverage errors in (%) for confidence limits of the mean µ of a mixture of normal and exponential distributions

Exact Hybrid Normal(R0) Boot(R0) Normal(R1) Boot(R1) Normal(R)

µ L U L U L U L U L U L U L U
0.0 5.69 4.61 4.67 5.27 5.98 4.84 3.45 3.83 5.93 3.86 4.64 6.13 5.98 4.84
0.2 7.43 4.52 4.95 6.17 13.70 4.49 10.42 4.60 8.65 4.62 6.51 4.61 7.39 4.49
0.4 7.15 4.59 4.84 6.37 7.96 4.49 6.40 5.01 7.69 4.07 6.30 5.01 7.63 4.49
0.6 6.15 4.74 4.82 6.09 6.13 2.49 5.52 3.12 6.53 4.56 5.52 6.47 6.13 4.29
0.8 6.32 4.84 5.09 5.73 6.32 2.58 5.53 3.69 6.33 4.92 5.53 4.63 6.32 4.62
1.0 5.88 4.06 5.10 5.72 5.86 2.34 5.16 3.63 6.20 4.79 5.16 4.61 5.86 4.22
1.2 6.63 3.93 5.18 5.95 5.63 2.33 4.97 5.38 6.17 3.16 4.97 2.37 5.63 2.33
1.6 5.83 3.90 5.06 5.85 5.85 3.90 5.29 4.66 5.90 3.10 5.29 4.66 5.85 3.90

Table 4.
Coverage errors (in %) of confidence limits for the mean µ of a normal distribution (left panel) and a mixture of normal and exponential distributions (right

panel) when the variance is unknown

Normal distribution Mixed normal-exponential

t(R0) t(R1) Boot(R1) t(R0) t(R1) Boot(R1)

µ L U L U L U L U L U L U
0.0 5.85 5.87 6.02 6.12 4.98 3.66 3.41 12.10 3.98 11.56 3.51 6.71
0.2 12.89 5.25 7.56 5.19 5.54 3.52 7.26 8.02 4.00 7.42 5.81 3.26
0.4 5.59 5.04 6.37 4.80 6.42 4.82 3.64 6.94 3.02 6.87 5.98 4.83
0.6 5.32 3.03 5.88 5.75 5.75 5.48 2.52 6.51 2.58 9.10 5.64 6.45
0.8 5.80 3.59 5.83 6.55 5.90 5.52 2.45 9.77 2.69 10.41 6.50 6.32
1.0 5.69 4.58 5.52 6.40 4.89 5.13 2.43 10.66 2.50 10.91 5.25 5.62
1.2 5.49 5.28 5.80 5.85 5.65 4.20 2.46 10.36 2.82 10.67 5.54 5.38
1.6 5.46 5.64 5.55 5.74 6.11 4.69 2.34 10.33 2.34 10.70 5.38 4.96
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approximation to the bias-corrected pivot, we use it as the root for constructing
bootstrap confidence intervals. Simple bootstrapping indeed substantially reduces
the computational cost of the hybrid method. Our conclusion from the comparative
studies in Section 3 is that at the expense of greater computational cost, the hybrid
method still provides the most reliable confidence intervals. Moreover, it is also
much more versatile and can handle complex statistical models, as recently shown
by Lai and Li [13] for the problem of valid confidence intervals for the regression
parameter of a proportional hazards model following time-sequential clinical trials
with censored survival data.
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