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Abstract. Dirac magnetic monopoles, which may or may not exist in 
nature, seem to exist everywhere in mathematics. They are in one- 
to-one correspondence with the natural connections on principal U( 1)- 
bundles over S 2 and, moreover, appear as solutions to the field equa­
tions of SU (2) Yang-Mills-Higgs theory on M3 as well as Seiberg- 
Witten theory and its non-Abelian generalization on Minkowski space- 
time. This talk will present an informal survey of the situation.

1. Classical Dirac Monopoles

We begin with the source-free Maxwell equations written in complex form as 

V • ( £  +  LB) =  0, 2 - ( Ê  +  iB) +  iV  x (Ê +  iB)  =  0 . (1.1)
tJ L

These equations have a great many well-known symmetries. They are, for 
example, Lorentz invariant, gauge invariant and conformally invariant, but they 
also possess what might be called a “duality symmetry”. Specifically, if E  +  iB  
is a solution to (1.1), then so is elcp(E  +  iB)  for any complex number elcp 
of modulus one. When p  =  7t/2  this reduces to the familiar fact that the 
substitutions B  —» E  and E  —» —B  carry one solution into another.
This last symmetry is lost, of course, if one includes charge densities and 
currents in Maxwell’s equations, but Dirac [3] realized that it could be reinstated 
by including also (hypothetical) magnetic charges and currents. For this he 
introduced the magnetic analogue of a Coulomb field defined, on M3\{0 } , by

Ê  =  0 ,  B = U 2 è (1.2)
P2
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where p is the Standard radial spherical coordinate, êp is the unit radial vector 
field and we have written the charge as n/2,  n an integer, to conform with the 
Dirac quantization condition (see page 7 of [9]). This certainly satisfies (1.1) 
and the usual recipe expresses the field as a 2-form F  on M3\{0}:

77/ / 2
F  =  —— (x dy  A dz  — y  da; A dz  +  z d x  /\ d y ) . (1.3)

P3
In spherical coordinates (p , < >. 6) this becomes

77/
F  =  —sm(f)d(j)A d9.  (1.4)

£

which, being independent of p, may be viewed as a 2-form on the unit sphere
R2.
It is easy to see that the monopole field 2-form F  is not exact on R3\{0 } , 
i. e., there does not exist a potential 1-form A  defined on all of R3\ { 0} for 
which F  =  dA, since the existence of such a global potential would contradict 
Stokes’ Theorem (see pages 2-3 of [9]). Dirac knew this, of course, and he 
also knew, although he did not phrase the matter in these terms, that by deleting 
from R3 not only the origin, but also some ray extending from the origin to 
infinity (a so-called “Dirac string”) one obtains a subspace of R3 whose second 
de Rham cohomology is trivial.

H i  Rham(M3 -  Dirac String) =  0 . (1.5)

On such a set every 2-form is exact and therefore so is F.  For example, on 
f/s =  M3 — { (0, 0 , z) : z >  0}, the 1-form

Aq --
77/ / 2 77/

—------- - ( y d x  — x  d y) = -----(1 +  cos 0 ) d$
p{p - z )  2

( 1.6)

satisfies dAs =  F\Us, while on Un =  M3 — {(0 ,0 , z)  : z <  0} 

A n = —A — _ ( y d x  — x  dy) =  — ( 1 — cos <fi) d# 
p{p +  z ) yy yj 2 V ^

(1.7)

satisfies d-1 v =  F \ u n - Since R3\{ 0 }  =  UsU UN we have covered the domain 
of F  by two open sets on which F  has a potential 1-form. Note that, on
Us^ UN,

A N =  A s +  n d 8 .  (1.8)

For convenience, we would now like to regard all of these as forms on the 
2-sphere S 2 and introduce a “Lie algebra factor” of —i. Thus, we define
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Tl
T  =  —iF  =  — i — sin 4> dcp A d9 on S 2 ,

Tl
A s  =  — L4s =  — i (1 +  cos 4>) d# on Us =  S 2 — ( 0 ,0 ,1) ,

Zi
Tl

A n =  —iAN =  — — i (1 — cos0) d$ on UN =  S 2 — (0 , 0 , —1) .

(1.10)

( i . i i )

(1.9)

2. Hopf Bundles

We will think of the 3-sphere S'3 as the 1-point compactification of M3, or as 
the subspace of C2 =  M4 consisting of all ( z1. z 2) such that \zl \2 +  \z2\2 = 1. 
Define an action of 17(1) =  S 1 on S 3 by {zl , z 2) . a  =  ( z1a , z 2a) for all 
( z1^ 2) G S 3 and a G S 1. The orbits are copies of S 1 and the orbit space 
is CP1. Choosing a specific diffeomorphism of CP1 onto S 2 one obtains the 
complex Hopf bundle

This is a principal 171 i-bundle over S 2 which trivializes over Us =  S 2 — 
(0 , 0, 1) and UN =  S 2 — (0 , 0, —1). Specifically, the maps T'a : V ~ 1{Us) —> 
Us x (7(1) and : T,_1((7jv) —> UN x 17(1) given by

17(1) ^ S 3 ^ (2.1)

where

V i z 1, z 2) =  ( 2 R e(z1 z 2) , - 2 Im (z1z2) ,  (z1)2 .2 12) • (2.2)

(2.3)

and

(2.4)

(2.5)

where ( z 1^ 2) is any point in V  1 (x). Expressed in terms of spherical coor­
dinates (4>, 6) on S 2 this becomes

9 sNi<t>i Ö) —  e 10 . (2 .6 )
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The complex Hopf bundle admits a natural connection given by a u(l)  = Im C -  
valued 1-form uj1 on S 3 that is the restriction to S 3 of the 1-form

z 1 d z 1 +  z2 d z 2 =  (x 1 d x 1 +  x 2 dx2 +  x 3 dx 3 +  x 4 dx4)

+  i(—x 2 dx1 +  x 1 dx2 -  x 4 dx3 +  x 3 dx4) (2'7)

on C2 =  M4 (here x1 =  x 1 +  ix2 and z 2 =  x 3 +  ix4). One sees easy that the 
real part is zero on S 3 so, suppressing the inclusion ,S'3 C2, we may write

cui =  i Im ( z1 d z 1 +  ^2 d z 2)
(2 8)

=  i(—x 2 d x 1 +  x 1 d x 2 — x 4 d x 3 +  x 3 d x 4) .

A simple computation shows that the horizontal subspace H orns'3) =  
kercji(p) at each p  £ S 3 corresponding to Ui is just that part of the R4- 
orthogonal complement of the tangent space to the orbit of p  that lies in TP(S3). 
Moreover, if : Us —> (Us) and sN : UN —> are the cross-
sections corresponding to our chosen trivializations (i. e. Ss(x) =  !)
and s N(x) =  (x, 1)), then one easily verifies that

=  ^(1 +  coscf>) d9 on Us (2.9)

and,

=  —  (1 — cos(/)) d9 on UN . (2.10)
Zi

These are called the gauge potentials corresponding to the connection u 1 and 
the given trivializations (gauges) are nothing other than the local potentials for 
the Dirac monopole of minimum positive strength.
This rather remarkable coincidence is actually just the beginning of the story. 
Recall that the f/(l)-bundles over S 2 are characterized up to equivalence by 
the first Chern class and that this class can be computed from any connection 
on the bundle. Given such a bundle U{ 1) ^  P  —» S'2, the integral

I  Ci(P) (2.11)
s2

of the first Chern class over S 2 is an integer which also characterizes the bundle. 
One can show [10] that, for each n G Z, the [/(l)-bundle U (l)  ^  Pn ^  S 2 
with

J  Cl(Pn) = n
s2

(2.12)
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admits a connection ujn whose gauge potentials s*s üjn and s*Nüjn are the potential
Ti

one-forms for a Dirac monopole of strength —.
2

Thus, Dirac monopoles arise in at least one unexpected context. To set the stage 
for another we recall that the Hopf bundle £7(1) ^  S 3 —> CP1 has a natural 
quaternionic analogue obtained by replacing the complex numbers C by the 
quaternions H. Specifically, we think of S 7 as the subspace of H2 consisting 
of those (q1,q2) with \qx\2 +  |g2|2 =  1 and define on it an action by Sp( 1) 
(the group of unit quaternions) as follows: for (q1,q 2) G S 7 and a G Sp( 1), 
(<q1-)q2) .a  =  {q1a^q2a). The orbits are copies of Sp(l )  =  S 3 and the orbit 
space is HP1 =  S 4. The quotient map gives a principal bundle

Sp(l )  ^  R ^ H P 1 9* S 4 (2.13)

and this bundle admits a natural connection given by the s p ( l )  =  ImH-valued 
1-form

ou =  Im^q1 dq1 +  q2 dq2) (2.14)

(again, we suppress the restriction to S 7 Ç H2). Remarkably, pulling back this 
connection by a natural cross-section s : U V ~ 1(U) on S 4 minus a point 
once again gives a gauge potential that arose independently in physics:

A  =  S*UJ =  Im( 7  12 d^) • (2- !5)
1 +  \q\2

This is the famous BPST instanton first described in [2]. Its significance for 
physics arises in the following way. If Q =  dcu +  uj A uj is the curvature of the 
connection oj, then the pullback

F = s * n  =  d A  +  A A A  (2.16)

is called the field strength of A  in gauge s. Identifying U with R4 via a 
stereographic projection one can think of T  as defined on R4 and then T  is 
anti-self-dual, i. e. satisfies =  — JF, where * is the Hodge dual determined 
by the standard metric and orientation of R4, and finite action, i. e. satisfies

f  — 2 trace(7r A *7r) <  oo . (2.17)
R4

Such anti-self-dual potentials also satisfy the Yang-Mills equations on R4 and 
the search for finite energy solutions to these was the physical motivation in [2].

Remark: Although we have a different story to tell here it is worth mentioning 
briefly the role this discovery played in the emergence of Donaldson theory. The
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anti-self-dual equations are conformally invariant and, by a judicious choice 
of conformal diffeomorphisms one can produce a finite action anti-self-dual 
potential A \ ,n f°r each A > 0 and n G H =  R4:

Q -- fj
Ax,n =  Im( TiTiTi-------- 12 (2-!8)A +  I q — n y

(thus, A  in (2.15) corresponds to A =  1, n =  0). The field strengths 'F-Vn all 
satisfy

J  — 2 trace(jFA „ A *Tx,n) =  1 • (2.19)
K4

This is the second Chem number of the quatemionic Hopf bundle and indeed, 
each A \ ,n is a gauge potential for a connection u x.n on Sp( 1) S T — ,5' '. A
deep theorem of Atyah, Hitchin and Singer [1] implies that, up to gauge equiv­
alence (i. e., an automorphism of the bundle), these are the only finite action 
anti-self-dual connections on the Hopf bundle. Thus, the moduli space of gauge 
equivalence classes of such connections is (0, oo) x R4. But this is confor­
mally equivalent to the open 5-ball B 5. Now B 5 has a natural compactification 
with boundary S 4 (the base manifold of the Hopf bundle). Donaldson’s first 
application of gauge-theoretic techniques to 4-manifold topology generalized 
this scenario to smooth 4-manifolds other than S 4. A more detailed outline is 
available in [9]; for the background and proof, see [8],

3. Yang-Mills-Higgs Theory on R3

Our interest in the anti-self-dual equations arises in the following way. Solu­
tions to these equations on R4 that have finite energy are instantons. If one gives 
up the finite energy requirement but seeks instead solutions that are “static” in 
the sense that the potential A ( x 4, x 2, x 3) does not depend on then dimen­
sional reduction to R3 gives the following reformulation of the equations. The 
first three components of A  give an .57 7 2 1-potential A  on R3, while the fourth 
component ip of A  can be regarded as a matter field (Higgs field) coupled to 
A  by the anti-self-dual equations, which now take the form

T = - * à À^ .  (3.1)

Here T  is the field strength of A  and the covariant derivative on the right- 
hand side is given by d =  dip +  [A, A]. Equations (3.1) are called the
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Bogomolny equations and they admit the following exact solution (the so called 
Hooft-Polyakov-Prasad-Sommerfeld monopole) :

ip1 =  ip2 =  0 , V’3 =  coth P — ~
P

Â 1 =  —^— (sin 9 d p  +  cos 0 sin p  d$)
sm hp (3.2)

Â 2 = ------^— (cos 9 d(j) — sin 9 sin p  d$)
smh p

J?  =  (1 — cos p) d#

This solution is interesting for the following reason. Note first that it is globally 
defined and smooth on all of M3 (even at p =  0 where the component functions 
are actually real analytic). Furthermore, seen from a distance (i. e., in the limit 
as p —> oo) the Higgs field approaches a constant field

p 1 =  p 2 =  o , ip3 —> 1 ,

the first two components of the potential vanish

Â 1 -> 0 , Â 2 -> 0

and the third component, which does not depend on p, is just the Dirac mono­
pole of strength 2 :

*4.3 =  ^(1 — cos0) d9.  (3.3)

Unlike the situation in classical electromagnetic theory, where monopoles are 
singular and must be inserted by hand, the equations of S U (2) Yang-Mills- 
Higgs theory admit a smooth solution which, at large distances, behaves like a 
Dirac monopole.

4. Seiberg-Witten Equations on Flat Space

It is by now well-known that the Seiberg-Witten equations have usurped the 
role formerly played by the anti-self-dual equations in the application of gauge- 
theoretic techniques to 4-manifold topology (see Donaldson [5]). We will 
have nothing to say about this, but will instead describe some exact solutions 
to these equations on flat space in which, once again, Dirac monopoles put 
in an unexpected appearance. We begin by writing down the equations in 
their general form and then explain the meaning of the symbols locally, in
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coordinates. The basic ingredients consist of a connection A  on a U( 1)-bundle 
and a 2-component spinor field tjj.

For the moment we let R  denote either Euclidean 4-space R4 or Minkowski 
spacetime R1,3. {e0, ei, e2, e3}, {e°, e1, e2, e3}, e° A e1 A e2 A e3, and
(x0,x i , x 2,x 3) will denote the standard basis, dual basis, orientation and co­
ordinates on R. We will write A  =  A a d x a, A a : R  —> u (l)  =  ImC, 
a  =  0 ,1, 2, 3, for a £7(1)-potential and

=  0

p+ (f a ) =  &  ® r )  o

(4.1)

(4.2)

=  dA =  ^  Fa/3 d x a A da^ =  dxa A
a<ß a<ß

for its curvature (here da =  —— ). For any map
o x a

we write r  r  ' for the endomorphism of C2 defined by

The trace free part of w A A* is

which can be written in terms of the Pauli matrices

and the basis quaternions /  =  i<r3, J  =  i<r2 and K  =  io-, , as

(v> ® V>*)o =  \  +  1  (ip*o'2ip)o'2 +  1  (ip* o3ip)o3 (4.3)

and

a  ® v»*)0 =  - \  { r m i  -  \  ( r w  -  \  w k ^ k  . (4.4)
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To proceed further (i. e., to define 1J)A and p+ in (4.1) and (4.2)) we require 
information about the Clifford algebras of R4 and R1,3. Since these are different 
we consider each separately. On R4 the standard inner product is given by

(x, y )4 =  x° y° +  x 1 y 1 +  x 2 y 2 +  x 3 y 3 =  8aßx a y 0

where Saß is the Kronecker delta. We construct a convenient matrix model of 
this inner product space as follows: Let R4 be the set of all 2 x 2 complex 
matrices of the form

_  /  a  ß  \  _  (  x° +  Î X 1 x 2 +  ix3 \
\  — ß  öl ) \  —x 2 +  ix3 x° — ix1 J

=  X 0 (  Q l  )  X± ̂  ^  X 2 ^  X ’

Note that d e tX  =  (x, x)4. Thus, defining an inner product on R4 via polar­
ization from the norm | |X ||2 =  d e tX  we find that R4 is isomorphic (as an 
inner product space) to R4. Now, for each x g R4 let

x  = X T = X °  ( q J -  X1!  -  x 2 J  -  x 3K

and define a map
T  : R4 -> C4x4

by

T(x)
0 X  
-X  0

T  is clearly linear and injective so we may identify M4 with the subspace T(M4) 
of C4x4. A basis for this copy of M4 is then given by

7a =  T(ea) , a  =  0, 1, 2, 3 .

Performing the matrix multiplications shows that

(4.5)

7a7/3 +  7/37a =  ~ ^ aßI , a, ß  =  0, 1, 2, 3 , (4.6)

where I is the 4 x 4 identity matrix. The Clifford algebra C7(R4) of M4 is the 
real subalgebra of C4x4 generated by {70, 71, 72, 73}- It is a simple matter to 
write out a basis for this algebra. Using <j0 for the 2 x 2 identity matrix one 
such is

7o =

1 =
a0 0 \
0 a Q '

0 (T0
- < 70 0 7i =

0 I
1 0 5
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72 =

7o7i

7o7s

7i7s =

7o7 i72 =

7o727s =

0 J  
J  0

I
0

K
0

0
- I

0
- K

- J  0 
0 - J

0 K  
- K  0

0
- I

7s =

7o72

0 K  
K  0

0

7 i72

7273 =

7o7 i 73 =

K  0
0 K

1 0 
0 I

7 i7273 =

0
J

0
-0o

- J
0

- 0 o
0

7o7 i 7273 =
-00 o  

0 0 O

(4.7)

The dimension of Cl  (R4) over R is therefore 16. The complexified Clifford 
algebra C7(R4) ® C (same basis, but complex scalars) is therefore a subspace 
of C4x4 of complex dimension 16, i. e., it is all of C4x4. Viewing C4x4 as 
Endc(C4) we find that R, Cl(R4) and Cl(R4) <8> C all act on C4 as linear 
transformations. This action is called Clifford multiplication and will be de­
noted with a dot We will write

c 4 =  w + ® w ~ ,

where W + is the set of elements of the form

(  Z l \
z2
0
0 /

while W ~  consists of those elements of the form

/  0 \
0
Z3

\  z4 )

Note that Clifford multiplication by even elements of the Clifford algebra (i. e., 
those in the span of I, 70 %, 70 72 . 70 73 . 7i 72, 7i 73, 72 73, 70 7i 72 73 pre­
serve W ± , while odd elements interchange tl/+ and W~.
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A map ^  : R4 —» C4 will be called a 
positive 2-component spinor field is a i 
component spinor field is a map 4>: 
notation slightly and write, for example.

etc. Associated with the £7(1)-potential 
differential

4-component spinor field on R4. A 
nap ^ : R4 —> W + and a negative 2- 
—> W~.  We will generally abuse the

i ’i \
)

V’i \
Ip 2
0
0 /

Ip \

<p ) '

i  =  A a d./'1’ we introduce the covariant

V tt =  (Vatf) dx“ =  (da +  A a) ^  d x a . (4.8)

For each tangent vector v  one therefore has the covariant derivative

=  ((da +  A a) y  da;“) (v) =  (da +  A*) W *  . (4.9)

Now we introduce what we will refer to as the “physicist’s Dirac operator” on 
spinors by

3 3

ct=0 ct=0
_ f  Vo4> +  IVi(f) +  JV 2</> +  KV$(j) \

\  — Vo^ +  /V i 'i/j +  J"V2'0 +  KV^ïp J

Notice that this operator carries a positive spinor to a negative spinor (and vice 
versa) and it is this operator that interests us. We define the (mathematician’s) 
Dirac operator JJ)A by

Pa ^  — Vo^ +  I V ^  +  J"V2'0 +  KVs'ip (4.10)

for every positive 2-component spinor field pj. The result p A pj is a negative 
2-component spinor and the first Seiberg-Witten equation (4.1) requires that 
this be zero, i. e., that

V 0^  =  I V +  J V 2^  +  K V 3ïp . (4 .11 )
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Written out in detail this is

f  — (do +  A 0) +  i ( 9 i  +  Ai)  (d2 +  A 2) +  i ( 9 3 +  A 3) \  \
V ~ ( d 2 +  A 2) +  i(93 +  A 3) —(do +  A 0) — i(di +  Ai) )  \  ïp2 )

=  (  0 )  <4'12)

To understand the second Seiberg-Witten equation (4.2) we must describe a 
natural action of complex-valued 2-forms on C4. Thus, we define

p: A2(R4) (g) C —» Endc(C4)

by

p(F) =  p ( Y l  Faßea A e 0) =  J 2  FaßT(ea )T(eß)
a<ß a<ß

(  (Foi +  F23)I  
+  (Tq2 +  F31)J

^ ] Faß f̂a f̂ß 
a<ß

\
0

+  (^03 +  F12) K  

0
V

— (Toi — F23)I  
~ (F o2 +  T\3) J
— (Tq3 — Fi2) K  )

Being diagonal, p(F)  preserves W ± so we may define

p±(F) =  p ( F ) \W ± .

In particular,

P+( F ) =  (Toi +  F23)I  +  (F02 +  FS1)J  +  (Tq3 +  F i2) K  . (4.13)

Using (4.13) and (4.4) we write the second Seiberg-Witten equation (4.2) as

Toi +  F23 =  — — (ip*lij))

F02 +  F31 =  - \ { r w )  (4-i4)

^03 +  ^12 =  - ^ * ^ )

or, in still more detail,

(do Ai — diAo) +  (d2A 3 — d3A 2) =  - - ( \ ï p i \ 2 — 1^212)

(9qA 2 — d2Ao) +  (d3 Ai — d iA 3) =  —ilm ('0 1'0 2)

(doA3 — d3Ao) +  (di A 2 — d2Ai)  =  —i R e ^ i ^ )

(4.15)
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Now that we have the Seiberg-Witten equation on M4 in hand we sketch the 
proof of a result of Witten which seems to suggest that they have no physically 
interesting solutions.

Theorem (Witten): Suppose A  G A4(R4, ImC) and ip G C'00 (R4, C2) satisfy 
(4.11) and (4.14). Then ip G L2(M4) implies ip =  0.

Proof: (sketch) Let A =  — y
d 2

T'o (dx
a\2 be the usual Laplacian on R4. A

computation, using (4.11) and (4.14) and the Weitzenböck formula shows that

AiiV’ii2 =  - E  iiv ^ ii2 -  -  \ r M 2 -  \ r m 2 .
a=0

But then A ||^ ||2 <  0 on R4 so ||^ ||2 is subharmonic on R4 and so satisfies a 
mean value property on R4. Specifically, for any r >  0 and any x £ R4,

x < -------
7r2r4

B r (x )

12 
I 5

where B r (x) is the closed ball of radius r about x. Thus, ip G L2(R4) implies

||^(æ) ||2 <  ^

for some constant k and any r >  0. It follows that ||^ (x )|| =  0 for every
a; G M4 so HV’H =  0. □

To see that there are, nevertheless, physically interesting (albeit non-L2) solu­
tions to the Seiberg-Witten equations on flat space we must extend the equa­
tions from Euclidean M4 to Minkowski spacetime M1,3. The entire discussion 
is exactly the same on R1,3 except for the Clifford algebra, i. e., the 7 -matrices 
used to define Pa and p+ . We sketch the construction of C7(M1,3).
The inner product on R1,3 is given by

(x, y) 1,3 = x ° y °  -  x 1 y 1 -  x 2 y 2 -  x 3 y 3 =  paßx a y ß

where
/  1 0 0 0 \

_  0 - 1  0 0
Vaß ~  0 0 - 1  0 '

V o  0 0 - 1  /

Let 7Z1,3 consist of all 2 x 2 complex matrices X  of the form
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Then d e tX  =  (æ, x ) 1̂3 so, introducing an inner product on R1,3 via polariza­
tion from the norm | \X\ |2 =  det X  we find that TZ1,3 is isomorphic (as an inner 
product space) to R1,3. For each X  =  x aa a G R1,3 we let

X  =  x°a0 — x 1cr1 — x 2a 2 x 3a 3 

and define a map T  : R1,3 —» C4x4 by

T(x)
0 X  

X  0

Then T  is linear and injective so we may identify R1,3 with the subspace 
T(R 1,3) of C4x4. A basis for this copy of R 1,3 is

7a = T ( e a), a  =  0, 1, 2, 3 (4.16)

and these satisfy

l a l ß  +  l ß l a  =  -2r]aßI ,  a , ß  =  0 ,1 , 2, 3 . (4.17)

The Clifford algebra of R 1,3 is the real subalgebra C7(R1,3) of C4x4 generated 
by these 7 -matrices.
Proceeding in exactly the same way as for R4, but with these 7  - matrices, 
gives the following Seiberg-Witten equations on R 1,3:

V0^ =  <7i ViV’ +  cr2v 2 +  <73v 3ip

F01 +17^3 =

F02 +  i-^i =  2 a ‘2'lP)

F03 +  iTi2 =  — (■0*(j3'0)

Witten’s Theorem is still true on R 1,3 and the proof is virtually the same. 
Nevertheless, Peter Freund [7] has pointed out that equations (4.18) and 
(4.19) have the following interesting solution. To ease comparison with 
earlier formulas we will write x° =  t, x 1 =  x, x 2 =  y  and x 3 =  z. 
Then, on R 1,3 — {(t,  0 ,0 , z); —00 <  t <  00, z >  0}, a solution A =

A0dt +  A 3 Ax  +  A 2ày  +  A 3 dz, ip =  Z) 1 ) to (4.18) and (4.19) is given

(4.18)

(4.19)
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by

A q — A3 — 0 , Ai

1 2)

—y 1 xi
2p(p - z )  ’ 2 2p(p -  z)

1 ^  -  y i \

p ^ 2 p (p  -  z) \ P ~ Z )  '

(4.20)

The potential A  therefore once again represents a Dirac monopole of minimal 
positive strength.

Remark: Equation (4.18) is the so-called Weyl-Dirac equation so the spinor 
field can be thought of as a massless spin |  field coupled to the Dirac 
monopole A. Moreover,

^(V^iVO =  IteW’iV’a) =  \  ^

=  I m fy /^ )  =  \  \2 2 p6

=  ^(IV’i l2 -  l ^ l 2) =  \ ^

so the curvature equations essentially say that ip determines a Coulomb field.

5. S U ( 2) Generalization of the Seiberg-Witten Equations on M1,3

The Seiberg-Witten equations admit natural generalizations to other gauge 
groups. We will briefly describe the generalization for S U (2) in order to write 
down some recently discovered monopole solutions. As a basis for the Lie

algebra su(2) of S U (2) we take {Ti ,T 2,T3}, where, Ta =  - oa , a =  1 ,2 ,3 .
Z

Then the structure constants are the Levi-Civita symbols:

3
[Ta , Tb] =  ZabcTc ■ (5.1)

a=1

A gauge potential on M1,3 can then be written

A =  A aTa =  A a d x a =  (A aaTa) d x a 

and the corresponding field strength is

Fa =  d A +  ^ A  A A  =  F aTa =  1 Faßd x a A dxß ,
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where
Faß — daAß — dßAa +  -  [Aa , Aß], a, ß  — 0 ,1, 2, 3 .

A 4-component spinor field takes the form

*  =  * aTa =  ( Ta
ipa

and its covariant differential is
1

V tf =  dtf +  -  [A , ].

Thus, for example,

V e ^  =  ( V e ^ ) 1^  +  ( V e ^ ) 2^  +  (Ve^ ) 3T3

=  -  1 a 2^ 3 +  I a 3^ 2) ^

+  (da* 2 -  ^ A l * 1 +  \ a I ^ ) T 2 

+  (9a ^ 3 -  1 ^ 2 +  ^ A 2a^ ) T 3 .

From this we build the physicist’s Dirac operator:

* = ( t  )  - E e-V e a^  =  (E T c « (V e ^ r )T a

_ ( w x w  \ T
V ( M “ ) “

_  ( m  \
\ P a ^  ) '

The first (generalized) Seiberg-Witten equation is

# 4 ^  =  0 ,

l. e.,

(pA ^y = (pA^y = (pA ^y = o.

(5.2)

(5.3)

As an illustration we write out (Pa 'S?)1 =  0 explicitly,

- ctô oT-1 -  +  ^ o ^ 2) +  ^ ( d i ’I'1 -  \ a \ &  +  1 A3T-2)
(5.4)

+ a 2(ri2T'1 -  1 a 2T-3 +  1 a 3T-2) +  ct3(ô3'I'1 -  1 A2T-3 +  1 A3T-2) =  0.
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The map p+ is defined componentwise in the Lie algebra, i. e., if F  =  F aTa 
is an su (2)-valued 2-form on M1,3 we take

p+ (F) =  p+ (F a)Ta . (5.5)

The natural definition of ^  (8) is

<g) \p* =  (qiaTa) <g> ((Vb)*Tb) =  tt° (tt6)*[T0 , Tb\, (5.6)

and this, with (5.1), gives

$  0  \ÿ* =  (Tr2(i£3)* -  Tr3(Tr2)*) Ti +  (T'3(Tr1)*

_  q/1^ 3)*) T2 +  (T'1 (\P2)* -  tf2^ 1)*)?^.
(5.7)

One computes the tracefree part componentwise so

(\k <g> **)„ =  (\k2(\i>3)* -  $ 3(T'2)*)0Ti -i—

=  {(('T3)*<7i 'T2 -  ('T2)*ct1’T3)<71

+  (('L3)*C72'L2 -  (\E,2)*C72\E,3)<T2

+ ((T'3 )V 3 T' 2 -  (T'2 )*cr3 T'3 )cr3 }T1 +  • • •

The second Seiberg-Witten equation is the formally identical to the 17(1) equa­
tion p+ (FA) =  ( T Tr*)o, but is, of course, rather more complicated. We will 
write out explicitly both Seiberg-Witten equations in the very special case of 
interest to us, i. e., A 1 =  A 2 =  0, Al =  A^ =  0, ik3 =  0, and both A  and T' 
independent of x°:

-  i(d2^  +  ^ A 32V 22) +  d3^  =  0 

+ ^Al^î +  i(d2^  +  1 A^ l)  -  d^!\ = 0 

d^ l -  -  i(d2̂ l -  ^A\^\) +  d^\ = 0

Öi^2 -  \ a \V\ +  i{d2̂ \ -  ^A\^\) -  d^ l = 0

(5.9)

- d 3 A \  =  Im(T,2Tr2 +  f  l ^ l )  

d3A l = Re('T2TrJ -  vh2^ )  

dxA l  -  d2A \  =  I m ^ 2^  -  t 2T-3)
(5.10)
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Dereli and Tekmen [6] found a solution to these equations which we record 
below (reverting again to x 1 =  x, x 2 =  y  and x 3 =  z):

A 1 =  A 2 =  0 = - ( l  +  co s0 )d 0 =
P(P ~  z)

( y d x  — x dy)

=  I ( f  +  „), # * -

(  =

1 1
( -Z  + v),

v =

V 2 p
1 (  x — y\

y j M p ~ z) ' p ~ z

1 (  p — z

\h3 =  0

(5.11)

Thus,

A  = y i dæ +
xi

p{p ~  z) p(p -  z)
d y

1 0 
0 - 1

(5.12)

and again we find ourselves face-to face with a monopole.
There are analogous generalizations of the Seiberg-Witten equations for any 
SU(n)  and all of these admit such Abelian Dirac monopole solutions. The 
S U (2) Seiberg-Witten equations also admit a non-Abelian monopole solution 
(without string singularities) that can be obtained from the Abelian solution by 
a singular gauge transformation:

and

A 1 =  — (z d y  -  y d z ) 
P

A 2 =  — ( x d z  — z dx)  
P

A 3 =  — ( y d x - x  d y)
A

T'1

\J/2

\J/3

Vs
2 P
y 5
2 P 

2 P

«  +  äy) 

{ K  +  by) 

«  +  crj)

(5.13)

(5.14)
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where

a =
p — z (x +  y i)2 

2P 2p(p -  z )

(5.15)

x +  yi
c =

P
For more details we refer to Dereli and Tekmen [6].
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