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mnsm+n.

However we have proved earlier that if mt and n are =2 2, then m+n = m - n.
Thus we obtain mn = m + n.

6. Some remarks on functions of ordinal numbers

A function £(x) is called monotonic, if (x<y)— (f(x) = £(y)). It is called
strictly increasing, if

(x <y) = (=) <£(y).

The function is called seminormal, if it is monotonic and continuous, that is
if f(lim a)) = lim £f(a)), A here indicating a sequence with ordinal number of
the second kind, i.e., without immediate predecessor, while (A, < A;) — (e, . <
Q). ) N

: The function is called normal, if it is strictly increasing and continuous;
¢ is called a critical number for f, if f(¢) = &£.

Theorem 17. Ewvery normal function possesses critical numbers and in-
deed such numbers > any a.

Proof: Let a be chosen arbitrarily and let us consider the sequence q,
f(a), f*(a),.... Thenif a,=lim f%(a), we have f(a,,) = f (lim (f%(a)) = lim
n<w
f0*1 (@) = a, that is, @, 1s a critical number for f.

Examples.

1) The function 1 + x is normal. Critical numbers are all x= w+ a, a
arbitrary.

2) The function 2x is normal. Critical numbers are all of the form wa,
a arbitrary.

3) The function wX is normal. Critical numbers of this function are
called € -numbers. The least of them is the limit of the sequence
w, w? W@ .

I will mention the quite trivial fact that every increasing function f is
such that f(x) Z x for every x.

Theorem 18. Let g(x) Z x for all x and a be an arbitrary ordinal; then
theve is a unique semi-novmal function f such that

£(0) = a, f(x+1) = g(f(x)).
Proof clear by transfinite induction.
Theorem 19. If f is a semi-normal function and B is an ovdinal which
is not a value of f, while f possesses values < and values >, then

there is among the x such that f(x) < B a maximal one xo such that
J(%6) < B < f(xo + 1).
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Proof trivial, because if f(x)) < g for all A in a sequence without last
element, then

f(lim x ) = lim f(x,) = 8,

but the equality sign is excluded.

Let A be a set of ordinal numbers without maximal element. A subset
B is said to be closed in A, if every limit of a sequence in B is €B, if it is
€A. If B is closed in A and cofinal with A it is called a band of A.

Remark. Every band consists of the values of a normal function, and the
inverse is true, if the set of the arguments is cofinal with A.

Theorem 20. If M and N are bands of A, so is M UN.

Proof. Of course M U N is cofinal with A. An arbitrary sequence S in
M U N without last element is either such that from a certain point on all
elements belong to M say, then the limit is in M; or there are always greater
elements both in M and in N, and then there is a common limit in M and N.

Theorem 21. If M and N are bands of A and A is as alveady indicated
without last element, but not cofinal with w, then M N N is a band of A.

Proof. We assume that after a certain ao¢¢ M there are no common ele-
ments in M and N. Then we have an increasing sequence thus:

O2p4; is the first element of N which is > azp

Aan42 v o oo o v e e M which is > azpy, .
Then lim ap is € A and therefore €M and €N which is contrary to the
n<w
assumption.

Theorem 22. Let f(a,B) be normal with respect to B. Then it is not an
always increasing function with vespect to a .

Proof. If oy < @z, then the normal functions f(e;,8) and f(a.,B) of B have
a common critical value ¢ according to the last theorem so that f(a ,£) =

f(az,€) = £.

Let us however, following E. Jacobsthal, consider the functions having
the following two properties:

1) f(e,B) is for constant o a normal function of 8
2) f(a,B) is for constant B a monotonic function of o with f(e,8) > a.
Furfher let us call f, a generating function for f when
f(a,8 + 1) =, (f(e, B), Q).
This equation together with f(e,0) defines f when f is continuous.

Theorem 23. If fi1 has for a > 1, B > 1 the property 2) and is monotonic
in B, while fis continuous and f(a,1) increasing in a, then f satisfies 1)
and 2).

Proof. When a >1, one has f(a,1) > 1, namely f(a,1)Z o >1. K, for
a>1and 321, f(a, B) is monotonic in a and f(a,B) > 1, then because of the
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definition of f above f(a, 8 + 1) is monotonic in @ and f(a, B+ 1) = f; (f(a,h),
a) > f(a,B) (see 2)). I A is a limit number, and if, for > 1 and 1 < 8 <A,
f(a@,8) monotonic in a, then f(a,A) is monotonic in a. Thus for & >1 and 8 >1
we have that f(a,8) is monotonic in @ and a normal function in 8. Further, for
a > 1 we have, because of f(a,1) >a, also f(a,B) >a for 3> 1.

Now, if one starts with ¢o(e,8) = @ + 1 and defines ¢,.,,(a,p) by using
¢y as generating function for r = 0,1,2 putting ¢,(a,0) = @, ¢2(a,0) =0,
¢s(a,0) = 1, then we obtain

¢1(a,f) =a+8 92008 =a" B, ¢s(a,p) = ab.
An immediate result is that these functions have the properties 1) and 2).

Definitions: 1) Let us say that f with generating function f, satisfies a gen-
eralized distributive law when a function f, exists such that

(1) f(f(e,B), £a,7)) =1 (a,f2(B,7)).

If f =f,, we say that f satisfies the special distributive law.
2) We may say that f fulfills a generalized associative law, if a function
fs exists such that

(2)  (f(a, B, v) = £(a,fs(B, 7).
If f;=1£, f satisfies the special associative law.

Theorem 24. If f satisfies the general associative law, then fs satisfies
the special associative law.

Proof. If in the formula (2) we put « = £(£,a"), 8= 8", ¥ = 7", the formula
(2) yields

(f(f(£ , a"), B, ¥') = £(£(§ ,a"), £3(8', ¥ "))
and by application of (2) twice on the left and once on the right side we get
£(£(£ ,£s(a', M), ¥") = £(£ ,£5(fs(a", 8, ¥") = (£ ,fa(a', fa(a', ¥"))).
whence because f(¢, 8) is increasing in B.
f5(fs(a", 8, 7" = f3(a", £3(8', ¥")).
and that is the special associative law for f£s.

Theorem 25. If f, being genevated by f,, satisfies both laws (1) and (2),
then f, is generating function of fs and fs satisfies the special distribu-
tive law.

Proof. We have
(f(a,B), ¥ +1) = £1(£(£(e, B), 7), f(a, B) = £1(£(o,f3(B,7)), if (@, ) = £(a,f2(£5(B,7), )
and
(f(a,8), v+ 1) = f(a,fs(B, ¥ + 1)),
whence
fs(B, v+ 1) = £2(£5(8,7), B),
that is f; is generating function for f;. Further, by (1)
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f(¢, fa (fa(a,p), fs(a, ) =1, (f(E,fs(a,B)), f('é,fs(d,'}’)))
which by (2),(1),(2) successively yields
f, (£(£(¢, 0),B), £(£(£,0),7)), f(i(£,0),£2(B,7)), (£, fs(a,f2(B,7)).
By comparison of the first and last expressions containing ¢ one obtains
f2(fs(a,B), f3(a,7)) = f3(a,f2(B,¥)),
that is, f; satisfies the special distributive law.

Theorem 26. If f is defined by f,, f(a,0) = 0 or 1, f satisfying the gen-
ervalized distributive law, and if fs is defined as a continuous function
with f. as generating function, by

fs(a,o) =0
f3(a,8 + 1) = f2(fs(a,8), a),
then f satisfies the associative law (2).

Proof. This law (2) is valid for ¥ = 0, because f(f(a,8),0) = 0 or 1 and
f(a,f3(B,0)) = £(a,0) = 0 or 1. I the law is valid for 7, then it is valid for
v + 1, because

f(f(a,B); Y+ 1) = fl (f(f(apB), 7)’ f( a’ B))

because of the supposition of induction = f, (f(a,f5(a,7)), f(q,p) = f(a,f. (f3(8,7),
B) = f(a,f3(B, v+ 1)). If the law is valid for all y < 7o, % 2 limit number, then
it is true for yo, because

f(f(a,B),70) = lim £(f(e,B),7) = lim £(a,f3(B,7)) = f(a,f3(B, 10)).
¥<% < %o

Theorem 27. Let f be defined by f1, f(@,0) =0, fi(a,0) = a or f(a,0) = 1,
fi(a,1) = a, while the special associative law is valid for f,, and f, is
continuous in B; then f satisfies the distrvibutive law (1) with f,(a,B) =
a+ B

Proof. The formula (1) is valid for ¥ = 0, because f;(f(a,p), f(q,0)) =
f(a,8). Let us assume its truth for y. Then we have

fl (f(a’ﬁ), f(a; Y + 1)) = f1 (f(a’B)’ fl (f(a,'}'), a)),
and since the special associative law is valid for f this becomes
f1(f: (£(e,B), (7)), @) = f1(f(a,B + 7, @) = f(a,B + ¥ + 1).

If formula (1) with f(e,8) = a + B8 is valid for all ¥ < yo, Yo a limit number,
then it is valid for 7y, because

f1(f(a,0), (0, 0)) = lim f,(f(a,B), f(a,¥)) = lim f(a,B +7) = f(a,B+r0).
Y<vo Y <%

Applying the last two theorems to the three elementary arithmetical
operations, ¢1(a,p) = a + B, ¢2(a,p) = @B, ¢s(a,p) = ab, it is seen that the as-
sociative and distributive laws of these are all derivable from the special
associative law of addition

(a+B +v=a+(B+7).
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Indeed, if we put f; = ¢,, f = ¢, in Theorem 27 we get
aB +ay = aB +7),

and putting f; = ¢4, f2 = ¢, f = ¢2, f3 = ¢2, Theorem 26 yields

(aB)y = a(BY).
Further, if we put f; = ¢2, £ = ¢35, Theorem 27 yields

aB- a? = aBt?,
while putting f; = ¢2, f2 = ¢,, £ =¢3, f5 = ¢, one obtains, according to
Theorem 26,

(aB) = aB?.

7. On the exponentiation of alephs

We have seen that an aleph is unchanged by elevation to a power with finite
exponent. I shall add some remarks concerning the case of a transfinite ex-
ponent.

Since 2%° > N,, we have (2N°)R° 4 NOR", but (2R°)N° = gRoRo = oNo

On the other hand 23° = 8o, Hence

8 No

2
Of course we then have for arbitrary finite n

g0 _ Mo _ g Mo

0=&°

and not only that. Let namely 8, < m < ™%, Then

a0 = 3 N0 5 o < oMo,
whence
m¥o - g%
In a similar way we obtain for an arbitrary N,
Moo N

forall m > 1 and s 2°0,
From our axioms, in particular the axiom of choice, we have derived that
every cardinal is an aleph. Therefore 28%¢ is an aleph. We can also prove

by the axiom of choice that 2“” > Ng+1 or perhaps = Ng41. One has never
succeeded in proving one of these two alternatives and according to a result
of Gddel such a decision is impossible. However, in many applications of set
theory it has been convenient to introduce the so-called generalized continuum
hypothesis or aleph hypothesis, namely



