1 Introduction

The theory of minimal submanifolds is a fascinating field in differential geometry. The
simplest, one-dimensional minimal submanifold, the geodesic, has been studied quite
exhaustively, yet there are still a lot of interesting open problems. In general, minimal
submanifold theory deeply involves almost all major branches of mathematics; analysis,
algebraic and differential topology, geometric measure theory, calculus of variations,
and partial differential equations, to name just a few of them.

In these lecture notes our aim is quite modest. We discuss minimal surfaces in
R?, and concentrate on the class of the embedded complete minimal surfaces of finite
topological type.

I intend to introduce minimal surfaces with the minimum preliminary requirements.
A student who has basic knowledge of differential geometry of curves and surfaces in
R? and of complex analysis will be able to understand and grasp the material supplied
in these notes. I hope these notes will introduce one into a very old but still rapidly
growing field of mathematics, and via it to go much further.

We begin with the definition of minimal surfaces in the setting of parametrised
surfaces. We define minimal surfaces as conformal harmonic immersions from two di-
mensional manifolds to R?. Then we give the proof of the equivalence of this definition
to that that the mean curvature of the surface is zero everywhere. After that, we in-
troduce the first variation of surface area, also in the setting of parametrised surfaces,
to show that a surface is minimal if and only if it is a stationary point of the area
functional. Then we introduce the minimal surface equation and use it to prove several
classical theorems of minimal surfaces, such as the maximum principle, the extension
theorem, the reflection and rotation theorem, etc. One of the most important features
of the theory of minimal surfaces in R®, which is quite different from the general case
of minimal submanifolds in Riemannian manifolds (even in R", n > 3), is the Enneper-
Weierstrass representation. This representation connects minimal surfaces in R? to one
variable complex analysis. We introduce the Enneper-Weierstrass representation imme-
diately after the necessary preparations and try to use it consistently throughout these
notes.

The most interesting minimal surfaces in R? are complete and are divided into two
groups according to whether the total curvature is finite or infinite. We mainly discuss
complete minimal surfaces of finite total curvature. We prove the classical theorem of
Osserman (Theorem 10.8) about such surfaces. Then we further discuss the annular
ends of such surfaces. After introducing the concept of flux (a formula based on Stokes’
theorem), we prove a theorem of Lépez and Ros about uniqueness of the catenoid.

A major part of these notes is devoted to the work of Hoffman and Meeks about
global properties of complete minimal surfaces in R3. In particular, we introduce the
Halfspace Theorem, the Cone Lemma, the standard barriers and the Annular End
Theorem, and the partial classification of the conformal type of such surfaces.

An annular end of a complete minimal surface is a minimal annulus with compact



boundary. In the last part of these notes we discuss minimal annuli. We first introduce
results of Osserman and Schiffer, including the isoperimetric inequality for minimal an-
nuli. Then we concentrate on minimal annuli in a slab, proving Shiffman’s theorems and
some generalisations. For this we first introduce the second variation of area functional
and the concept of stability of minimal surfaces. We finish these notes with Nitsche’s
conjecture and two partial results. Recently, Pascal Collin [6] gives a proof of Nitsche’s
conjecture, I am regret that I cannot add it to these notes since the proof is quite
involved and Collin’s paper has not been published yet.

To help readers not familiar with PDE, we include an appendix on the eigenvalue
problem of linear second order elliptic differential operators.

In these notes, we emphasize the close relation between minimal surfaces in R? and
complex analysis. This makes the theory of minimal surfaces in R? both much simpler
and more beautiful. But the draw back is that the methods are hardly generalisable to
the study of general minimal submanifolds in Riemannian manifolds. Nevertheless, by
its simplicity and beauty, the complex analysis method, via the Enneper-Weierstrass
representation, deserves to be emphasized. Thus we work with isothermal coordinates
and whenever possible, we try to express and analyse geometric quantities via the
Enneper-Weierstrass representation. Using the Enneper-Weierstrass representation, we
are able to give new proofs of the total curvature formula of a complete minimal surface
of finite total curvature, and of Shiffman’s second theorem and its generalisations.

A very active part of the theory of minimal surfaces in R?® is the construction of
new embedded complete minimal surfaces. Minimal surface theory is among the old-
est branches in mathematics. For over two hundred years, the only known embedded
complete minimal surfaces of finite topology were the plane, the catenoid, and the heli-
coid. In 1984, Hoffman and Meeks started a new wave of discovery. Infinite embedded
complete minimal surfaces were constructed via the Enneper-Weierstrass representation
and with the aid of computer graphics. These discoveries stimulated a new wave of ac-
tive researches in the theory of minimal surfaces in R3. It is a regret that we cannot
discuss in detail the techniques of construction of minimal surfaces in these notes. The
interested reader is recommoned to works such as [26], [27], [31], [39], [40], [41], [80].

Some classical topics such as the Plateau problem are not discussed here since there
are already many excellent books available, for example, [9], [46], [77], [61], [37], [12].
We also do not discuss the regularity problem, which requires tools from the theory of
partial differential equations, see [12].

I would like to express the most sincere thanks to Dr. John Hutchinson, without
whose encouragement and support, careful reading and correcting my English expres-
sions in the first several drafts, and wise observations on the mathematical material,
these notes could never have been published.

These notes are based on lectures given at the ANU for a one-semester fourth year
honours course in 1994. I appreciate all of the participants for their enthusiasm in this
topic. I would like to thank Dr. John Urbas for pointing out an improved proof of
Shiffman’s third theorem.



I am much obliged to Prof. Fusheng Wei for supplying the pictures of complete
minimal surfaces in these notes.

I learned minimal surfaces from Professor David Hoffman. I will never forget his
guidance, encouragement and support.

Special thanks also go to Professor Neil Trudinger for his support and encourage-
ment.

Last, but not least, I would like to thank my wife Lin Han, without whose love,
patience and understanding, I could never have finished this job.

The author was financially supported by Australian Research Council grant A69131962
during the writing of these notes.



