
4 The Minimal Surface Equation 

Sometimes our surface is a graph over a domain Q C R 2 , i.e., (x, y, z) E X(M) is 
expressed as z = z(x, y), (x, y) E S1. Moreover, locally we can always treat a "small 
piece" of surface as a graph. Thus we need know the differential equation governing z, 
the minimal surface equation, in order to derive more information. 

To derive the minimal surface equation we use the following equivalent form of D.x, 

2 

D.xX = l)T;T;X- ('VTJ;)X], (4.7) 
i=l 

where (T1 ,T2)(p) is an orthonormal frame of TpM in the induced metric by X and 
\7 TiT; = ( DTi T; f is the covariant differential, in our case, namely the tangent part of 
DTiT;. 

Our surface can be written as 

X(x, y) = (x, y, z(x, y)), (x, y) ED. 

Thus Xx = (1, 0, zx) and Xy = (0, 1, zy)· We will take the upward normal 

T2 =dx-1 [( 
1 +z; ) 112 (x -~xx)] 

1 + z2 + z2 Y 1 + z 2 
X y X 

By (4.7) and (2.1), 

[ Xxx z;z~Xxx 2zxzyXxy (1 + z;)Xyy "'j N --+ - + • 
1 + .,2 (1 + z2 ) (1 + z 2 + z2 ) 1 + z2 + z2 1 + .,2 + z2 "'-'x X X y X y NX y 

[ 1 + z~ X _ 2zxzy X 1 + z; X ] N 
1 + z2 + .,2 xx 1 + z2 + z2 xy + 1 + z2 + z2 YY • . 

X "-y X y X y 

Since Xxx = (0, 0, Zxx), Xxy = (0, 0, Zxy), and Xyy = (0, 0, Zyy), we have 
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This can be written as 

H D . Dz 
2 = IV (1, + 1Dzl2)1/2 

0 Zx -0 Zy - + - -,---~=----,-,--,-ax (1 + z; + z~)l/2 ay (1 + z; + z~)l/2. 

We get the minimal surface equation 

(4.8) 

or 
D . Dz 

IV (1 + 1Dzl2)1/2 = 0. (4.9) 

In general, if H = H(x, y) is a given function, then the prescribed mean curvature 
equation is defined as 

or 
D . Dz H 

IV (1 + 1Dzl2)1/2 = 2 . 

(4.10) 

(4.11) 

Equations (4.8) and (4.10) are second order elliptic equations. We will see that 
they play an important role in the study of minimal, or more generally, constant mean 
curvature surfaces. 

For example, let 0 c R 2 be a C2 simply connected domain, ¢ E C 0 (80). Then 
(x, cp(x)) defines a Jordan curve (continuously embedded closed curve) r in R 3 , where 
x E 80. We want to find a minimal surface bounded by r. So consider the Dirichlet 
problem 

{ 
(1 + u~)u. xx- 2uxUyUxy + (1 + u;)uyy = 0, 

ulan=¢, 

in 0; 
(4.12) 

on 80. 

A solution of ( 4.12) will give us a minimal graph, which is a minimal surface bounded 
by r. From the theory of PDE we know that 

Theorem 4~1 The Dirichlet problem (4.12} is solvable for arbitrary¢ E C 0 (80) if and 
only if 0 is convex. 

See for example, [21], Theorem 16.8. 
A very important problem in minimal surface theory is the Plateau problem which 

asks: is there a simply connected minimal surface bounded by a given Jordan curve f? 
In general there are alway solutions to the Plateau problem as long as r is rectifiable, 
that is, has finite arc length. We are not going to discuss the Plateau problem in these 
notes. 

There is a general theorem which says that for certain elliptic equations (including 
the minimal surface equation) the solution is real analytic. A simple proof of this fact 
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for the minimal surface equation (2-dimensional) can be found in [61], §131 on page 
.. 125. The proof there uses special isothermal coordinates (see the next section), which 

shows that for the minimal surface, we do not need to call on the classical isothermal 
coordinate theorem. 

One application of real analyticity is that if two minimal surfaces coincide in a piece 
of surface, then they must be essentially the same. 

Theorem 4.2 (Extension Theorem) Suppose X : M '---+ R 3 andY : N '---+ R 3 are 
two connected minimal surfaces. If there are open sets U C M and V C N such that 
X(U) = Y(V), then X(M) U Y(N) is contained in a (perhaps larger) minimal surface. 

Proof. We prove that X(M) U Y(N) is an immersed surface. To prove this we define 
A c X(M) n Y(N) such that x E A if and only ifthere is a small ball Bin R 3 centred 
at x and either X(M) nBc Y(N) n B or Y(N) nBc X(M) n B. By our hypothesis, 
A =f. 0. We need only prove that A is closed in X(M) n Y(N), since then clearly 
AU X(M) and AU Y(N) are both immersed surfaces. 

First assume that X and Y are embedded. 
If A is not closed, then there is a point p E (A~ A) n X(M) n Y(N). Thus there is 

a sequence { Xn} C A such that limn-+= Xn = p and p E X ( M) n Y ( N). By definition 
of A, locally X(M) and Y(N) coincide at Xn, hence X(M) and Y(N) have the same 
tangent plane at Xn· Taking limits, we know that X(M) and Y(N) have the same limit 
tangent plane at p E X(M) n Y(N). After a rotation and translation if necessary, we 
can assume that p = (0, 0, 0) and the common tangent plane of X(M) and Y(N) at pis 
the xy-plane. Then in a small disk Din the xy-plane centred at (0, 0), X(M) and Y(N) 
are graphs over domains 0 1 c D and 0 2 c D such that (0, 0) E 0 1 n02 . Thus there are 
u and v satisfying the minimal surface equation on 0 1 and 0 2 respectively, such that 
(x, y, u(x, y)) represents X(M) and (x, y, v(x, y)) represents Y(N). By definition of p, 
we know that there is an open subset Q C of 0 1 n 0 2 on which u = v. But u and v are 
real analytic, so u = v on 0 1 n 0 2 . Hence both u and v can be extended to 0 1 u 0 2 , 

and represent the same surface. This is a contradiction to the assumption p ~ A. Thus 
A is closed in X(M) n Y(N). 

If X or Y is not an embedding, first consider the local version of the proof, then 
modify the definition of A at multiple points of R 3 , i.e., at points which are images of 
more than one point of M or of N. 

The proof then is complete. D 

Definition 4.3 An equiangular system of order kat a point q E C consists of k curved 
rays --y1 , --y2 , · · ·, /'k emitting from q such that any two adjacent rays intersect at q with 
angle 21T / k. 

Theorem 4.4 Let X : M '---+ R 3 and Y: N '---+ R 3 be two minimal surfaces and x E 

X ( M) n Y ( N) be such that X ( M) and Y ( N) at x have the same tangent plane P. Then 

16 



either X(M) and Y(N) are part of a (maybe larger) minimal surface or the orthogonal 
projection of X(M) n Y(N) on P forms an equiangular system of even order k ~ 4. 

Proof. By a rotation and translation, we may assume that x = (0, 0, 0) and P is the 
xy-plane. Then there is a disk DC P centred at (0, 0) such that X(M) and Y(N) are 
graphs given by u : D -+ R and v : D -+ R respectively. Moreover, since P is the 
common tangent plane, Du = Dv = (0, 0) at (0, 0). 

Let w = v - u, then by real analyticity, w satisfies 

00 

W = L p(n)(x, y), k ~ 2, 
n=k 

where 
P (n)( ) - l:n 1 anw ( ) i n-i 

x,y- .1( ')!>:~'>:~. O,Oxy 
i=O 2. n - 2 . u'xun-•y 

is a homogeneous polynomial of degree n. If p(nl(x, y) = 0 for n ~ 2, then u = v in D. 
By Theorem 4.2, X(M) and Y(N) are part of a (maybe larger) minimal surface. 

If p(nl(x, y) '¥= 0 for some n ~ 2, then let k be the smallest n such that p(n) '¥= 0. In 
this case, we say that X(M) and Y(N) has k- 1 contact. 

Now since u and v satisfy the minimal surface equation, we have 

~w ~v-~u 

2 2 2 2 2 2 VxVyVxy- UxUyUxy- VyVxx + UyUxx- VxVyy + UxUyy 

-U~Wxx + (u~- v;)Vxx- u;Wyy + (u;- v;)vyy + 2UxUyWxy- 2(UxUy- VxVy)Vxy 

-U~Wxx + (uy + Vy)(uy- Vy)Vxx- u;Wyy + (ux + Vx)(ux--:- Vx)Vyy 

+2uxUyWxy- 2[vx(Uy- Vy) + (ux- Vx)uy]Vxy 

-U~Wxx- (uy + Vy)VxxWy- u;wyy- (ux + Vx)VyyWx 

+2uxUyWxy + 2VxVxyWy + 2UyVxyWx = O(rk), 

where r = (x2 + y2) 112 • The last equality comes from the fact that Du = Dv = (0, 0) 
at (0, 0) and w = O(rk). By 

~p(n) = O(rn-2 ) and ~ w = O(rk), 

we have that 
~p(k) = O(rk-1). 

Since ~p(k) is a polynomial of degree at most k- 2, it must be the case that ~p(k) = 0, 
that is, p(k) is a harmonic polynomial. 

Now p(kl(x, y) = RH(z), where H is a holomorphic function, R denotes the real 
part, and z = x + iy. Since p(k) = O(rk), we can choose H such that H(z) = zk F(z), 
where F(O) # 0. In a smaller disk contained in D, (F(z)) 1fk is well defined, hence let 
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( = z(F(z)) 1fk, then H(z) = (k. ·Let ( = pei'l/1 = ~ + iry, we have p(k} = 'iRH(z) = 
·· pk cos(k'l/;). Thus the zero set of p(k} is an equiangular system of even order 2k 2: 4. 

Since w = p(k)(x, y) + I::=k+l p(n)(x, y) is analytic and I::=k+l p(nl(x, y) = o(rk), 
the zero set of w also consists of an equiangular system. 

The projection of X(M) n Y(N) around (0, 0, 0) on P is exactly the zero set of w. 
The proof of the theorem is complete. D 

Corollary 4.5 Let X(M) be a non-planar minimal surface, p E X(M) and P = 
TPM C Tx(p)R3 . Then X(M) n P consists of an equiangular system of even order 
at least 4. 

Proof. This is the special case that P is the minimal surface Y ( N). D 

Remark 4.6 Theorem 4.4 and Corollary 4.5 are called maximum (or comparison) prin­
ciple for minimal surface. Together with Theorem 4.2 it follows that two minimal 
surfaces cannot touch each other at isolated interior points. 
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