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mn i m + n.

However we have proved earlier that if nt and n are = 2, then tn + n = m • it.
Thus we obtain mn = m + n.

6. Some remarks on functions of ordinal numbers

A function f(x) is called monotonic, if (x< y) -»(f(x) ^ f(y)) . It is called
strictly increasing, if

The function is called seminormal, if it is monotonic and continuous, that is
if f(lim a\) = lim t(a\), A. here indicating a sequence with ordinal number of
the second kind, i.e., without immediate predecessor, while (\i< A.2) ~*(a\l<
<*A2)-

The function is called normal, if it is strictly increasing and continuous;
| is called a critical number for f, if f(|) = £ .

Theorem 17. Every normal function possesses critical number sand in-
deed such numbers > any a.

Proof: Let a be chosen arbitrarily and let us consider the sequence a,
i(a), I2 (a),.... Then if a^= lim fn(o), we have f(aw) = f (lim (fn(a)) = lim

(a) = aw, that is, a^ is a critical number for f.

Examples.

1) The function 1 + x is normal. Critical numbers are all x = w + a, a
arbitrary.

2) The function 2x is normal. Critical numbers are all of the form wa,
a arbitrary.

3) The function wx is normal. Critical numbers of this function are
called £ -numbers. The least of them is the limit of the sequence

I will mention the quite trivial fact that every increasing function f is
such that f(x) = x for every x.

Theorem 18. Let g(x) ~ x for all x and a be an arbitrary ordinal; then
there is a unique semi-normal function f such that

f(0) = or, f (x-f l )=g(f(x)) .

Proof clear by transf inite induction.

Theorem 19. Iff is a semi-normal function and /3 is an ordinal which
is not a value off, while f possesses values < )3 and values >#, then
there is among the x such thatf(x) < $ a maximal one XQ such that
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Proof trivial, because if i(x\) < j3 for all A. in a sequence without last
element, then

f(limxx) = limf(xx) ^ |3,

but the equality sign is excluded.
Let A be a set of ordinal numbers without maximal element. A subset

B is said to be closed in A, if every limit of a sequence in B is eB, if it is
eA. If B is closed in A and cofinal with A it is called a band of A.

Remark. Every band consists of the values of a normal function, and the
inverse is true, if the set of the arguments is cofinal with A.

Theorem 20. If M and N are bands of A, so is M U N.

Proof. Of course M U N is cofinal with A. An arbitrary sequence S in
M U N without last element is either such that from a certain point on all
elements belong to M say, then the limit is in M; or there are always greater
elements both in M and in N, and then there is a common limit in M and N.

Theorem 21. If M and N are bands of A and A is as already indicated
without last element, but not cofinal with a;, then M n N is a band of A.

Proof. We assume that after a certain a0e M there are no common ele-
ments in M and N. Then we have an increasing sequence thus:

c&n+1 is the first element of N which is > a2n

Qf2n+2 M which is > a2n+1 .

Then lim an is e A and therefore eM and eN which is contrary to the
n <o;

assumption.

Theorem 22. Letf(a,ff) be normal with respect to ft Then it is not an
always increasing function with respect to a .

Proof. If ai < a2, then the normal functions f(0i,/3) and f(a2,j3) of )3 have
a common critical value | according to the last theorem so that f(<*i ,|) =
f (ft,{) ={•

Let us however, following E. Jacobsthal, consider the functions having
the following two properties:

1) f(a,/3) is for constant a a normal function of j3

2) f(a,/3) is for constant /3 a monotonic function of a with f(a,/3) >a.

Further let us call fi a generating function for f when

i(a,p+l)=i1(i(a,($), a).

This equation together with f(a,0) defines f when f is continuous.

Theorem 23. If f\ has for a >!,&>! the property 2) and is monotonic
in ft while f is continuous andf(a,l) increasing in a, then f satisfies 1)
and 2).

Proof. When a > 1, one has f(a,l) > 1, namely t(a, 1)^ a > 1. If, for
a > 1 and ,3=1, f(a, /3) is monotonic in a and f(a,/3) > 1, then because of the
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definition of f above i(a , j8 + 1) is monotonic in a and f(a, /3 + 1) = f i (f(a,j3),
a) > f(a,j3) (see 2)). K X is a limit number, and if, for a> 1 and 1 < 0 < X,
f(a,j3) monotonic in a, then f(of,X) is monotonic in a. Thus for a > 1 and 0 >1
we have that f(of,0) is monotonic in o? and a normal function in j3. Further, for
a > 1 we have, because of f(a,l)>a, also f(af,/3)>a for 0 > 1.

Now, if one starts with 0o(#,$) = 0 + 1 and defines 0r+1(a,/3) by using
0r as generating function for r = 0,1,2 putting 0i(a, 0) = a, 02 (a, 0) = 0,
03(a,0) = 1, then we obtain

0i(a,/3) = a + ft 02(a,/3) = a • ft 03(a,j3) = aft

An immediate result is that these functions have the properties 1) and 2).

Definitions: 1) Let us say that f with generating function fi satisfies a gen-
eralized distributive law when a function f2 exists such that

(1) fi(f(a,j8), f(a,y)) =f (a,f2(f ty)) .

If f2 = fi , we say that f satisfies the special distributive law.
2) We may say that f fulfills a generalized associative law, if a function

f 3 exists such that

(2) f(f(a, j3),y) = f(a ,f3(f t y)).

If f3 = f , f satisfies the special associative law.

Theorem 24. Iff satisfies the general associative law, then f 3 satisfies
the special associative law.

Proof. K in the formula (2) we put a = f(| ,af), /3 = 01, y = yf, the formula
(2) yields

f(f ( f (S ,a f ) , j3'), y') = £ ( f ( 5 , a f ) , f3O f , r ' ) )

and by application of (2) twice on the left and once on the right side we get

f(f(!,f3(a',/3')),r') =f(£,f 3 ( f 3 (a ' , /3 ' ) , r ' ) ) = f ( « , fata1 , £3(0*, r'))).
whence because f (| , /S) is increasing in ft

and that is the special associative law for f3.

Theorem 25. Iff, being generated b y f l f satisfies both laws (1) and (2),
then /, is generating function offs and fz satisfies the special distribu-
tive law.

Proof. We have

and

f(f(a,j3), r+1) =f(a , f 3 ( f t y + 1)),

whence

£3(ft y + l ) = f 2 ( f 3 ( f t r ) , / 3 ) ,

that is f2 is generating function for f3. Further, by (1)
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f(|,f2(f3(a,/3), f3(a,y))) = £i(£U,fs(«,/3)), f(l,f3(a,y)))

which by (2),(1),(2) successively yields

£i(f(f({,fl} fj3), f(f({ fa) fy)) f Kf(S,fl)A(Ay)), f(|,f3(a,f2(fty))).

By comparison of the first and last expressions containing £ one obtains

£a(£a(a,!3)f f3(a,y)) = fa(a,fa(fty)),

that is, f3 satisfies the special distributive law.

Theorem 26. #" / is defined by fi , f(a,o) = 0 or 1, / satisfying the gen-
eralized distributive law, and iff3 is defined as a continuous function
with fz as generating function, by

fs(a,o) = 0

fs(a,j3 + D=£a(£3(ag8) , a),

then f satisfies the associative law (2).

Proof. This law (2) is valid for y = 0, because f(f(a,/3),o) = 0 or 1 and
f(a,f3(fto)) = f(a,o) = 0 or 1. If the law is valid for y, then it is valid for
y + 1, because

f(f(a,/3),y+l) = £i(£(£(«,j3),y), £(«,|8))

because of the supposition of induction = fi(f(a,f3(a,y)), f(a,/3)) = f(o,f2(f3(fty),
ft)) = f(a,f3(ft y + 1)). If the law is valid for all y < y0, yo a limit number, then
it is true for y0, because

f(f(a,j3),yo) = lim f(f(a,/3),y) = lim f(o,f3(fty)) = f(a,f3(ft y0)).
y<yo y< yo

Theorem 27. Letf be defined byfi,f(a,o) = O, A(a9o) = a or f(a,o) = I,
fi(a,l) = a, while the special associative law is valid for fi , andfi is
continuous in ft thenf satisfies the distributive law (1) with /2 (a, (3) =
a + /3.

Proof. The formula (1) is valid for y = 0, because fi(f(a,j8), f(o,o)) =
f(a,/3). Let us assume its truth for y. Then we have

£i(f(«,|3), f(a, y + 0) = £i(£(a,j3), fi(f(a,y), a)),

and since the special associative law is valid for f this becomes

fi(fi(f(0,/3), f(o,y)), ex) = fi(f(a,/3 + y, a) = f(or,)3 + y + 1).

If formula (1) with f2(a,/3) = a + ]8 is valid for all y < y0, yo a limit number,
then it is valid for y0, because

£i(£(a,j3), f(a,y0)) = lim fi(f(o,^), f(a,y)) = lim f(a,/3 +y) = f(a,/3+ro).
y<yo y<yo

Applying the last two theorems to the three elementary arithmetical
operations, 0i(a,/3) = a + ft 02(a,/3) = aft 03(a,/3) = a/3, it is seen that the as-
sociative and distributive laws of these are all derivable from the special
associative law of addition

(a + 0) + y = a + (j3 + y).
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Indeed, if we put fi = 0i , f = 02 in Theorem 27 we get

and putting fi = 0i , f2 = 0i , f = 02, fa = 02 , Theorem 26 yields

(oj3)r = or(0r).

Further, if we put fi = 02, f = 03, Theorem 27 yields

while putting fi = 0 2 , U = 0 i , f = 0s, fa = 02 one obtains, according to
Theorem 26,

7. On the exponentiation of alephs

We have seen that an aleph is unchanged by elevation to a power with finite
exponent. I shall add some remarks concerning the case of a transfinite ex-
ponent.

Since 2Ko > »0, we have (2^)*° £ N0*°, but (2**°)^° = 2K°K° = 2K°.

On the other hand 2Ko i No**0. Hence

2No _ IA NO
- NO

Of course we then have for arbitrary finite n

^>
and not only that. Let namely N0 < w = 2 °. Then

2 — NO = in

whence

m*° = 2*°,

In a similar way we obtain for an arbitrary I

for all m > 1 and ^ 2
From our axioms, in particular the axiom of choice, we have derived that

every cardinal is an aleph. Therefore 2^ a is an aleph. We can also prove

by the axiom of choice that 2 a > $a+i or perhaps = Na+i . One has never
succeeded in proving one of these two alternatives and according to a result
of GTodel such a decision is impossible. However, in many applications of set
theory it has been convenient to introduce the so-called generalized continuum
hypothesis or aleph hypothesis, namely


