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These notes are supplementary to the author’s lectures at the 2007
conference on Current Developments in Mathematics, held on November 16,
17 in Cambridge Massachusetts. They outline various connections between
the three subjects that are listed in the title.

My purpose in writing these notes is to give an indication of how the
Seiberg-Witten equations on a 3-dimensional manifold can see something
of the geometry of a contact 1-form. The new ideas for 3-dimensions led
the author to a proof of the 3-dimensional version of the Weinstein
conjecture [W]:

Theorem. The Reeb vector field for any given contact 1-form on any
given compact 3-manifold has at least one closed, integral curve.

The proof appears in [T1]; and [T2] says more about such integral
curves.

Very much related to the story told here is the now decade old story
explains how the Seiberg-Witten equations on a 4-dimensional symplectic
manifold see something of the symplectic structure [T3], [T4]. The three
and four dimensional stories are connected via a conjectured isomorphism
between the Seiberg-Witten Floer cohomology and Michael Hutching’s em-
bedded contact homology [H], [HS], [HT]. I say something at the end about
embedded contact homology.

A great deal was known about the Weinstein conjecture in dimension
3 prior to [T1]; much of this the pioneering work of Helmut Hofer. Hofer
proved the conjecture for a huge class of contact structures; in particular con-
tact structures with over-twisted 2-plane fields [Hof1]. He also proved the
conjecture for any contact structure on S3 and for any 3-manifold with non-
zero π2. Other recent work on this conjecture includes [ACH], [Ch], [CH],
[Ga], and [Hon]. Hofer’s ICM article [Hof2] and his reviews [Hof3], [Hof4]
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say more about Hofer’s seminal contributions and give many additional
references.

The Weinstein conjecture is still open for the generic contact manifold of
dimension greater than 3 (see, e.g., [Gi].) Even so, one of the central themes
in the 3-dimensional proof has a direct analog in dimensions greater than 3.
This is the notion of spectral flow for a Dirac operator. The Seiberg-Witten
equations supply a bridge of sorts that connects this essentially linear notion
to the very non-linear Weinstein question. There is no known analog of this
bridge in dimensions greater than 3.

What follows is an outline for the rest of this article.

(1) Gauge theory background
(a) SpinC structures
(b) Associated vector bundles
(c) Connections
(d) The Seiberg-Witten equations
(e) General properties

(2) Contact 3-manifolds
(a) The Seiberg-Witten equations and contact 1-forms
(b) The proof of the Weinstein conjecture
(c) Properties of solutions
(d) Implications

(3) Seiberg-Witten Floer homology
(a) A computation
(b) A fly in the soup

(4) Spectral flow
(a) An explicit example
(b) Spectral flow for the Dirac operator
(c) Spectral flow and the Seiberg-Witten equations
(d) Spinors with length near 1 everywhere

(5) Bounds on the energy from the spectral flow
(a) Asymptotic spectral flow
(b) The Chern-Simons functional and the energy
(c) An idealized scenario
(d) A realistic scenario

(6) Some remarks about Hutchings’ embedded contact homology
(a) Pseudoholomorphic subvarieties
(b) The definition of I
(c) The definition of δ
(d) Embedded contact homology and Seiberg-Witten Floer

cohomology

This introduction ends with an acknowledgement of the profound debt
owed by the author to Tom Mrowka, Peter Kronheimer and Michael Hutch-
ings for sharing their ideas and thoughts on the subjects in this article.
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1. Gauge theory background

This first section introduces the Seiberg-Witten equations on a three
manifold. In what follows, M is an oriented three manifold endowed with
a Riemannian metric. Those who wish to learn more about the Seiberg-
Witten equations on 3-manifolds (and 4-manifolds) are directed to the bible
of Kronheimer-Mrowka [KM].

1.1. SpinC structures. A Riemannian manifold such as M has its
oriented, orthonormal frame bundle; this a principle SO(3) bundle that
is denoted in what follows by Fr → M . A SpinC structure on M is an
equivalence class of lifts of Fr to a principle U(2) = SpinC(3) bundle. Such a
lift defines and is defined by a principle U(2) bundle over M whose projection
factors in a U(2) equivariant fashion through Fr. The set of SpinC structures
is in 1-1 correspondence with H2(M ; Z); but there is in general no canonical
pairing. Even so, the set of SpinC structures is an affine space modeled on
H2(M ; Z).

This business about SpinC structures can be seen in three dimensions
fairly explicitly given that the tangent bundle of an oriented 3-manifold has
a global frame. The choice of such a section identifies Fr with M × SO(3).
This trivialization suggests an obvious SpinC structure, this the trivial U(2)
bundle F = M × U(2). There are others. Let S → M denote a principle
U(1) bundle. The principle bundle S×U(1)U(2) is a different SpinC structure
if S is non-trivial. Here, U(1) acts on U(2) as its center. This construction
identifies the set of SpinC structures on M with the set of principle U(1)
bundles up to isomorphism. The latter set is a group that is isomorphic to
H2(M ; Z).

1.2. Associated vector bundles. Let F → M denote the U(2) bun-
dle for a given SpinC structure. Two associated, bundles play a central role.
The first is the Hermitian C

2 bundle F ×U(2) C
2 denoted in what follows by

S. The second is the principle U(1) bundle SF = F ×U(2) U(1); here U(2)
acts on U(1) via the determinant representation.

The bundle S turns out to be a Clifford module for T ∗M . This means
that there is a canonical homomorphism cl : T ∗M → End(S) that obeys the
following:

cl(a) cl(b) = −〈a, b〉I − cl(∗(a ∧ b))

cl(a)† = − cl(a)
(1.1)

Here, 〈, 〉 denotes the metric pairing, and ∗ : ∧2T ∗M → T ∗M is the
metric’s Hodge dual operator. The latter is defined with the help of the
volume 3-form d volM by the rule:

(1.2) a ∧ ∗b = 〈a, b〉d volM

Note that the multiplication rules in (1.1) are obeyed on R
3 (where S =

R
3×C

2) if cl(·) assigns the basis covectors {e1, e2, e3} to the correspondingly
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labeled Pauli matrices:

(1.3) τ1 =
(

0 i
i 0

)
, τ2 =

(
0 1

−1 0

)
, τ3 =

(
i 0
0 −i

)

There are two other maps that are associated with cl. The first is denoted
by ĉ and it defines a homorphism from S × T ∗M to S. It is defined by what
it does to a decomposable element, η ⊗ a; it sends the latter to cl(a)η. The
second constitutes a map from S ⊗ S to T ∗M ⊗R C. It sends a pair (η, ψ)
to what is denoted as η†τψ and it is defined so that 〈a, η†τψ〉 = η† cl(a)ψ.
This map is anti-linear on the first factor and linear on the second. It has
the following key properties:

ψ†τψ ∈ iT ∗M

|ψ†τψ|2 = |ψ|4
(1.4)

1.3. Connections. This section constitutes a short primer on the
subject of connections on principle bundles. Three bundles in particular
are relevant for what follows; these being Fr, F and the principle U(1)
bundle SF = F ×U(2) U(1). In any event, let π : P → M denote a princi-
ple bundle with structure group G, this a compact Lie group. The map π
induces an exact sequence

(1.5) 0 → ker(π∗) → TP → π∗TM → 0

of vector bundles over P . These bundle maps are equivariant with respect
to the action of G on P . Note in this regard that the G action on P can be
used to identify the bundle ker(π∗) with the bundle

(1.6) ker(π∗) = P × lG

where lG denotes the Lie algebra of G. This identification is equivariant
with respect to the G action on P if it is understood that G acts on lG by
its adjoint action.

A connection on P is neither more nor less than a G-equivariant splitting
of (1.5). Viewed from the perspective of (1.6), a connection on P is a
G-equivariant, linear from T ∗P to lG that restricts to ker(π∗) at any given
point as the identity map from g to itself. Let A now denote a connection on
P . The kernel of A is a G-equivariant distribution in TP that is isomorphic
to π∗TM . Note that any two connections on P differ by the pull-back via
π of a section over M of the vector bundle (P ×G lG) ⊗ T ∗M .

The curvature of A is the G-equivariant, lG-valued section of π∗(∧2T ∗M)
given by the restriction of dA to kernel(A) ⊂ TP . Being G-equivariant, it is
most profitable to view the curvature as a section, FA, over M of the vector
bundle (∧2T ∗M) ⊗ (P ×G lG). A connection is said to be flat when FA = 0.
In this case, the kernel of A defines an involutive distribution in TP .

A connection on P allows derivatives to be taken of sections over M
of any given associated bundle. Such a derivative is called the covariant
derivative. To elaborate, suppose that ρ : G → End(V ) is a representation
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of G on some finite dimensional vector space V . Use ρ to define the bundle
P ×G V = (P × V )/G where G acts as ρ on V and on P as usual. Let
s denote a section of P ×G V . Its covariant derivative as defined by A is
the section ∇As = s∗(A) of (P ×G V ) ⊗ T ∗M . The novice reader is invited
to unwind the definitions (or work in a local chart where P is trivialized)
to prove that ∇A is linear with respect to the vector bundle structure, and
obeys the Leibnitz rule ∇A(fs) = f∇As+ s⊗df when f is a function on M .

There is a unique connection on the frame bundle Fr determined by
the chosen Riemannian metric. This is the Levi-Civita connection; it is
characterized as follows: Let s denote a section of T ∗M . Then ∇As is
a section of T ∗M ⊗ T ∗M and so anti-symmetrization defines from ∇As a
section of ∧2T ∗M . The exterior derivative of s is also a section of ∧2T ∗M .
These two sections are equal for all such s if and only if A is the Levi-Civita
connection. A connection on Fr does not by itself determine a connection
on a SpinC lift, F , of Fr. The extra data needed is a connection on the U(1)
bundle SF .

1.4. The Seiberg-Witten equations. The Seiberg-Witten equations
constitute a system of non-linear, first order differential equations for a pair
(A, ψ) where A is a connection on SF and where ψ is a section of S. There
are many versions of these equations, any two differing by a term lacking
derivatives of (A, ψ). Here is the prototype:

(1.7) ∗FA − 2ψ†τψ = 0 and ĉ(∇AΨ) = 0,

where A is the connection on F that is determined by the Levi-Civita connec-
tion and the connection A. In what follows, the operator ĉ(∇A·) is denoted
by DA. It is called the Dirac operator by virtue of the fact that when written
out on R

3, it is Dirac’s famous operator.
Note that if (A, ψ) obeys (1.7), then so does (A−2u−1du, uψ) when u is a

smooth map from M to U(1). Said differently, the space C∞(M ; U(1)) acts
on the space of solutions to (1.7). Two solutions on the same C∞(M ; U(1))
orbit are deemed to be gauge equivalent, and any given orbit is deemed to
be a gauge equivalence class. No notational distinction will be made here
between a solution to (1.7) and its gauge equivalence class.

Let Conn(SF ) denote the space of Hermitian connections on SF . The
equations that are depicted in (1.7) are the formal variational equations of
a functional on the space Conn(SF) × C∞(M; S). The latter functional has
the schematic form

(1.8) a =
1
2
cs(A) + 2

∫
M

ψ†DAψ,

where cs is the defined as follows: Fix a fiducial connection A∗ on SF . Then
write A = A∗ + â where â is a section of iT ∗M . Now set

(1.9) cs(A) = −
∫

M
â ∧ dâ − 2

∫
M

â ∧ FA∗ .
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Note that any two choices for A∗ assign the same number to any given
connection.

As mentioned above, (1.7) is the prototype for numerous versions of the
Seiberg-Witten equations. These other versions are defined with the choice
of a suitably benign function on Conn(SF) × C∞(M; S) → R that is invariant
under the aforementioned action of C∞(M ; U(1)). Here is an example of
such a function: Fix a smooth 1-form μ on M . Use eμ : Conn(SF ) → R to
denote the function

(1.10) eμ = −2i

∫
M

μ ∧ FA.

The Kronheimer-Mrowka bible [KM] describes a Banach space of “suitably
benign” functions. In any event, let e denote such a C∞(M ; U(1))-invariant
function. The formal variational equations for the function a + e give an
allowed, perturbed version of the Seiberg-Witten equations. For example,
the pair

(1.11) ∗FA − (2ψ†τψ − i ∗ du) = 0 and DAψ = 0

are the variational equations of a + eμ.

1.5. General properties. The space of solutions to (1.11) is either
empty or infinite dimensional. Indeed, if (A, ψ) solves (1.11), then so does
(A − 2u−1du, uψ) for any map u ∈ C∞(M ; U(1)). However, the following
is true:

Lemma 1.1. Fix a SpinCstructure and a 1-form μ. Then the space of
gauge equivalence classes of solutions to the corresponding version of (1.11)
is compact. Moreover, if μ is suitably generic, then there is but a finite set
of such gauge equivalence classes of solutions to (1.11).

The key to the proof of the lemma’s compactness assertion is the
Bochner-Weitzenboch formula for DA

2ψ. What follows is the formula for a
Dirac operator defined by any given metric on M and any given connection
A on SF , and with ψ any given section of S:

(1.12) DA
2ψ = ∇A

†∇Aψ − 1
4
cl(∗FA)ψ +

1
4

R ψ

Here, R denotes the scalar curvature of the metric.
To see how this formula is used, suppose that (1.12) holds. Then (1.12)

implies that |ψ|2 obeys

(1.13)
1
2
d†d|ψ|2 + |∇Aψ|2 +

1
2
|ψ|4 +

1
4

R|ψ|2 = 0.

An application of the maximum principle to (1.13) implies that |ψ| is zero
when M has non-negative scalar curvature. In general, (1.13) implies that
|ψ|2 ≤ 1

2 supM R. The analogous Weitzenboch formula when (1.11) holds
gives a pointwise bound for ψ that depends only on the scalar curvature
and the supremum norm of dμ.
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A bound on the sup norm of |ψ| gives apriori bounds for the L2 norms
of |FA| and |∇Aψ|. What with Uhlenbecks theorem in [U], the latter can
be parlayed using standard elliptic bootstrapping arguments to give local,
uniform bounds on any given Ck norm for A and ψ. Such bounds imply the
compactness assertion. The details of this can be found in the Kronheimer-
Mrowka bible.

The Kronheimer-Mrowka bible also explains how the Sard-Smale theo-
rem [Sm] can be used to prove that there are only a finite set of equivalence
classes of solutions to (1.11) if μ is chosen in a suitably generic fashion.

2. Contact 3-manifolds

A 1-form, a, on a 3-manifold is deemed a contact form when a ∧ da
is nowhere zero. It is customary to orient M so that a ∧ da is a positive
multiple of the volume 3-form. The 2-form da has everywhere 1-dimensional
kernel. In particular, there is a unique vector field, v, with da(v, ·) = 0 and
a(v) = 1. This is called the Reeb vector field. The purpose of this section is
to indicate how the Seiberg-Witten equations detect closed integral curves
of Reeb vector fields.

2.1. The Seiberg-Witten equations and contact 1-forms. Fix
now a contact 1-form a on M . Here it is assumed that a ∧ da > 0. One can
now choose a Riemannian metric on M such that ∗da = 2a and such that
|a| = 1. Fix such a metric. Let F → M denote the principle SpinC bundle
for a chosen SpinC structure on M . The 1-form a also supplies a 1-parameter
family of allowed perturbations to the Seiberg-Witten equations. This fam-
ily is indexed by r ∈ [1,∞). The basic version has the form

(2.1) ∗FA − 2r(ψ†τψ − ia) = 0 and DAψ = 0.

The generic version adds −i ∗ dμ to the right hand side of the equation for
∗FA where μ is a fixed, r-independent 1-form. The very large r versions of
(2.1) and its −i ∗ dμ perturbations are sensitive to the contact structure a
and the integral curves of v. This is made precise in the upcoming Propo-
sition 2.1. This proposition provides the link between the Seiberg-Witten
equations and integral curves of v.

Proposition 2.1 refers to a splitting of S into eigen-subbundles for the
endomorphism cl(a). This splitting is written as

(2.2) S = E ⊕ EK−1,

where the convention has cl(a) acting as i on the left most subbundle and
as −i on the right most. The complex line bundle K−1 is isomorphic as
an SO(2) bundle to the 2-plane bundle kernel(a) ⊂ TM with the latter
oriented by the 2-form da. Note that the assignment of E’s first Chern
class, c1(E), in H2(M ; Z) to the given SpinC structure defines another 1-1
correspondence between the set of SpinC structures on M with H2(M ; Z).
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The proposition also refers to the μ = ra version of the functional eμ.
This is given its own name,

(2.3) E = ir

∫
M

a ∧ FA

Here now is the key result:

Proposition 2.1. Fix SpinC structure and write S as in (2.2). Sup-
pose that {rn}n=1,2,... ⊂ [1,∞) is an increasing, unbounded sequence, and
that {cn = (An, ψn)}n=1,2,... ⊂ Conn(SF ) × C∞(M ; S) is a corresponding
sequence such that (An, ψn) solves the r = rn version of (2.1) (or an −i∗dμ
perturbation) for each n. Suppose, in addition, that {supM |1−|ψn||)}n=1,2,...

is bounded away from zero and {E(cn)}n=1,2,... is bounded from above.
(A) There exists a non-empty, finite set Θ whose elements have the

form (γ, m) where γ is a closed integral curve of v and where m
is a positive integer. In this regard, distinct pairs from Θ have
distinct integral curve components. In addition, the formal sum∑

(γ,m)∈Θ mγ defines an integral homology chain that represents
the Poincaré dual to the first Chern class of the line bundle E that
appears in (2.2).

(B) The set Θ arises from a subsequence of {cn}n=1,2,... as follows:
Renumber the subsequence consecutively from one. Write the sec-
tion ψn with respect to the splitting in (2.2) as (αn, βn). Then
limn→∞ α−1

n (0) converges in the Hausdorf sense to ∪(γ,m)∈Θγ.

2.2. The proof of the Weinstein conjecture. This last proposition
raises the following questions:

• When does a sequence {rn, cn = (Anψn)}n=1,2,... ∈ [1,∞)

× (Conn(SF) × C∞(M; S)) exist such that {rn}
is unbounded and (An, ψn)obeys the r = rn version of (2.1)?

• When does a sequence of this sort exist with

{sup
M

|1 − |ψn||}n=1,2,... bounded away from zero?

• When does a sequence of this sort exist with both

{sup
M

|1 − |ψn||}n=1,2,...bounded away from zero and

{E(cn)}n=1,2,... bounded?

(2.4)

As it turns out, there is, in all cases, a SpinC structure where the answer
is always to all three questions. This implies Weinstein’s conjecture.

Section 3 addresses the first of these questions. The second question
is addressed at the very end of Section 4. Section 5 takes up the third
question. The remainder of this section describes various relevant properties
of solutions to (2.1) that are used to prove Proposition 2.1 and to answer
the questions in (2.4).
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2.3. Properties of solutions to (2.1). When (A, ψ) obey (2.1), the
Bochner-Weitzenboch identity

(2.5) ∇†
A
∇Aψ − 1

4
cl(∗FA)ψ +

1
4

R ψ = 0

leads to the modification of (1.13) that replaces |ψ|4 with r|ψ|2(|ψ|2 −
iψ† cl(a)ψ). An application of the maximum principle to the resulting equa-
tion implies

Lemma 2.2. There exists κ > 1 with the follow significance: If r ≥ 1
and (A, ψ) obeys (2.1), then |ψ| ≤ 1 + κ/r.

A somewhat more sophisticated application of the maximum principle
to (2.5) when (A, ψ) obeys (2.1) leads to:

Lemma 2.3. There exists κ > 1 such that if r ≥ 1 and (A, ψ = (α, β))
obeys (2.1), then

• |α| ≤ 1 + κ/r

• |β| ≤ κr
1
2

• |∇Aα| ≤ κr
1
2

• |∇Aβ| ≤ κ

These separate bounds for α and β are obtained by considering sepa-
rately the E and EK−1 summands in (2.5). The bounds for the covari-
ant derivatives of α and β are obtained by differentiating these summands
of (2.5).

The Dirac equation DAψ = 0 has an E and EK−1 summand given
the decomposition S = E ⊕EK−1. The E summand equates the covari-
ant derivative of α along the Reeb vector field with transversal covariant
derivatives of β and linear functions of β. What with Lemma 2.3, it implies
that

(2.6) |〈v,∇Aα〉| ≤ κ.

2.4. Implications. To see what to make of this, fix point in M and
local coordinates (t, p = (x, y)) centered at the chosen point such that t, x
and y take values in (−δ, δ) and such that v = ∂

∂t and such that { ∂
∂t ,

∂
∂x , ∂

∂y}
are orthonormal at the origin. Here, δ ∈ (0, 1

2) is some fixed, small number.
Fix δ′ < δ and for each t ∈ (−δ, δ), define Mt to be the integral over the con-
stant t disk of radius δ′ of r(1 − |α|2)2. It follows from (2.6) and Lemma 2.3
that this integral is bounded by an r and (A, ψ) independent multiple of E.

Here is another consequence of Lemma 2.3: Fix ε > 0 and there an r and
(A, α) independent constant κε such that κε E bounds the maximal number
of disjoint disks of radius r− 1

2 in any given constant t slice of the coordinate
chart with |α| ≤ 1 − ε at the disk’s center point.

And, here is one more consequence of (2.6) and Lemma 2.3: Let (0, p)
denote a point in the coordinate chart where |α| ≤ 1 − ε. Then |α| ≤ 1

2ε at
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any point (t, p) if t ≤ κ−1ε where κ is again some r and (A, ψ) independent
constant.

Further ramifications can be seen by rescaling the t = 0 square by writing
the coordinates (x, y) as (r− 1

2 z1, r
− 1

2 z2). Given a bound on E, and given that
r is sufficiently large, the pull-back via this map of the pair (A, α) to the
(z1, z2) plane is very close to solving the vortex equations. These are the
equations for a pair consisting of a connection, A, on the trivial bundle over
C and a section, α0 of this bundle that demand

FA =
1
2
(1 − |α0|2)dz ∧ dz̄

∂̄Aα0 = 0∫
C
(1 − |α0|2) < ∞

(2.7)

Here z = z1 + iz2, and the d-bar operator is defined using the connection
A. Two important properties to (2.7) enter the story: First, α0 can be
written with respect to a trivialization of the bundle as e−uh(z) where h is a
polynomial in z. In particular, α0 vanishes at its zeros with positive degree.
Second,

(2.8) 0 < (1 − |α0|2) < κ
∑

z′∈α−1
0 (0)

exp− |z−z′|
2

with κ a fixed constant. The reader can learn about vortices from Section 4a
of [T5].

The preceding points suggest

Lemma 2.4. Fix ε > 0 and there is a constant κ = κ(ε) with the following
significance: Suppose that r ≥ κ and that (A, ψ) is a solution to (2.1) with
E < ε−1. Suppose in addition that |α| < 1 − ε at the point (t = 0, x =
0, y = 0). Then the set of points where α = 0 in any constant t square with
side length δ has at most κ elements. In addition, there is at least one such
point in each constant t square and it has distance less than κr−1/2 from
the origin.

Proposition 2.1 is little more than a corollary to Lemma 2.4.

3. Seiberg-Witten Floer homology

The Seiberg-Witten Floer homology is used to answer the first ques-
tion in (2.4). As noted at the outset, Kronheimer and Mrowka wrote the
definitive bible on this subject [KM]. To summarize a detailed story, the
Seiberg-Witten Floer homology is canonically associated to a pair consisting
of a compact, oriented 3-manifold and a SpinC structure on the manifold.
This homology is an equivalence class of vector spaces with equivalence given
by vector space isomorphism. What follows describes a salient property.
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Theorem 3.1. If the Seiberg-Witten Floer homology is non-trivial, then
there are solutions to the equations for any given choice for μ in (1.11) and
thus for any given choice for r in (2.1).

There is, in general, no canonical choice of identification of the
Seiberg-Witten Floer homology with a fixed vector spaces. However, given
a suitably generic 1-form μ, a representative vector space and a basis can be
constructed using the solutions to μ’s version of (1.11). Any given basis ele-
ment for the representative vector space is a formal, appropriately weighted
sum of gauge equivalence classes of solutions to the given version of (1.11).

As it turns out, the Seiberg-Witten Floer homology can be given a canon-
ical Z grading if the SpinC structure is such that S has torsion first Chern
class in H2(M ; Z). This is to say that the representative vector spaces can
be given such a grading; and the isomorphisms that define the equivalence
classes preserve the grading. In the case when S has non-torsion first Chern
class, the Seiberg-Witten-Floer homology has a relative Z/pZ grading where
p here is the divisibility of the first Chern class in H2(M ; Z).

Here is the bottom line: Seiberg-Witten Floer homology constitutes a
clever algebraic count of the gauge equivalence classes of solutions to any
given version of (1.11); and this count gives the same answer when computed
using respective versions of (1.11) as defined by distinct choices for the
metric on M and the 1-form μ in (1.11), or for the parameter r in (2.1).

3.1. A computation. Theorem 3.1 would be of little use without the
following Kronheimer-Mrowka coup:

Theorem 3.2. Suppose that S has torsion first Chern class. Then the
Seiberg-Witten Floer homology is non-zero in an unbounded set of negative
degrees.

Theorems 3.1 and 3.2 answer the top question in (2.4). To see why, note
first that they jointly assert the following:

If the first Chern class of S is a torsion class, then there exists at least one

C∞(M ; U(1)) equivalence class of solution to (2.1) for each r ∈ [1,∞).

(3.1)

When S splits as in (2.2), then its first Chern class is twice the first
Chern class of E minus that of K; thus 2c1(E)− c1(K). As it turns out, the
first Chern class of K is always divisble by 2. (This is because orientable
3-manifolds have trivial tangent bundles.) As a consequence, there exists a
line bundle EK → M with 2c1(EK) − c1(K) = 0. Take the SpinC structure
whose version of S splits as depicted in (2.2) with E = EK . The latter SpinC

structure has a version of S with zero first Chern class, which is a torsion
class.

Given Lemma 1.1, one might expect that the Seiberg-Witten Floer
homology is by necessity, finitely generated. It is, in fact, finitely gener-
ated in each degree, so it is finitely generated when the first Chern class of
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S is not torsion. As indicated by Theorem 3.2, it is definitely not finitely
generated when S has torsion first Chern class. More is said about this in
what follows.

3.2. A fly in the soup. The reader may have noticed that there is
no need for either Theorem 3.2 or Floer homology to write down a solution
to (2.1) in the case when E = EK . In this case the bundle SF has a flat
connection, θ, and so (2.1) has the solution:

(3.2) A = θ − ira and ψ = 0.

In fact, SF has a flat connection if and only if S has torsion first Chern class,
so any such version of (2.1) has at least one solution that is given by (3.2).
Solutions with ψ identically zero are said to be reducible and solutions with
ψ �= 0 somewhere are said to be irreducible. This distinction is relevant
with regards to the action of C∞(M ; U(1)). This group acts with trivial
stabilizer on an irreducible solution, but it acts on any reducible solution
with stabilizer U(1), the latter in its guise as the subset of constant maps.

On the face of it, a reducible solution is of little interest with regards to
Proposition 2.1 by virtue of the fact that

(3.3) E = 2r Vol(M)

in the case when A is given by (3.2). Here, Vol(M) is the volume of M .
Ah, but Theorem 3.1 asserts that the Seiberg-Witten Floer homology

is non-zero in an unbounded set of negative degrees. Surely some of these
classes are labeled by gauge equivalence classes of irreducible solutions?!
Not necessarily: As is explained momentarily, all but at most a finite set of
Seiberg-Witten Floer homology classes are labeled by equivalence classes of
reducible solutions.

There are two facts to note with regards to this labeling of the reducible
equivalence classes. Here is the first: If S has torsion first Chern class,
then any given version of (1.11) has reducible solutions; these given by
(A = θ − iμ, ψ = 0) where θ is a flat connection on SF . Thus, reducible
solutions are unavoidable. They are always present. Here is the second
fact: As r varies in (2.1) or, more generally, as μ or the Riemannian metric
varies in (1.11), any given reducible solution can give birth to, or bury one
or more distinct, irreducible equivalence classes of solutions. Such a birth
or death can happen at any value of r (or choice for μ and the metric)
where the operator DA has a non-trivial kernel. In particular, such births
and deaths need not occur in pairs. As a consequence, any non-trivial and
invariant count of equivalence classes of solutions to the Seiberg-Witten
equations (such as Seiberg-Witten Floer homology) must count the reducible
equivalence classes in a sophisticated way to account for the fact that they
can create or destroy an irreducible equivalence class.

This lone birth/death phenomena is unique to the reducible solutions.
By contrast, a pair of distinct equivalence classes of irreducible solutions
can ‘collide’ and cancel, or appear denovo as r or μ is varied. The latter
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phenomena is a precise analog of what happens to the critical points of a
varying family of functions on a compact manifold. But a lone equivalence
class of irreducible solution can neither appear nor disappear on its own
as r or μ varies except via bifurcation from a reducible equivalence class.
This special feature of the reducible equivalence classes is a manifestation
of the fact that they have non-trivial stabilizer with respect to the action of
C∞(M ; U(1)).

Morse theory (see, e.g., [Mil], [Bo1]) supplies an accurate finite
dimension model for the treatment in Seiberg-Witten Floer homology of
the irreducible equivalence classes. The appropriate analog when reducible
solutions are present is what is called equivariant Morse theory [Bo2].
Andreas Floer [F], [A] had the genius to see Morse analogs for functions
much like those used here.

To summarize: An infinite set of Seiberg-Witten Floer homology gener-
ators must be assigned to the reducible equivalence classes of solutions to
(1.11) so as to obtain a count of equivalence classes that is independent of
the metric and the 1-form μ.

4. Spectral flow

The notion of spectral flow can be used to answer the second question in
(2.4) and it is the key to answering the third question in (2.4). Indeed, spec-
tral flow is central to the whole story. This section constitutes a digression
to say some things about this notion of spectral flow.

4.1. An explicit example. To introduce the subject of spectral flow,
digress for a moment to consider a relatively simple family of Dirac oper-
ators, this a family acting on C∞(S1; C), parameterized by σ ∈ R, and
given by:

(4.1) Dσ = i
d

dt
+ σ.

Here, S1 is viewed as R/2πZ and t is the R/2πZ valued coordinate. The
family σ → Dσ should be viewed in what follows as a continuously varying
family of unbounded, self-adjoint operators on L2(S1; C). The spectrum of
Dσ consists of the numbers

(4.2) {n + σ}n∈Z .

Each eigenvalue is simple when viewed over C, but multiplicity 2 when
viewed over R. Note that 0 is not an eigenvalue of Dσ when σ is not an
integer.

Now suppose that r ≥ 0, and that neither σ nor σ + r are integers. The
number of values of σ′ ∈ [σ, σ + r] where Dσ′ has eigenvalue 0 is equal to
the greatest integer less than r. This integer is deemed to be the spectral
flow from Dσ to Dσ+r. It is denoted in here by f(Dσ,Dσ+r). Note in
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particular that

(4.3) f(Dσ,Dσ+r) = r + O(1)

as r → ∞.

4.2. Spectral flow for the Dirac operator. This preceding formula
has a generalization that applies to Dirac operators on any odd dimensional,
compact manifold. The generalization is described in [T6]. What follows
describes the story in the case of a 3-dimensional manifold. Let F → M
denote a given SpinC structure and let A denote a given connection on SF .
The associated Dirac operator, DA is a self-adjoint, unbounded operator on
L2(M ; S) with purely point spectrum. Each eigenvalue has finite multiplicity
and the eigenvalues do not accumulate in R.

Suppose now that DA has trivial kernel. Let A′ denote a second connec-
tion on SF and suppose that DA′ also has trivial kernel. In this instance,
one can define the spectral flow from DA to DA′ as follows: Choose a dif-
ferentiable path {A(t)}t∈[0,1] ∈ Conn(SF ) that starts at A and ends at A′.
If the path is chosen in suitably generic fashion, then the following will be
true: First, there is but a finite set of points in [0, 1] where DA(·) has non-
trivial kernel. Second, if t is such a point, then the zero eigenvalue of DA(t)
will have multiplicity 1 and any DA(t′) for t′ near t will have exactly one
simple eigenvalue very close to zero. Let λ(t′) denote this simple eigenvalue
that is nearly zero. This assignment t′ → λ(t′) will be differentiable for t′

near t, and its derivative at t will be non-zero. This understood, t ∈ [0, 1]
contributes +1 to the spectral flow when the derivative is positive and −1
when the derivative is negative. The analysis in [Ka] can be used to prove
that the associated sum of +1’s and −1’s is independent of the chosen path
between A and A′. This weighted sum is deemed to be the spectral flow
from DA to DA′ . It is denoted by f(DA, DA′).

Now fix an i-valued 1-form â on M . Here is a question: What is the
leading order in r behavior of the spectral flow for the family r → DA+râ as
r ∈ [0,∞) gets large? Note that this question makes sense even in the case
that DA+râ has non-zero kernel. Indeed, as explained in [Ka], the spectrum
varies with r in a real analytic fashion and so the subset in [0,∞) where
DA+râ has a zero eigenvalue is discrete with no accumulation points. This
understood, define the spectral flow to be

(4.4) f(DA, DA+râ) = lim
ε→0

f(DA, DA+r+e).

Here is the answer:

Proposition 4.1. There is a constant, c, that depends on A and â and
is such that the spectral flow function r → f(DA, DA+râ) differs from

− 1
32π2 r2

∫
M

â ∧ dâ,

by no more than c(r2−δ + 1) where δ > 0 is independent of A and â.
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This proposition is proved in Section 5 of [T1].
For a relevant example, take SF to be the trivial bundle. Let A denote

a given connection on SF . Take â = −ia where a is now a contact 1-form.
Take the metric to be such that ∗da = 2a and |a| = 1. In this case, the
spectral flow (over C) for the family r → DA+ra is

(4.5)
1

16π2 r2 + O(r2−δ).

It is also the case that this spectral flow is one sided in the sense that the
zero crossings of eigenvalues when r is large all count with positive weight
to the spectral flow.

4.3. Spectral flow and the Seiberg-Witten equations. A relative
Z grading of the Seiberg-Witten Floer homology is also defined via spectral
flow. What follows describes how this comes about. The linearization of
(2.1) at any given (A, ψ) ∈ Conn(SF) × C∞(M; S) and r ≥ 1 defines a self
adjoint, elliptic operator on L2(M ; iT ∗M ⊕ S ⊕ iR) with purely point spec-
trum having finite multiplicity and no accumulation points. This operator
is denoted by L = Lr,(A,ψ). It sends any given triple (b, η, φ) to the section
whose respecitive iT ∗M , S and iR components are

∗ db − dφ − 2−1/2r1/2(ψ†τη + η†τψ),

DAη + 21/2r1/2(cl(b)ψ + φψ),

∗ d ∗ b − 2−1/2r1/2(η†ψ − ψ†η).

(4.6)

Suppose that L0 is defined by (4.6) using r0 and (A0, ψ0) and L1 is defined
using r1, (A1, ψ1). Then the spectral flow f(L0,L1) is defined just as it was
for the case of the Dirac operator; one chooses a suitably generic path {t →
(rt, (At, ψt))}t∈[0,1] that interpolates between the two data sets, and takes
an algebraic count of the number of points in [0, 1] where the (rt, (At, ψt))
version of (4.6) has a zero eigenvalue. Strictly speaking, such a definition
makes sense only if neither L0 nor L1 has eigenvalue 0. If this is not the
case, then something along the lines of (4.4) is used to make f well defined.

Now fix r0 = 1 and suppose that (A0, ψ0) ∈ Conn(SF) × C∞(M; S) has
been chosen so that the r0 and (A0, ψ0) version of (4.6) has trivial kernel.
(Such a pair always exists). Let L0 denote this operator. Suppose next that
r ≥ 1 and (A, ψ) solve (2.1) and are such that their version of (4.6) also has
trivial kernel. Let L denote the latter. If ψ �= 0, then the gauge equivalence
class of (A, ψ) can appear as part of a generator of the Seiberg-Witten Floer
homology. In this regard, the corresponding homology class has degree equal
to −f(L0,L).

Meanwhile, an upper bound for the Z gradings of the countable
set of homology classes that are associated to a reducible solution (A =
θ − i

2ra, ψ = 0) is given by minus the spectral flow from L0 to the r and
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(A = θ − ira, ψ = 0) version of (4.6). The latter operator is

∗ db − dφ,

DA−iraη,

∗ d ∗ b.

(4.7)

Note in particular, that r appears here only in the Dirac operator. In par-
ticular it follows from (4.5) that the reducibles contribute only very negative
degree Seiberg-Witten Floer homology classes when r is large. This is a very
important point.

Section 3.2 alludes to the birth and death of irreducible solutions to
(2.1) at some reducible solution (A = θ − ira, ψ = 0). As noted in Sec-
tion 3.2, this birth/death phenomena can occur only when DA−ira has a
zero eigenvalue. This is a consequence of the fact that (4.7) depicts the
linearization of the equations in (2.1) at the given reducible solution. In
particular, this birth/death business can be seen purely in the context of
perturbation theory.

Note, however, that the one sided nature of the spectral flow for DA−ira

as r increases implies that the newly born or newly killed irreducible solu-
tions define Seiberg-Witten Floer homology classes with ever more negative
degree as r increases. Of course, such must be the case if the classes that
are associated to the equivalence classes of reducible solutions have degree
upper bound given by minus what is written in (4.5).

To summarize: Theorem 3.2 and (4.5) imply the following:

Proposition 4.2. Given k ∈ Z, there exists rk with the following sig-
nificance: Suppose that r ≥ rk.

• All Seiberg-Witten Floer homology classes with degree k or greater
are represented by formal sums of irreducible solutions to (2.1).

• Given N ∈ {1, 2, . . .}, there exists k ∈ Z such that when r ≥ rk,
there are at least N non-zero Seiberg-Witten Floer homology classes
with degree k or greater.

This last proposition keeps hope alive for a desirable answer to (2.4)’s
second question.

4.4. Spinors with length near 1 everywhere. This subsection
addresses the second of the three questions posed in (2.4). There are two
cases to consider here: The first occurs when the bundle E in (2.2) has
non-zero first Chern class. Suppose that this is the case. Then any section
of E must vanish at points on M . In particular, the component α of a
section ψ = (α, β) of S must be zero at points in M . If ψ comes from a
pair (A, ψ) that solves some large r version of (2.1), then the second bullet
of Lemma 2.3 implies that 1 − |ψ| ≥ κr−1/2 at points where α = 0. This
understood, then the third question in (2.4) has answer: Always, if E has
non-zero first Chern class.
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Now assume that E is isomorphic to the product line bundle M × C.
Fix such an isomorphism and let ψ0 denote the section of S given by (1, 0).
Take a fixed connection A0 on SF . For r ≥ 1, use Lr0 to denote the r and
(A = A0, ψ = (1, 0)) version of (4.6). A quick glance at the analog of (1.12)
for L2

r0 finds that L2
r0 is very positive when r is large: Its smallest eigenvalue

is no less than 1
8r when r is large. As a consequence, the smallest of the

absolute values of the eigenvalues of L0r is no less than 1
4r1/2 when r is large.

This implies that there is no spectral flow for the path r → {Lr0} as long
as r is sufficiently large.

Suppose that r is large and that (A, ψ) is a solution to (2.1) and suppose
that |ψ| is everywhere very close to 1. This is to say that 1 − |ψ| ≤ δ where
δ is a small, but r-independent constant. Let L denote the corresponding
version of (4.6). With the help of the Bochner-Weitzenboch formula for L2,
Lemma 2.3 can be used to prove that the smallest of the absolute values of
the eigenvalues of L is also no less than 1

8r1/2.
According to Lemma 2.3, if |ψ| is nearly 1 everywhere, then so is |α|.

As a consequence (A, ψ) is gauge equivalent to (A′, ψ′) with ψ′ = (1, 0) plus
a term that has norm O(δ). This fact can be used to construct a path
t → (At, ψt) that starts at (A0, (1, 0)) and ends at (A′, ψ′) with no spectral
flow for the corresponding path t → {Lr,(At,ψt)}.

Granted such a path, there exists an r-independent lower bound to the
degree of any solution of (2.1) with 1 − |ψ| everywhere less than δ. What
with Proposition 4.2, this last conclusion implies the following answer to the
third question in (2.4): Always.

As an aside, the O(r) lower bound to the spectrum of L2
r0 allows a

perturbative proof of the following [T2]: Suppose that E is isomorphic to
the trivial bundle. Then there exists δ > 0 and a unique gauge equivalence
class of solution to any sufficiently large r version of (2.1) with 1 − |ψ| < δ
on the whole of M .

5. Bounds on the energy from the spectral flow

This section outlines how certain properties of the spectral flow can be
used to answer the third question posed in (2.4). The story starts with an
analog of Proposition 4.1 for the operator in (4.6).

5.1. Asymptotic spectral flow. The promised analog of Proposi-
tion 4.1 refers to the version of (4.6) that is defined by a triple (r, (A, ψ)) in
the case that (A, ψ) solves (2.1). Here it is:

Proposition 5.1. Fix a configuration (A0, ψ0) ∈ Conn(SF) × C∞(M; S)
such that the r = 1 and (A, ψ) = (A0, ψ0) version of (4.6) has trivial kernel.
There exists constants δ > 0 and κ > 1 with the following significance: Fix
r ≥ 1 and a solution (A, ψ) to (2.1). Let L denote the corresponding version

of (4.6). Then f(L0,L) differs from
1

16π2 cs(A) by no more than κr2−δ.
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The proof of Proposition 5.1 can also be found in Section 5 of [T1].
Proposition 5.1 has the following corollary:

Proposition 5.2. Fix an integer k ∈ Z and there exists rk ≥ 1 with the
following significance: Suppose that Θ denotes a non-zero Seiberg-Witten
Floer homology class with degree k. If r ≥ rk and if (A, ψ) is an irreducible
solution to (2.1) whose equivalence class appears in the formal sum for Θ,
then |cs(A)| ≤ r2−δ where δ > 0 is independent of r, k and (A, ψ).

Proposition 5.2 is used to obtain an amiable answer to the third question
in (2.4); this despite the fact that Proposition 5.2 refers solely to cs.

5.2. The Chern Simons functional and the energy. The func-
tionals cs and E are linked in two ways. First, both cs and E appear in the
function on Conn(SF) × C∞(M; S) whose critical points give the solutions
to (2.1). The latter function is

(5.1) a =
1
2
(cs − r E) + 2

∫
M

ψ†DAψ,

The second link between cs and E is supplied by the following lemma:

Lemma 5.3. There is a constant κ > 1 with the following significance:
Suppose that r ≥ 1 and that (A, ψ) is a solution to (2.1) in the case when S

has torsion first Chern class. Then

|cs| ≤ κ
(
r2/3 E4/3 +1

)
.

The proof of this last lemma uses Lemma 2.3 and the properties of a
Green’s function for the operator d + ∗d∗ acting on the space of smooth
1-forms on M .

5.3. An idealized scenario. To see how a enters the story, suppose
for the moment that r0 ≥ 1 and that r → c(r) is a differentiable map
from [r0,∞) into Conn(SF) × C∞(M; S) such that c(r) obeys r’s version of
(2.1) when r ≥ r0. View a(c(r)) and also cs and E on c(r) as functions on
[r0,∞). Then

(5.2)
d

dr
a = −1

2
E .

Indeed, this is the case because c(r) is a critical point of (5.1) and so solves
(2.1). Integrate this last equation so as to obtain

(5.3)
1
r
a|r=

1
r
a|r0+

1
2

∫ r

r0

cs|ss−2ds.
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Lemma 5.3 and (5.3) imply that one of the following two assertions must hold:

• There exists E < ∞ and an unbounded set {rn}n=1,2,... ⊂ [r0,∞)

such that E(c(rn)) < E .

• There exists κ ≥ 1 such that E(c(r)) ≥ κ−1r and

cs(c(r)) ≥ κ−1r2 if ris sufficiently large.

(5.4)

Now let Lr denote the version of (4.6) that is defined by r and c(r).
Proposition 5.1 rules out the second option in (5.4) given an apriori bound
on the absolute value for the spectral flow for the family {Lr}r≥r0 as r → ∞.
Of course, such is the case when there is zero spectral flow for this family.
For example, were there a fixed Seiberg-Witten Floer homology class Θ and
were each c(r) to appear in a formal sum that defines Θ, then there could
be no spectral flow for the family {Lr}r≥r0 . This is how Proposition 5.1
controls the size of E.

5.4. A realistic scenario. The scenario that was just presented may
not occur because there need not exist a differential map r → c(r) of the
required sort. The fact that the Seiberg-Witten Floer homology classes as
defined at different values of r are isomorphic does not by itself imply the
existence of the required maps into Conn(SF) × C∞(M; S). However, such
maps do exist on intervals of small length where r is large. The proposition
that follows elaborates.

Proposition 5.4. Fix an integer k and a non-zero Seiberg-Witten Floer
homology class in degree k or greater. There exists rk ≥ 1, an increasing
set {ρm}m=1,2,... ⊂ [rk,∞) and for each m, a smooth map r → c(r) ∈
Conn(SF) × C∞(M; S) that is defined for r ∈ [ρm, ρm+1] and is such that the
gauge equivalence class of c(r) appears in the formal sum for the class Θ.
Moreover, the function r → a(c(r)) that is defined on [rk,∞)–{ρm}m=1,1,...

extends to [rk,∞) so as to be continuous, and piecewise differentiable.

Granted that (5.3) holds with r0 = ρm and r ∈ [ρm, ρm+1] for each m,
then the conclusions given in (5.4) still follow. As the spectral flow between
any two r and c(r) versions of (4.6) is zero, so the second option in (5.4)
is again ruled out. Thus, the second question in (2.4) has a very amiable
answer: If S has torsion first Chern class, then the answer is: Always.

Proposition 5.4 is proved in Section 4 of [T1].

6. Hutchings embedded contact homology

Embedded contact homology is a very clever and subtle variant of the
sort of contact homology/symplectic field theory that was introduced by
Eliashberg, Givental and Hofer [EGH]. (As with Seiberg-Witten Floer
homology, contact homology owes much to the pioneering work of Floer [F].)

Hutchings describes his embedded contact homology theory in [HS] and
also [HT]. See also [H]. What follows is a very rough synopsis of what is
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involved. To start, the homology theory assigns to each contact 3-manifold
and each SpinC structure, a vector space over Z. This vector space is defined
from a larger vector space, this the vector space of chains. It is denoted
in what follows by C. This vector space C is freely generated over Z by
equivalence classes of a certain sort of finite, ordered set. An element in any
such set is an ordered pair (γ, m) where γ ⊂ M is a closed orbit of the Reeb
vector field, where m is a positive integer subject to certain restrictions.

The SpinC structure enters the story through one of these restrictions.
To elaborate, introduce [γ] to denote the class in the first homology of M
that is generated by γ with its orienation defined by the restriction of a.
Let Θ denote a set of pairs as just described. Then 2

∑
(γ,m)∈Θ m[γ] must

be Poincaré dual to the sum of the first Chern class of the associated C
2

bundle S and the first Chern class of the bundle K.
A typical element in the vector space of C can be written as a finite,

formal sum

(6.1) c =
∑

zΘΘ,

where Θ is as just described and where zΘ ∈ Z. The equivalence relation
involves the ordering the elements of Θ, and it changes the sign of zΘ under
suitable circumstances when the ordering is changed.

The vector spaces for embedded contact homology are defined using a
certain homomorphism δ : C → C with δ2 = 0. Given that δ2 = 0, the kernel
of δ contains the image of δ and so it makes sense to consider the quotient
of the former by the latter. The embedded contact homology space is just
this quotient of kernel(δ) by image(δ).

6.1. Pseudoholomorphic subvarieties. The homomorphism δ is
defined using surfaces in the manifold R × M with appropriate limits at
±∞ along the R factor. To say more about the relevant surfaces, use v in
what follows to denote the Reeb vector field on M . Fix a homomorphism,
J , on the tangent space of R × M with the following properties:

• J2 = −1.

• J is invariant under the R action of R × M that is induced by
translations on the R factor.

• Let
∂

∂s
denote the unit length tangent vector along the R factor.

Then J
∂

∂s
= v.

• J maps the kernel of a in TM to itself, and da(·, J(·)) defines a
symmetric, positive definite quadratic form on the kernel of a.

(6.2)

A homomorphism with J2 = −1 is said to be an almost complex structure.
One that obeys all of (6.2) is deemed a compatible almost complex structure.
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A closed subset Σ ⊂ R×M is said to be a pseudoholomorphic subvariety
when it has the following properties:

• The complement of a finite set of points is a smooth
submanifold with J-invariant tangent space.

•
∫

Σs

da < ∞. Here Σs ⊂ Σ denotes the set of smooth

points with the orientation defined locally by any

ordered pair (w, Jw) with w ∈ TΣ − 0.

(6.3)

It follows from the first point that the restriction of da to TΣs is a
non-negative multiple of the induced area form. Note that the notion
of pseudoholomorphic subvarieties depends on the choice of a compatible
almost complex structure J . There are many available.

Hofer [Hof1] proved a remarkable theorem about pseudoholomorphic
subvarieties. In what follows, s denotes the Euclidean coordinate on the R

factor of R × M . Here is Hofer’s theorem:

Theorem 6.1. Fix a pseudoholomorphic subvariety and there exists
R ≥ 1 such that the |s| ≥ R portion of the subvariety is a finite, disjoint
union of embedded cylinders to which s restricts without critical points.
Moreover, any constant s slice of any such cylinder defines a non-trivial
braid in a tubular neighborhood of some closed integral curve of v. Finally,
the s-dependent family of such braids converges pointwise to this integral
curve as |s| → ∞.

For those not familiar with the terminology, the notions of tubular neigh-
borhood and braid are as follows: There is a disk D ⊂ C with center at the
origin and a diffeomorphism ϕ : S1 × D → M that maps S1 × 0 onto the
given integral curve. The image of S1×D is a tubular neighborhood. Viewed
from S1 × D, a braid is the image of a smooth map from S1 into S1 × D
that sends t ∈ S1 = R/(2πZ) to (qt, z(t)) where z is a smooth map to C–{0}
and where q is a positive integer. The integer q is called the multiplicity of
the braid.

The set of large |s| component cylinders of a given pseudoholomorphic
subvariety are its ends. Any given end has its associated limit closed integral
curve of v, and its associated braid integer q. An end that lies where s � −1
is deemed to be a negative end, and an end where s � 1 is deemed to be a
positive end. When γ is a closed integral curve of v, use EΣγ− to denote the
set of negative ends of Σ that appear as a braid in a tubular neighborhood
of γ. When EΣγ− �= ∅, set mγ− to denote the sum of the multiplicities of
the braids that come from the ends in EΣγ− . Set mγ = 0 when EΣγ− = ∅.
Define EΣγ+ and mγ+ in an analogous fashion using the positive ends of Σ.

Granted Hofer’s theorem, a pseudoholomorphic subvariety Σ can be used
to define two finite sets, ΘΣ− and ΘΣ+, whose typical element is a pair
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(γ, m) where γ is a closed integral curve of v and m is a positive integer.
Set ΘΣ± = {(γ, mγ±) : mγ± > 0}.

6.2. The definition of I. Now suppose that Θ− and Θ+ are two sets
of the sort that are used to define the vector space C. Let Σ ⊂ R×M denote
a pseudoholomorphic subvariety with ΘΣ− = Θ− and ΘΣ+ = Θ+. Hutchings
associates to Σ an integer I that can be viewed as a sum of three terms.
The first is the difference between a term that is defined using Θ− and an
analogous one defined using Θ+. The contribution to either for a given pair
(γ, m) of closed integral curve of v and positive integer m depends on the
choice of the tubular neighborhood map for γ. This contribution is the sum,
indexed by k ∈ {1, . . . , m}, of the so-called Conley-Zhender index for the
integral curve of v that wraps k times around γ. The second contribution to I
is denoted by c1(K|Σ). This integer is obtained by pairing the fundamental
class of Σ with the pull-back of the first Chern class of K to Σ via the
projection from R × M to M . Given that Σ is not compact, such a pairing
requires a trivialization of K’s pull-back over the ends of Σ. The required
trivialization is obtained from the previously chosen tubular neighborhood
maps for closed integral curves of v that help define Θ− and Θ+.

The third contribution to I is a relative self-intersection number for Σ.
Its definition requires pushing Σ off of itself and then making a suitably
weighted count of the intersections between the original and the push-off.
The allowed push-offs are constrained along the ends of Σ and the reader is
referred to Section 11 of [HS] for the precise instructions.

6.3. The defintion of δ. Let M(Θ–, Θ+) denote the set of pseudo-
holomorphic subvarieties with ΘΣ± = Θ± and with I = 1. Hutchings proves
the following: If J is suitably generic, then

• M(Θ–, Θ+) is a finite union of smooth, 1-dimensional manifolds.

• Each submanifold in M(Θ–, Θ+) is embedded, and any two
in the same component differ by a constant translation along the
R factor of R × M.

• Each component of M(Θ–, Θ+) has an associated sign,
either +1 or −1.

(6.4)

The sign arises by comparing two canonical orientations that can be as-
sociated to each component of M(Θ–, Θ+). One orientation is that induced
by the translations along the R factor of R×M . The second is defined along
lines introduced by Quillen; the definition uses a Z/(2Z) analog of spectral
flow for families of Fredholm operators. This Z/(2Z) analog of spectral flow
is defined as follows for two index zero operators with trivial cokernel: Take
a suitably generic interpolating path of Fredholm operators and count the
number (mod 2) of points on the path where the kernel is non-trivial. This
count can be interpreted as a relative orientation of the kernels of the two
operators. The latter interpretation generalizes to the case of positive index



NOTES ON THE SEIBERG-WITTEN EQUATIONS 243

operators and so gives a relative orientation to the kernels of any two such
operators if they have trivial cokernel.

The operator in question in the case at hand is obtained as follows: A
small distance push-off of Σ is also pseudoholomorphic if and only if it sat-
isfies a certain non-linear, partial differential equation. The linearization of
this equation defines a d-bar operator on Σ with an R-linear zero’th order
term. This R-linear d-bar operator can be viewed as a Fredholm opera-
tor, and it is the latter that gives, via Quillen’s construction, the second
orientation to Σ’s component in M(Θ–, Θ+). The details are in [BM].

The homomorphism δ that defines embedded contact homology acts on
a generator Θ of C as

(6.5) δΘ = ΣΘ′∈Cσ(Θ′, Θ)Θ′

where σ(Θ′, Θ) ∈ Z is zero when M(Θ′, Θ) = ∅ and otherwise it is the
sum of the signs of that are associated via the third bullet of (6.4) to the
components of M(Θ′, Θ). The Eliashberg-Hofer-Givental contact homology
is defined in much the same manner save for the definition of I. Hutchings
version of I appears to have magical powers.

6.4. Embedded contact homology and Seiberg-Witten Floer
homology. Embedded contact homology is intrinsically defined using the
closed integral curves of the Reeb vector field for a contact structure on
M . Seiberg-Witten Floer homology has, on the face of it, nothing to do
with contact structures, but as just seen, it too sees something of the closed
integral curves of the Reeb vector field. Hutchings conjectured that these
two homologies are essentially the same:

Hutchings’ conjecture. There is an isomorphism between the
Seiberg-Witten Floer cohomology and the embedded contact homology as
defined for any given contact 1-form and any given SpinC-structure on any
given compact, oriented 3-manifold.

The Seiberg-Witten Floer cohomology is a sort of dual to the homology.
Hutchings confirmed this conjecture for certain contact structures on

the 3-sphere, on the 3-torus and on S1 × S2. Hutchings also noted that
embedded contact homology has Z/pZ grading of the same sort as Seiberg-
Witten Floer cohomology.

Since writing this article, the author has completed a proof of Hutchings’
conjecture that uses many of the same ideas that enter the proof of the
Weinstein conjecture [T7].
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