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A HIERARCHICAL BAYESIAN APPROACH TO RECORD
LINKAGE AND POPULATION SIZE PROBLEMS1

BY ANDREA TANCREDI AND BRUNERO LISEO

Sapienza Università di Roma

We propose and illustrate a hierarchical Bayesian approach for matching
statistical records observed on different occasions. We show how this model
can be profitably adopted both in record linkage problems and in capture–
recapture setups, where the size of a finite population is the real object of
interest. There are at least two important differences between the proposed
model-based approach and the current practice in record linkage. First, the
statistical model is built up on the actually observed categorical variables and
no reduction (to 0–1 comparisons) of the available information takes place.
Second, the hierarchical structure of the model allows a two-way propagation
of the uncertainty between the parameter estimation step and the matching
procedure so that no plug-in estimates are used and the correct uncertainty
is accounted for both in estimating the population size and in performing the
record linkage. We illustrate and motivate our proposal through a real data
example and simulations.

1. Introduction. The current explosion in the availability of data from mul-
tiple sources, and the relative ease of information storage have led to a great pop-
ularity of statistical methods which aim at merging and/or matching statistical in-
formation available from different sources. Among these methods, record linkage
refers to the problem of identifying statistical units which may be present in more
than one data set. Fienberg and Manrique-Vallier (2009) review the relevance of
record linkage procedures in official statistics and highlight the significant inter-
twins with missing data and multiple systems estimation literature.

The gist of this paper is the proposal of a hierarchical Bayesian framework
which can be profitably adopted both in record linkage problems and in capture–
recapture scenarios, where the size of a finite population is the main object of in-
terest and the number of “re-captured” individuals is unknown. Most of the current
approaches to population size estimation with matching uncertainty consider the
matching and the size estimation as two logically well separated steps. Remarkable
recent exceptions are Link et al. (2009) and Wright et al. (2009) where genotype
misidentification is embedded into multiple mark-recapture models for estimating
animal abundance using DNA samples. More generally, in this paper, we propose
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a unified framework where matching uncertainty is naturally accounted for in es-
timating population size by using samples of multivariate categorical variables.

To motivate our approach, consider the following example, which is a part of a
real application. Suppose we have two data sets which we call A and B with sizes,
respectively, 34 and 45. Data set A comprises all the foreign residents observed
in a small census block during the 2001 Italian census population survey (CPS).
Data set B comprises all the resident foreigners observed in the same census block
during the post enumeration survey (PES)2. Both data sets report, among others,
the following variables: (1) first two consonants of the family name, (2) gender
and (3) education level. Assume that the three variables represent the only avail-
able information to perform the match; assume also that the goal is the estimation
of N , the total number of foreign residents in the census block. The usual approach
to this problem would be to search for the pairs of units, belonging to different
files, which agree perfectly on each observed variable. In our example there are
25 pairs which show a complete agreement. If we assume that we actually ob-
served 25 recaptures, such information can be used easily in a capture–recapture
model to make inference on N . However, two complications may arise. First, it
might be possible that two different units genuinely agree on each variable. Sec-
ond, because of measurement error, observed records for the same unit might be
different in the two sampling occasions. They could also agree as before, even if
they refer to different units with different true values. We will discuss this exam-
ple below in more detail. For the moment, Table 1 summarizes, for the different
choices of the declared number T of recaptures, the posterior distribution of N

assuming a noninformative prior p(N) ∝ 1/N2 and a hypergeometric likelihood

function p(T |N) ∝ (nA

T

)(N−nA

nB−T

)
/
(N
nB

)
with nA = 34 and nB = 45. One can see that

slightly different choices of T may produce dramatically different posterior distri-
butions.

Accounting for matching uncertainty has relevance well beyond size estimation
problems and relates to the more general problem of inference with integrated data;

TABLE 1
Posterior quantiles for N with the distribution p(N |T ) ∝ (nA

T

)(N−nA

nB−T

)
/
( N
nB

) × (1/N2)

with nA = 34, nB = 45 and different choices of T

T

24 25 26 27 28 29 30

2.5% 57 56 54 53 51 50 49
50% 64 62 59 57 55 53 51
97.5% 78 74 70 66 63 60 57

2PES is usually performed some time after CPS, to evaluate the effective coverage of CPS.
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see Judson (2007). In this context, an important exemplification is provided by
Lahiri and Larsen (2005) who take into account linkage uncertainty in the frame-
work of the linear regression model when the response variable and the covariates
are recorded on two different occasions. However, our approach can also be ap-
plied when there is not yet a scheduled statistical analysis to be performed on the
linked data, but the linkage procedure is just the initial step to obtain a larger and
integrated reference data set.

Statistical methods for finding entries related to the same entity in two or more
files are employed in many different disciplines, such as medicine, business admin-
istration and official statistics [see, e.g., Herzog, Scheuren and Winkler (2007)]. In
these contexts it may happen that a unique data set with all the necessary infor-
mation for a particular statistical analysis is not available. Furthermore, time and
cost constraints may make it unfeasible to create such a data set anew. Integration
at the unit level of different data sets (sample surveys and/or administrative data
sets) may be an answer to this kind of problem. A considerable difficulty in this
context is represented by the lack of a unique identifier in the different data sets
for each unit of interest. In fact, when a set of observed variables (key variables,
henceforth) may be used as an identifier for connecting records that refer to the
same unit, particular attention should be paid to errors, as we have seen in the
introductory example, and missing values.

To handle the record linkage process, many different methodologies have been
introduced. Some methods are naïve, or heuristic, that is, are based only on
common sense [e.g., the “iterative method” described in Armstrong and Mayda
(1993)]. In a fundamental paper, Fellegi and Sunter (1969) put these kinds of prob-
lems into a firm, model based, statistical framework. Further advances were de-
scribed in a number of papers in the 1980s and 1990s: among others, Jaro (1989),
Winkler (1993) and Belin and Rubin (1995). Larsen and Rubin (2001) introduce
the representation of the record linkage problem in terms of the mixture model
[see also Larsen (1999)]: this idea has been exploited in many other papers; see,
for example, Fortini et al. (2001), McGlincy (2004) and Larsen (2004) who tackle
the problem from a Bayesian perspective. All of these papers assume that each
single comparison between records in two different files provides new informa-
tion, independently of the other comparisons. This assumption, as noted by Kelley
(1986), is fundamentally unsound, as illustrated in Section 2. Also, in this respect,
Winkler (2000) states that “. . . because the underlying true probabilities have not
been accurately estimated, estimated error rates (of the record linkage procedure)
are not accurate.”

An important feature of our paper is that we propose a Bayesian model which
is based on the actual observed data rather than comparisons. In a similar spirit,
Fortini et al. (2002) discussed these ideas in the simple setting of a single continu-
ous variable. Here we will assume that our key variables will be discrete, as almost
always happens in practice.
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Record linkage is not the only statistical problem where matching issues are
concerned. In a bioinformatics context Green and Mardia (2006) introduce a
matching matrix (very similar to our matrix C, see later) into some problems of
shape analysis, where configurations of points in space need to be matched and the
points are not completely labeled.

DeGroot and Goel (1980) consider the situation where a random sample of
size n, say, (Xi,Zi), i = 1, . . . , n, is drawn from a bivariate normal distribution;
however, before the sample values are recorded, each observation (xi; zi) gets bro-
ken into two separate components. As a consequence, the available information is
represented by the vectors x = (x1, . . . , xn) and y = (y1, . . . , yn), where y is an
unknown permutation of the values (z1, . . . , zn).

Another matching example is discussed in Lindley (1977), in a forensic frame-
work. Here the matching problem arises when some material is found at the scene
of a crime and similar material is found on a suspect; in both cases material collec-
tion is subject to measurement error. Lindley describes a Bayesian method to estab-
lish whether the two materials come from the same source or not. When rephrasing
Lindley’s approach from a record linkage perspective, we note that that paper was
the first attempt to introduce, into a Bayesian linking model, the natural idea that
two units with the same surname are more likely to be a match if the surname is
Bodolomonogoto than if the surname is Smith. Similar suggestions can be found
in the seminal papers by Newcombe et al. (1959) and Fellegi and Sunter (1969).

The paper is structured as follows. In Section 2 we present the standard approach
to record linkage. Our Bayesian approach is discussed in Section 3. Markov chain
Monte Carlo (MCMC) methods are needed for estimating the parameters of the
model. In Section 4 we describe a suitable algorithm for simulating the posterior
distribution. We also discuss a loss function approach to the matching estimation.
In Section 5 the performance of the methodology is evaluated through a small illus-
trative application. A more realistic example is shown in Section 6. A simulation
study is conducted in Section 7. Finally, in Section 8 we give a brief discussion of
possible future extensions and improvements of the method.

2. Classic approach to record linkage. Suppose we are given two record
configurations xA and xB of different sizes nA and nB with

xA = (xA
1 , . . . , xA

a , . . . , xA
nA)′ and xB = (xB

1 , . . . , xB
b , . . . , xB

nB )′.

Here xA
a = (x

A1
a , . . . , x

Ah
a ) and xB

b = (x
B1
b , . . . , x

Bh

b ) are the observed values of a
categorical random vector x = (x1, . . . , xh) whose support is the set

V = {vj1j2,...,jh
= (v1

j1
, v2

j2
, . . . , vh

jh
), j1 = 1, . . . , k1; . . . ; jh = 1, . . . , kh}.

In the following, the two data configurations will be called, respectively, sample A

and sample B , the components of the random vectors x (whenever it is possible
we will avoid subscript and superscript indices to simplify the notation) are the
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key variables and the elements of the set V arranged in lexicographic order will be
indicated with vj for j = 1, . . . , k = k1 · k2 · · ·kh.

Let A×B be the set of all possible pairs of units belonging to different samples.
Set A × B = M ∪ U , where M = {(a, b) ∈ A × B :a ≡ b} (here a ≡ b means
that unit a of sample A and unit b of sample B are the same population unit)
and U = {(a, b) ∈ A × B :a �≡ b}. Probabilistic record linkage, as implemented,
for example, in Jaro (1989), is performed by modeling the comparison vectors
yab = (y1ab, . . . , y

h
ab) where

yi
ab =

{
1, x

Ai
a = x

Bi

b ,

0, x
Ai
a �= x

Bi

b ,
i = 1, . . . , h.

Vectors yab, a = 1, . . . , nA, b = 1, . . . , nB , are assumed independent conditionally
on M and U . The probability distribution of yab depends on the match or nonmatch
status of the single pair (a, b); in particular, it is assumed that p(yab|(a, b) ∈ M) =∏h

i=1 m
yi
ab

i (1 − mi)
1−yi

ab and p(yab|(a, b) ∈ U) = ∏h
i=1 u

yi
ab

i (1 − ui)
1−yi

ab (here
and later, we will abuse notation by letting the arguments define the functions)
with m = (m1, . . . ,mh) and u = (u1, . . . , uh) as unknown probabilities vectors. In
addition, the elements of the sets M and U are modeled assuming that each pair
in A × B is a match with probability w, independently of all the other pairs. This
way the comparison vectors yab are independent and identically distributed as a
mixture of two multivariate Bernoulli distributions:

p(yab|m,u,w) = w

h∏
i=1

m
yi
ab

i (1 − mi)
1−yi

ab

(2.1)

+ (1 − w)

h∏
i=1

u
yi
ab

i (1 − ui)
1−yi

ab .

Models similar to (2.1) are often used also in biostatistics, under the name of
a latent class model, to assess diagnostic test accuracy in the absence of a gold
standard and only multiple imperfect tests are available [Pepe (2003)]. Likelihood
maximization of the parameters in model (2.1) is performed via the EM algorithm
and analytical expressions for the estimators are provided by Fellegi and Sunter
(1969) and Pepe and Janes (2007) in the case h = 3.

Several extensions of this basic setup have been proposed; see, for example,
Larsen and Rubin (2001). In order to decide whether to declare a link a single pair,
one can consider the likelihood ratio

λ = P(yab|(a, b) ∈ M)

P(yab|(a, b) ∈ U)
=

∏h
i=1 m

yi
ab

i (1 − mi)
1−yi

ab∏h
i=1 u

yi
ab

i (1 − ui)
1−yi

ab

(2.2)
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or the posterior probability

p
(
(a, b) ∈ M|yab

)
(2.3)

= w
∏h

i=1 m
yi
ab

i (1 − mi)
1−yi

ab

w
∏h

i=1 m
yi
ab

i (1 − mi)
1−yi

ab + (1 − w)
∏h

i=1 u
yi
ab

i (1 − ui)
1−yi

ab

.

Pairs with high values of λ or p((a, b) ∈ M|yab) are then declared matches. This
approach is formalized in the classical approach of Fellegi and Sunter (1969).

In our opinion the above approach can be criticized on several grounds:

1. Decision rules for classifying records as matches. In general, all the pairs with
a likelihood ratio λ, or a posterior probability, above a fixed threshold are de-
clared matches. However, the choice of the threshold can be problematic, as
illustrated, for example, in Belin and Rubin (1995). More details about this
point will be given in Section 4.

2. Avoiding multiple matches. Current approaches to record linkage assume that
there are no duplications in the same file and inference procedures should ac-
count for that. However, in classical procedures, it might happen that a single
record in A is linked to more than one record in B; consequently, some extra as-
sumptions are necessary. Jaro (1989) proposes a linear programming approach
after a preliminary match estimation step. An alternative approach [Fortini et al.
(2001)], which will be pursued here, incorporates the constraints into the sam-
pling model.

3. Incorporating sampling information. If we assume that the two files are random
samples without replacement from a population of unknown size N , an obvious
prior assumption is p((a, b) ∈ M) = 1/N , with N > max {nA,nB}. In addition,
if we know that two units assume the same value vj , the matching probability
becomes p((a, b) ∈ M) = 1/Fj , where Fj is the (unknown) total number of
units with record vj in the population. In record linkage procedures, in general,
sources of knowledge of this type are not included in the model, with an obvi-
ous loss of information. This may be particularly important for applications of
record linkage in disclosure literature.

4. Comparison vectors are not independent. In this respect Kelley (1986) states:
“. . . The decision procedure . . . was developed under the hypothesis that the
comparison vectors between separate record pairs are independent. However,
since the record pairs that are considered for possible matches are elements
of the cross product of the two files we are attempting to match, the compar-
ison vectors are in fact dependent . . . .” As a matter of fact, the random vari-
ables yab are deterministically dependent. To see that, consider the case of
one key variable X1. Suppose that x

A1
1 = x

B1
1 and x

A1
1 = x

B1
2 . If, in addition,

x
A1
2 = x

B1
1 , it must necessarily be true that x

A1
2 = x

B1
2 , that is, in terms of com-

parisons, p(y22 = 1|y11 = 1, y12 = 1, y21 = 1) = 1. Moreover, the problem of
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dependency among the yab’s cannot be circumvented by eliminating redundant
comparisons in the likelihood function, because the order in which pairs are
considered would matter!

5. The components yi
ab of the comparison vector may not be independent condi-

tionally on M and U . The conditional independence assumption among the key
variables often fails in practice: disagreement on different key variables for a
true match might be caused by a unique reason which introduces correlation
among the yi

ab’s. In the absence of conditional independence, the resulting es-
timates of w, m and u lose their meaning and a more sophisticated conditional
dependence structure must be specified. Similar arguments have been applied to
criticize the use of model (2.1) for the analysis of diagnostic test performance
without a gold standard and, in this context, several solutions have been pro-
posed and discussed [Albert and Dood (2004); Pepe and Janes (2007)]. Larsen
and Rubin (2001) have introduced interactions among key variables; see also
Winkler (1995) and references therein.

3. The new model. We assume that the records in xA and xB are mea-
surements subject to recording error of a multivariate categorical variable μ =
(μ1, . . . ,μh) whose support is, on both occasions, the set V . Specifically, let

μA = (μA
1 , . . . ,μA

a , . . . ,μA
nA)′ and μB = (μB

1 , . . . ,μB
b , . . . ,μB

nB )′

be two independent random samples from the multivariate categorical variable
μ drawn on different occasions from the same finite population. Let μA

a =
(μ

A1
a , . . . ,μ

Ah
a ), a = 1, . . . , nA and μB

b = (μ
B1
b , . . . ,μ

Bh

b ), b = 1, . . . , nB be the
unobserved true values for unit a in sample A and unit b in sample B . We as-
sume that, conditionally on their respective true values and a parameter vector
β = (β1, . . . , βh) which accounts for the measurement error, xA and xB are inde-
pendent, that is,

p(xA, xB |μA,μB,β) = p(xA|μA,β)p(xB |μB,β);
we also assume that, in each sample, all the observations are conditionally inde-
pendent given their true values and β . Then

p(xA|μA,β) =
nA∏
a=1

p(xA
a |μA

a ,β), p(xB |μB,β) =
nB∏
b=1

p(xB
b |μB

b ,β),

with

p(xA
a |μA

a ,β) =
h∏

i=1

p(xAi
a |μAi

a , βi), p(xB
b |μB

b ,β) =
h∏

i=1

p(x
Bi

b |μBi

b , βi).

Note that the vectors μA and μB introduce a first latent structure into our
record linkage model and make it effectively a missing data model [Fienberg and
Manrique-Vallier (2009)].
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We conclude the top stage of the hierarchical structure by explicitly introduc-
ing the measurement error model. A general model for potentially misclassified
observed records can be formulated as p(xi = vi

ji
|μi = vi

j ′
i
), for all (ji, j

′
i ). Such

a model has been considered, in a Bayesian framework, by Swartz et al. (2004)
who discuss several identifiability problems, and by Perez et al. (2007), where
strong prior information is introduced in the model. Here, to maintain the number
of parameters in the model reasonably low, we propose a simpler version of the
so-called hit–miss model [Copas and Hilton (1990)]

p(xi = vi
ji
|μi = vi

j ′
i
) = βiI (vi

ji
= vi

j ′
i
) + (1 − βi)/ki, i = 1, . . . , h,

where βi represents the probability of observing the true value for the ith variable
“not by chance” and ki is the number of levels of variable xi . This way, condi-
tionally on the unobserved true values, each single record field can be modeled
as a mixture of two components: the first component is concentrated on the true
value, while the second one is uniformly distributed over the set vi = {vi

1, . . . , v
i
ki
}.

For a recent implementation of the hit–miss model see also Norén, Orre and Bate
(2005).

We now specify the conditional distributions of μA and μB . In particular, we
assume that μA and μB are two independent simple random samples drawn with-
out replacement from a finite population of unknown size N . The unknown vector
F = (F1, . . . ,Fj , . . . ,Fk), k = ∏h

i=1 ki , represents the population counts for each
element vj of the set V . Obviously,

∑k
j=1 Fj = N . In principle, one can write the

model for the unobserved true values μA and μB in the following natural way:

p(μA,μB |F) = p(μA|F)p(μB |F)(3.1)

with

p(μS |F) =
(

nS

f S
1 , . . . , f S

k

)−1
⎡
⎣(

N

nS

)−1 k∏
j=1

(
Fj

f S
j

)⎤
⎦ S = A,B,(3.2)

where f S = (f S
1 , . . . , f S

j , . . . , f S
k ), S = A,B , are the true sample counts (which

are, however, unobservable, due to measurement error) for each element vj ∈ V .
Formula (3.2) can be obtained by noticing that the observed values of μS determine
the frequencies f S , so that p(μS |F) = p(μS |f S,F )p(f S |F) where p(μS |f S,F )

and p(f S |F) correspond to the two terms in (3.2). The usual constraints 0 ≤ f S
j ≤

Fj , S = A,B , must hold.
An alternative way of writing the above model is based on the use of two latent

quantities, which will play a crucial role in our approach. The first quantity is the
so-called matching matrix C. This is a nA ×nB matrix whose generic element Cab

is a Bernoulli random variable indicating whether or not unit a in sample A and
unit b in sample B are the same unit, that is,

Cab =
{

1, if (a, b) ∈ M ,
0, if (a, b) ∈ U .
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The matrix C is the actual quantity of interest in record linkage problems; a sim-
ilar structure also appears in different statistical problems, such as the Bayesian
alignment [Green and Mardia (2006)] or microarrays analysis [Do, Mueller and
Tang (2005)]. We assume that multiple matches are not possible. This implies
that

∑
a Cab ≤ 1 ∀b = 1, . . . , nB ,

∑
b Cab ≤ 1 ∀a = 1, . . . , nA; also, note that

there are
(nA

T

)(nB

T

)
T ! different C matrices with exactly T = ∑

ab Cab matches,
T ≤ min(nA,nB).

The other latent quantity we introduce is the vector t = (t1, . . . , tj , . . . , tk) de-
noting, for each element of V , the number of matches having vj as the true value.
The vector t (which is basically needed to facilitate the simulation of the poste-
rior distribution, as outlined in the following section) is a deterministic function of
μA,μB and C.

Consider, as an illustration, the case where μ is univariate and V = {v1, v2, v3,

v4}: suppose we have μA = (v1, v2, v1), μB = (v2, v3, v1, v2), with C13 = C24 = 1
and all the other elements of C equal to 0; then t = (1,1,0,0). Finally, notice that
0 ≤ tj ≤ min{f A

j , f B
j } ∀j = 1, . . . , k and

∑k
j=1 tj = T .

Now we introduce the model assumptions for the conditional distribution of μA

and μB given the values of t,C and F . First, note that p(μA,μB |t,F,C) = 0
when μA

a �= μB
b and Cab = 1. Also, we have p(μA,μB |t,F,C) = 0 either when

min{f A
j , f B

j } < tj or max{f A
j , f B

j } > Fj . In any other situation it turns out that

p(μA,μB |C, t,F ) =
∏k

j=1
( Fj−tj

f A
j −tj ,f B

j −tj ,Fj−f A
j −f B

j +tj

)
( N−T
nA−T ,nB−T ,N−nA−nB+T

)
(3.3)

×
∏k

j=1 tj !(f A
j − tj )!(f B

j − tj )!
T !(nA − T )!(nB − T )! .

The distribution in (3.3) has the following interpretation: the first term is the
joint distribution of the sample counts f A and f B , say, p(f A,f B |C, t,F ); it
can be obtained by observing that, given the vector t , there are already tj ele-
ments in the category vj , j = 1, . . . , k. Then, out of the total number of partitions
of the N − T elements actually sampled in three disjoint sets3 of sizes nA − T ,
nB − T and N − nA − nB + T , one should only consider those where category
vj respectively appears f A

j − tj , f B
j − tj and Fj − f A

j − f B
j + tj times in the

three sets, for j = 1, . . . , k. The other term in (3.3) is the conditional distribution
p(μA,μB |f A,f B,C, t,F ); given f A and f B , the matching matrix C and the
vector t , there are

T !(nA − T )!(nB − T )!

3They respectively represent the “nonmatch” for samples A and B and the “nonsampled” units.
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possible permutations of the elements of the two samples: among them, there are∏
j tj !(f A

j − tj )!(f B
j − tj )! permutations which exactly reproduce the orderings

given in μA and μB .
The prior distribution for C and t should reflect the random selection mecha-

nism of the two samples. Conditionally on t and F , C has a uniform distribution
on the set of all possible matching matrices with T matches. Loosely speaking, in
the absence of information about μA and μB , all the possible couples are equally
likely to be a match. Then, we have p(C, t |F) = p(C|t,F )p(t |F) with

p(C|t,F ) = p(C|t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if
∑
ab

Cab �= ∑
j

tj ,

[(
nA

T

)(
nB

T

)
T !

]−1
, otherwise.

To derive the distribution p(t |F), one can observe that, given T , t is a vector of
counts of the vj categories in a simple random sample of size T drawn from the
population. Then p(t |T ,F ) is a multivariate hypergeometric distribution. Finally,
T , the total number of common units across the two samples, is a scalar hyperge-
ometric random variable. Then,

p(t |F) = p(t |T ,F )p(T |F)
(3.4)

=
k∏

j=1

[(
Fj

tj

)/(
N

T

)](
nA

T

)(
N − nA

nB − T

)/(
N

nB

)
.

It is easy to see that, by averaging out over C and t in the distribution
p(μA,μB,C, t |F), one re-obtains the model expressed by (3.1) and (3.2). Details
are given in Appendix A. For the moment notice that the use of the hypergeomet-
ric distribution p(T |F) in (3.4) is standard practice in capture–recapture model-
ing when the number T of common units across two samples is known [Darroch
(1958), Seber (1986) and Marin and Robert (2007)].

At the bottom of the hierarchical model, one needs to specify the prior for the
vector F ; this is equivalent to assuming that the finite population which the two
samples are drawn from is itself a random sample from a superpopulation model
[Ericson (1969)]. In particular, following Hoadley (1969), we assume that, condi-
tionally on N and a vector θ = (θ1, . . . , θk), with 0 ≤ θi ≤ 1 and

∑k
i=1 θi = 1, F is

a multinomial random variable,

p(F1, . . . ,Fk|θ,N) = N !
F1!F2! · · ·Fk!

k∏
j=1

θ
Fj

j .

Regarding the prior for N , we suggest the following family of noninformative
priors:

pg(N) ∝ �(N − g + 1)/N !, g ≥ 0;
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FIG. 1. DAG representation of the joint probability model described in Section 3.

the hyperparameter g regulates the shape of the prior: the larger the value of g, the
lower the prior weight on the right tail, which is integrable for all g > 1. The same
prior model for F can be expressed by assuming that, for a fixed hyperparameter
λ > 0 and θ , the population counts F1, . . . ,Fk are independent Poisson variables
with rates λθ1, . . . , λθk and pg(λ) ∝ 1/λg .

Last, we assume that the prior for θ is obtained first by modeling its elements
via the product of marginal and conditional probabilities based on a specific as-
sociation pattern for the key variables and then by putting independent Dirichlet
distributions to each probability vector characterizing the resulting model for θ .
A special case of this product of Dirichlet distributions is the hyper-Dirichlet prior
which is used in the similar context of disclosure risk assessment by Forster and
Webb (2007); see also O’Hagan and Forster (2004). Moreover, the “measurement
error” parameters β are independent and uniformly distributed random variables;
they are also independent of all the other model parameters. To sum up, the joint
distribution of all the variables is expressed by the following factorization:

p(xA, xB,μA,μB,β,C, t,F,N, θ) = p(xA, xB |μA,μB,β)

× p(μA,μB |F,C, t)p(C|t)p(t |F)

× p(F |θ,N)p(N)p(θ)p(β),

and a representation in terms of a directed acyclic graph is displayed in Figure 1.

4. Bayesian implementation. In this section we discuss a Metropolis within
Gibbs algorithm for simulating from the joint posterior distribution p(μA,μB,β,

t,F,N, θ | xA, xB); see Robert and Casella (2004) for a general overview about
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the MCMC theory and implementation. In our case the Gibbs algorithm structure
is based on the following updating steps:

μA,μB, t |F,N, θ,β,

F,N |μA,μB, t, θ, β,

θ |μA,μB, t,F,N,β,

β |μA,μB, t,F,N, θ.

When the matching matrix C is itself one of the parameters of interest, one can
simply add, at each iteration of the algorithm, a draw from the conditional distri-
bution

p(C|μAμB,β, t,F,N, θ, xA, xB).

Details about this conditional distribution are given later in this section.
To illustrate the first updating step, notice that

p(μA,μB, t |F, θ,β, xA, xB) = p(μA|F,β, xA)p(μB |F,β, xB)

× p(t |μA,μB,F, θ,β, xA, xB).

Moreover, by using results from Appendix B,

p(t |μA,μB,F, θ,β, xA, xB) = p(t |μA,μB,F )
(4.1)

=
k∏

j=1

⎡
⎢⎢⎣

(f A
j
tj

)(Fj−f A
j

f B
j −tj

)
(Fj

f B
j

)
⎤
⎥⎥⎦

Thus, conditionally on all the other quantities, t1, . . . , tk are independent hyper-
geometric random variables. Then one should separately draw μA and μB from
p(μA|F,β, xA) and p(μB |F,β, xB) and t from (4.1). However, the direct sim-
ulation of μA and μB is not straightforward. To see why, let Fμ|μ1,...,μl

be the
population count for the category assumed by μ after eliminating, from the popu-
lation, l units with categories μ1, . . . ,μl . Then

p(μS |F,β, xS) ∝ p(μS |F)p(xS |μS,β)

∝
nS∏
s=1

FμS
s |μS

1 ,...,μS
s−1

k∏
i=1

[
βiI{μSi

s =x
Si
s } + (1 − βi)

1

ki

]

for S = A,B and the direct simulation from the above distributions can be compu-
tationally hard. To circumvent the difficulty of directly simulating the entire joint
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distribution p(μS |F,β, xS), note that we can easily draw the full conditionals

p(μS
s |μS−s, β, xS) ∝ FμS

s |μS
1 ,...,μS

s−1,μ
S
s+1,...,μ

S

nS

(4.2)

×
k∏

i=1

[
βiI{μSi

s =x
Si
s } + (1 − βi)

1

ki

]

for s = 1, . . . , nS and S = A,B . By simulating μA and μB from (4.2) following a
Gibbs type updating and t by its true conditional distribution, we do not produce an
exact draw from the conditional distribution of (μA,μB, t). However, the latter is
exactly the stationary distribution associated with the proposed step. This strategy
can then be justified as an example of “Metropolis within Gibbs.” Moreover, note
that, in order to improve the mixing of the chain, for each iteration of the algorithm
we can repeat more simulation cycles from the conditional distributions (4.2) in
order to approximately generate, at each iteration, a random draw from the true
conditional of (μA,μB, t).

A standard Gibbs updating is possible for the second step. Consider the full
conditional distribution of the vector F ; using the results in Appendix A and after
some algebra,

p(F |μA,μB, t, θ, β, xA, xB) ∝ p(μA,μB |F, t)p(t |F)p(F |θ)

∝
k∏

j=1

Fj !
(Fj − f B

j − f A
j + tj )!

θ
Fj

j

Fj !
�(N − g + 1)(N

nA

)(N
nB

)

∝ (N − nA − nB + T )!
k∏

j=1

θ
Fj−f B

j −f A
j +tj

j

(Fj − f A
j − f B

j + tj )!

× �(N − g + 1)

(N − nA − nB + T )!(N
nA

)(N
nB

) .
Then, random draws from the above distribution can easily be obtained by first
simulating N from

p(N |T ) ∝ �(N − g + 1)

(N − nA − nB + T )!(N
nA

)(N
nB

) ∝
(nA

T

)(N−nA

nB−T

)
(N
nB

) �(N − g + 1)

N ! .(4.3)

Subsequently, conditionally on N , one can draw v1, . . . , vk from a multinomial
distribution with parameters θ1, . . . , θk and size N − nA − nB + T , and then set
Fj = vj + f A

j + f B
j − tj .

Incidentally, we notice that the posterior distribution (4.3) plays a crucial role
also when the sample sizes nA and nB are assumed to be random and T is known.
In fact, in this case, the vector [T ,nA − T ,nB − T ,N − nA − nB + T ] follows
a multinomial distribution with parameters N and (pApB,pA(1 − pB),pB(1 −



1566 A. TANCREDI AND B. LISEO

pA), (1 − pA)(1 − pB)), where pA and pB represent the unknown capture proba-
bilities in the two sampling occasions; see, for example, Bishop, Fienberg and Hol-
land (1975). It follows that, for (pA,pB) unknown, inference for N can be drawn
either by using the complete model [i.e., by introducing a prior for (pA,pB) and
then getting the marginal posterior distribution p(N |nA,nB,T )] or, in a slightly
approximate way, by eliminating (pA,pB) via a conditional argument [i.e., by us-
ing the conditional likelihood p(T |nA,nB,N)]. These two approaches typically
produce very similar conclusions. In the former case, when assuming a uniform
prior for (pA,pB), the marginal posterior of N is given by the expression for
p(N |T ) in (4.3) multiplied by (N + 1)−2. In the latter case, inference is based
only on (4.3). The complete multinomial likelihood can obviously be used within
our approach by simply adding other Gibbs steps for (pA,pB). However, as in the
case with known T , we do not expect to see substantial differences, and in the rest
of the paper we will consider nA and nB as fixed.

The updating of θ can be done in a standard way since

p(θ |μA,μB, t,F,N,β, xA, xB) ∝ p(θ)p(F |θ)

and the independent Dirichlet distributions characterizing p(θ) are conjugate to
p(F |θ); see O’Hagan and Forster (2004). Finally, note that the conditional poste-
rior density for βi is proportional to(

βi + (1 − βi)/ki

)ñAB
i (1 − βi)

nA+nB−ñAB
i ,

where ñAB
i is the total number of sample units where the observed value and the

true value coincide for the ith key variable. One can easily see that the posterior
distribution of ηi = βi + (1 − βi)/ki , conditionally on all the other variables, is
Beta(ñAB

i + 1, nA + nB − ñAB
i + 1) truncated on the set (k−1

i ,1). Then we draw
ηi from its Beta distribution and set βi = (kiηi − 1)/(ki − 1), for i = 1, . . . , k.

4.1. Matching matrix simulation. In order to specify the conditional distribu-
tion of C given all other quantities involved in the model, we introduce the sets
Aj = {a :μA

a = vj } and Bj = {b : μB
b = vj }. In words, Aj is the set of units in

sample A whose true value belongs to category vj ; these sets depend on μA and
μB . Let Cj be the block of the matrix C corresponding to the rows in Aj and
the columns in Bj . Conditional on the true values, μA and μB , Cab = 0 for each
couple such that μA

a �= μB
b ; then, outside the blocks C1, . . . ,Ck , the elements of C

will be equal to 0. Thus,

p(C|μA,μB, t,F, θ, xA, xB) =
k∏

j=1

p(Cj |tj , f A
j , f B

j ),

where p(Cj |tj , f A
j , f B

j ) is the discrete uniform distribution over the set of all pos-
sible configurations for the block Cj with exactly tj matches,

p(Cj |tj , f A
j , f B

j ) =
[
tj !

(
f A

j

tj

)(
f B

j

tj

)]−1
.
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Note that, by conditioning on the drawn values of the key variables, we auto-
matically create a blocking method able to limit the number of candidate matches.
Blocking strategies are very popular in record linkage literature. They basically
consist of a partition into homogeneous groups of all the possible comparisons
among records in order to reduce the computational burden; see, for example,
Newcombe (1967) or Winkler (2004). Within our approach the homogenous
groups of records are identified at each step of the algorithm by the block matrices
Cj ’s.

4.2. Matching matrix estimation via MCMC algorithm. Now we describe in-
ferential strategies for producing a “point estimate” in a record linkage analysis.
The usual output of an MCMC based analysis is a sample of approximately inde-
pendent “observations,” simulated from the posterior distribution. This sample can
be used to obtain a representation of the uncertainty about the parameters of inter-
est, mainly the matrix C or N . In addition, record linkage procedures are often the
first stage of a more complex statistical analysis: they represent the crucial step of
creating a suitable data set to be used afterward. In terms of statistical theory, this
is equivalent to producing a point estimate of C, from which we select the “de-
clared” matches. Classical inference methods usually provide plug-in estimates,
based on theories developed in Fellegi and Sunter (1969) and Jaro (1989). First,
the previously defined parameters m and u are estimated and then a sequence of
statistical tests is performed in order to decide whether each pair (a, b) ∈ A × B

can be declared a match or not. The power of multiple tests is calibrated in or-
der to obtain a specific level of the False Match Rate (FMR), that is, the ratio
between the number of false matches and the total number of declared matches.
Note that the FMR is exactly equivalent to the well-known False Discovery Rate
[Benjamini and Hochberg (1995)], very popular in multiple comparison appli-
cations (wavelets theory, microarray analysis, etc.) Furthermore, currently used
record linkage procedures must complete the statistical data analysis with a real-
location procedure which eliminates inconsistencies among the results of different
tests [see Jaro (1989) and the problem posed by Larsen (1999), paragraph 3.3].

The Bayesian way of facing a record linkage problem is different in spirit, and
suggests interesting issues, both from a practical and a methodological perspec-
tive. Although in a formal Bayesian analysis one should select the point estimate
as the one minimizing the posterior expected loss, it is common practice, in appli-
cations, to use the posterior mean or, sometimes, the posterior median. Of course,
these solutions do not appear reasonable in a record linkage context: the marginal
posterior mean of each single element of the matrix C will be a number between
0 and 1, which does not help much in deciding whether the pair (a, b) is a match
or not. The use of the posterior median is even more complicated in multivari-
ate discrete settings. Thus, a formal decision theoretic approach seems necessary:
let G = {Gab} ∈ G, a = 1, . . . , nA and b = 1, . . . , nB , a generic matrix of size
nA × nB , with the same characteristics as C, such that it represents our “action.”
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Here G represents the set of all possible actions. Also, let L(·, ·) be a loss function
defined as L : G × C → R+ where C is the set of all possible matching matrices.
Our goal is to select, for a given loss function L, the optimal decision G∗, the one
which minimizes the posterior expected loss

G∗ = argmin
G∈G

W(G)

where W(G) = E[L(C,G)|xA, xB]. In what follows we will consider some spe-
cific loss functions:

(1) Quadratic Loss

Lq(C,G) = ∑
a

∑
b

(Cab − Gab)2.

Since the elements of C and G are either 0 or 1, Lq is equivalent to the L1
loss: L1(C,G) = ∑

a

∑
b |Cab − Gab|.

(2) False Match Rate

LFMR(C,G) =

⎧⎪⎪⎨
⎪⎪⎩

0, if
∑
a

∑
b

Gab = 0,∑
a

∑
b GabI (Cab = 0)∑

a

∑
b Gab

, otherwise.

LFMR translates, in terms of decision theory, the classical use of the False
Match Rate as a measure of performance of the record linkage analysis.

(3) Absolute number of errors

LABS(C,G) = ∑
a

∑
b

[GabI (Cab = 0) + (1 − Gab)I (Cab = 1)].

The following theorem provides the optimal solution for the above mentioned
losses.

THEOREM 4.1.

(A) Under losses Lq and LABS, the optimal Bayesian solution is given by the
matrix G∗, defined as

G∗
ab =

{
1, if p(Cab = 1|xA, xB) > 1

2 ,
0, otherwise,

a = 1, . . . , nA;b = 1, . . . , nB.

(B) Under loss LFMR, the optimal solution is a matrix consisting of all zeros.

PROOF. First, notice that I (Cab = 1) = Cab and I (Cab = 0) = 1 − Cab.
(A): Since

Lq(C,G) = ∑
a

∑
b

[Cab + Gab − 2CabGab],
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the problem is equivalent to the maximization of the posterior expected value of

Lq(C,G) = 2
∑
a

∑
b

Gab

[
Cab − 1

2

]
.

With the loss LABS, simple calculations lead to

LABS(C,G) = ∑
a

∑
b

[Gab(1 − Cab) + (1 − Gab)Cab]

= ∑
a

∑
b

[Gab − 2GabCab + Cab].

The minimization of the posterior expected loss of LABS is equivalent to the max-
imization of the quantity

Lq(C,G) = 2
∑
a

∑
b

Gab

[
Cab − 1

2

]
.

Then the quantities Lq and LABS are identical and it will be sufficient to find the
optimal solution for Lq . We need to maximize

Wq(G) = 2E

(∑
a

∑
b

Gab

[
Cab − 1

2

]∣∣∣xA, xB

)

= 2
∑
a

∑
b

Gab

[
p(Cab = 1|xA, xB) − 1

2

]
.

The last expression shows that the value that maximizes Wq(G) is obtained by
setting Gab = 1 if and only if the correspondent coefficient is positive, that is,
when p(Cab = 1|xA, xB) > 1

2 .
(B): When LFMR is used, it is easy to see that FMR is minimized by adopting

the conservative behavior of not declaring any match! In this case, in fact, the
posterior expected loss is always zero, independently of the posterior distribution.
Then the optimal solution is given by G∗

ab = 0, for all (a, b). �

It is important to stress that all the optimal solutions derived in Theorem 4.1 are
based on the marginal posterior probabilities of being a match for the various pairs
(a, b). This is a consequence of the fact that the above loss functions are additive
and they basically “sum” over all the losses due to the single mismatches.

Part B of Theorem 4.1 is also important. It says that, from a decision theo-
retic perspective, the FMR is not a valid measure of performance, because it only
controls one type of error. Every reasonable loss function should also take into
account a measure of the number of undiscovered matches [Genovese and Wasser-
man (2003)]. In this sense, a reasonable loss function for record linkage may be
given by the Global Error Rate

LTOT(C,G) = LFMR(C,G) +
∑

a

∑
b(1 − Gab)ICab=1(Cab)∑

a

∑
b(1 − Gab)

.
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The loss LTOT is actually able to capture errors due to missing true matches. How-
ever, the improvement is more theoretical than practical: in fact, the denominator
of the second factor is so much larger than the denominator of LFMR that the re-
sults obtained using LTOT should not be practically different from those derived
under loss LFMR.

5. Illustrative application. We illustrate our approach in detail with the real
data set already used in the Introduction. The two files consist of nA = 34 records
from a single block of the last Italian census population survey and nB = 45
records from the same block relative to the post enumeration survey; more de-
tails can be found in Alleva, Fortini and Tancredi (2007). Records in both files
refer to foreign residents only, which typically represent an example of an elu-
sive population. For each file, we take three key variables: X1 represents the first
two consonants of the family name with 339 observed categories (considering all
blocks), X2 represents the gender and X3 is the education level, with 17 categories.
The total number of entries in V is k = 11,526. The data and the programs [written
in C and R, R Development Core Team (2009)] that have been used for this ap-
plication are available in the supplementary material [Tancredi and Liseo (2011)].
In practice, real applications may have more key variables, more blocks and larger
sample sizes. However, focusing on a small example allows us to illustrate better
some details of our methodology compared to the existing approaches.

The hyperparameter g appearing in the prior distribution p(N) has been set
equal to 2 in order to have a proper prior. The Dirichlet distributions for θ are
chosen so that, at the superpopulation level, X1 is independent of (X2,X3). We
also assume that all the Dirichlet distributions are uniform in their supports.

We have used the algorithm described in Section 4 to generate a single Markov
chain of length 100,000. See the supplementary material for a graphical represen-
tation of some of the simulation traces. Figure 2 shows the posterior distributions
of the following quantities: (a) the number of matches T , (b) the total population
size N , (c) the measurement error parameter vector βi , (i = 1,2,3), (d) the prob-
ability of selecting a male within the block at the superpopulation level, θ·1·. In
panel (d), we also show the posterior distributions of θ·1· obtained by considering
the two files separately, assuming a uniform prior and independence among the
units. Notice that the posterior density of θ·1· can be graphically interpreted as an
average of the two posteriors one would have obtained from the analysis of each
single data set.

The posterior estimated quantiles of level (0.05,0.5,0.975) for T are (26,28,

31). The same posterior summaries for N are (49,55,65). Marginal posterior
probabilities of being a match, p(Cab = 1|xA, xB), are graphically displayed in
panel (a) of Figure 3, where the cases have been sorted in order to have the most
probable matches on the diagonal. There are only 34 pairs of records (out of 1530)
such that p(Cab = 1|xA, xB) is larger than 0.1. The estimated matching matrix,
using the quadratic loss function outlined in Section 4, is given by the 27 matches
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FIG. 2. Posterior distributions of the number of matches T , the population size N , the parameter
vector βi (i = 1,2,3) and θ·1·.

visible on the diagonal. Notice that inference about C is quite robust with respect
to the choice of the hyperparameter g: when g = 1 we obtained exactly the same
estimated matching matrix, while setting g = 3 would produce one more match.

We now compare our results with other possible approaches based on the com-
parison vectors yab whose frequency distribution is given in Table 2. As a first al-
ternative we consider a slight modification of the Bayesian approach proposed by
Larsen (2005) where yab is marginally distributed as (2.1) and the matching matrix
C satisfies the constraints

∑
a Cab ≤ 1 and

∑
b Cab ≤ 1. We use uniform priors for

m and u. Unlike Larsen (2005), we have assumed, for the matching matrix C, the
same prior distribution used in our approach. We will call this model the “Jaro
constrained model.” The posterior distribution for the parameters (m,u,C,N)

can easily be simulated by using Gibbs steps for [m|u,C,N ], [u|m,C,N ] and
[N |u,m,C]. To update the matching matrix C, we use the Metropolis–Hastings
step proposed by Green and Mardia (2006). Figure 4 reports the posterior dis-
tributions of the parameters p = T/(nA · nB), m and u. The posterior quantiles
of level (0.05,0.5,0.975) for T are estimated as (23,27,31). The same poste-
rior summaries for N are (49,57,72). The marginal posterior probabilities of
being a match, p(Cab = 1|y11, . . . , ynA,nB ), are graphically displayed in panel
(b) of Figure 3. Also in this case we have exactly 34 pairs of records such that
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FIG. 3. Matching estimation. Panel (a) shows the posterior probabilities p(Cab = 1|xA,xB) under the new model. Panel (b) shows the posterior
probabilities p(Ca,b = 1|y11, . . . , ynA,nB ) under the Jaro constrained model. Panels (c) and (d) show the posterior probabilities p(Cab = 1|yab) and the
estimated matching matrix using the classical approach. Values of the posterior probabilities are indicated by the shading scale at the right of each panel.
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TABLE 2
Results of the classic approach

yab Frequency p((a,b) ∈ M|yab) λ

(0,0,0) 659 0.00 0.01
(1,0,0) 20 0.01 0.14
(0,1,0) 601 0.00 0.04
(1,1,0) 13 0.05 0.58
(0,0,1) 78 0.23 3.43
(1,0,1) 8 0.80 45.20
(0,1,1) 126 0.56 14.81
(1,1,1) 25 0.94 194.97

The first two columns give the distribution of the comparison vector.
The last two columns report the estimated quantities (2.3) and (2.2).

p(Cab = 1|y11, . . . , ynAnB ) is larger than 0.1, but the matching matrix obtained
with the quadratic loss provides 25 matches. In general, our proposed model and
the Jaro constrained model provide similar estimates, although the latter seems to
produce slightly more uncertainty as shown by the larger interval estimates for
both T and N .

Finally, we show the results obtained by considering model (2.1) without row
or column constraints on the matching matrix C. Maximum likelihood estimates
and posterior densities are reported in Figure 4. The matching step is performed
by considering the posterior matching probabilities (2.3) or the likelihood ratios
(2.2). In Table 2 we report these quantities obtained with a simple plug-in of
the maximum likelihood estimates of the parameters. The posterior probabilities
p((a, b) ∈ M|yab) are also displayed graphically in panel (c) of Figure 3. In this
case there are 237 pairs with a posterior probability p((a, b) ∈ M|yab) greater than
0.1. The higher number of potential matches is almost certainly due to the fact
that, in this approach, because of the independence assumption among compari-
son vectors and the absence of constraints on the C matrix, the marginal matching
probabilities only depend on the information retrieved from the single comparison
and not, as in the previous models, on the information provided by the entire data
set. To rule out multiple matches, following Jaro (1989), we maximize the function

nA∑
a=1

nB∑
b=1

zab log

∏k
i=1(m̂

yi
ab (1 − m̂)1−yi

ab )∏k
h=1(û

yi
ab (1 − û)1−yi

ab )
(5.1)

subject to the constraints
∑νA

a=1 zab ≤ 1 ∀b,
∑νB

b=1 zab ≤ 1 ∀a and zab ∈ {0,1}
∀(a, b). The final answer produces 29 matches displayed in panel (d) of Figure 3.
From Table 1 one can see that, by setting T = 29 in the hypergeometric likelihood(nA

T

)(N−nA

nB−T

)
/
(N
nB

)
and using the prior p(N) ∝ 1/N2, one gets a 95% credible inter-
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FIG. 4. Posterior distributions for the parameters of model (2.1) with the constraints on the match-
ing matrix C (solid line) and without (dotted line). For the latter case the constraint p < 1/2 has
been used to guarantee identifiability and the vertical lines indicate maximum likelihood estimates.

val for N equal to [50,60], which is a subset of the intervals obtained using our
approach or the Jaro constrained model.

6. Multiple block application. In this section we illustrate the results ob-
tained with a more realistic exercise involving a multiple block scenario. In par-
ticular, we repeated the analysis described in the previous section for each census
enumeration area (census block) also selected for the post enumeration survey
and including at least one foreign person during the census survey. This way we
obtained a list with 337 pairs of data sets for a total of 3675 records taken on for-
eign people during the 2001 census population survey and 3404 analogous records
originating from the parallel post enumeration survey. The block sizes vary from
a minimum of one individual on at least one occasion to a maximum with 280
and 311 individuals on the two occasions. Note that the total number of blocks
selected for the post enumeration survey is 1098, corresponding to 0.31% of the
total number of the Italian census enumeration areas.

For each pair of data sets we performed a record linkage analysis in order to
estimate the total number of foreign people Nl living in the lth census block, for
l = 1, . . . ,337. In addition to the three key variables considered in the single block
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FIG. 5. Left panels: box-plots from the posterior distribution of the foreign population size for
blocks with at least 25 matches. Right panels: posterior distribution of the foreign population size in
Italy at the end of 2001. Upper panels: new model. Central panels: Jaro constrained model. Lower
panels: Jaro unconstrained hybrid approach.

analysis outlined before, we also considered the age (coded into 10 categories).
At the superpopulation level in our hierarchical model we assumed the surname
to be independent of gender, education level and age. The probability vector for
the surname categories is assumed, as before, to be uniform in its support. For the
340 = 2 × 17 × 10 joint probabilities of the other three key variables we set the
Dirichlet hyperparameters all equal to 1/340 in order to avoid marginal distribu-
tions that are too concentrated.

In the upper left panel of Figure 5 we show, for each block with approximately
at least 25 matches, the box-plot for the posterior distribution of Nl given by our
approach. For each pair of data sets we also implemented the other two approaches
described throughout the illustrative example, namely, the Jaro constrained model
and the hybrid strategy obtained by estimating the matching matrix via the classical
approach and then plugging in the estimated match number in the posterior distri-
bution of population size. The box-plots for the posterior distribution of Nl ob-
tained with these two approaches are shown, respectively, in the central and lower
left panels of Figure 5. Note that the posterior distributions for Nl provided by
the Jaro constrained model give point estimates similar to those obtained with our
approach but with slightly wider credibility intervals. Instead, the pattern shown
by the hybrid strategy is quite different. In particular, when compared to the other
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approaches, it shows a remarkable under-estimation of the block sizes. In fact, the
maximization of the function (5.1) leads to an over-estimation of the true match
number. However, introducing a false match rate correction as in Belin and Rubin
(1995) would reduce the distance from the other approaches. Nevertheless, there
is a clear message that ignoring the matching uncertainty would give a false im-
pression of accuracy for the estimates.

The same conclusions are emphasized when we aim at estimating the quantity
N = [∑337

l=1 Nl]/0.0031 which can be seen as a rough approximation for the size
of the foreign population in Italy at the end of 2001. The histograms shown in the
right panels of Figure 5 have been obtained by summing the draws from the poste-
rior distributions of Nl for each block with at least 2 records in both the surveys. In
fact, smaller blocks tend to produce quite diffuse posterior distributions, making
the MCMC inference difficult without introducing a more concentrated prior. To
overcome this problem, the population size for the smaller blocks has been fixed
equal to N̂l = (nA

l + 1)(nB
l + 1)/(T̂l + 1) with T̂l estimated by the classical ap-

proach. In particular, one can notice that accounting for matching uncertainty with
the Jaro constrained model (central right panel) produces both a larger estimate
and larger uncertainty with respect to our approach (upper right panel).

7. Simulation studies. We now evaluate our hierarchical model via a simu-
lation study. Artificial data are often used to evaluate record linkage techniques,
especially in computer science literature; see, for example, Christen (2005) and
Christen and Pudjijono (2009). Here, we consider three main different simulation
scenarios generating, at the superpopulation level, three and six independent key
variables (scenarios 1 and 3) and three dependent key variables (scenario 2). Com-
mon features across different simulations are as follows:

• the population size, fixed at N = 100.
• the sample size; we always assume nA = nB equal to 70,80,90.
• the measurement error parameters β’s: their value has been fixed at (0.85,0.90,

0.95).

In the first two scenarios, the three key variables assume, respectively, 64, 16
and 4 categories, leading to a contingency table with 4096 entries. In the inde-
pendence case the means of the population frequencies Fj have been set equal to
θj = θj1,j2,j3 = ∏3

i=1 3bji
where bji

∝ ji with ji = 1, . . . , ki for i = 1,2,3. Un-
der the dependence model we set θj = θj1,j2,j3 = bj3bj2|j3bj1|j3 where = bj3 ∝ j3,

bj2|j3 ∝ j
j3
2 and bj1|j3 ∝ j

1/j3
1 . Finally, in the third scenario, the 6 key variables as-

sume, respectively, 32, 16, 4, 4, 2 and 2 categories, leading to a contingency table
with 32,768 cells with θj = θj1,...,j6 = ∏6

i=1 bji
where bji

∝ ji .
For each combination of model parameters, we have generated 100 pairs of data

sets. Each pair of data sets has been analyzed using our hierarchical model with
45,000 iterations of the MCMC algorithm and 5000 iterations discarded for burn-
in. For each pair of data sets we also implemented the Jaro constrained model and
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the hybrid strategy described in the previous sections. Mixing and convergence
rates were satisfactory based on the examination of trace plots.

In Table 3 we focus on the inference for N . For each of the three approaches
and for each group of 100 pairs of data sets we report the average values of the

TABLE 3
Simulation study for evaluating the posterior mean E(N) and the 95% credible interval under

the new model (M1), the Jaro constrained model (M2) and the Jaro unconstrained
hybrid approach (M3)

E(N) Coverage Length

βi nS M1 M2 M3 M1 M2 M3 M1 M2 M3

Scenario 1: independence with 3 key variables
0.95 90 101 (0.40) 102 (0.38) 103 (0.85) 0.92 0.96 0.21 16 (0.48) 18 (0.50) 6 (0.45)

80 99 (0.55) 103 (0.68) 98 (0.93) 0.96 0.96 0.30 24 (0.65) 28 (0.81) 9 (0.53)

70 96 (0.76) 101 (0.85) 92 (1.18) 0.95 0.97 0.29 35 (0.81) 38 (0.80) 12 (0.78)

0.90 90 103 (0.55) 107 (0.84) 103 (1.10) 0.97 0.91 0.20 26 (0.83) 32 (1.30) 6 (0.60)

80 100 (0.78) 110 (1.02) 98 (1.09) 0.96 0.91 0.22 36 (1.06) 48 (1.35) 9 (0.65)

70 96 (1.06) 108 (1.35) 90 (1.14) 0.93 0.93 0.20 50 (1.52) 62 (1.57) 11 (0.71)

0.85 90 104 (0.72) 115 (1.52) 102 (1.22) 0.99 0.79 0.18 37 (1.32) 56 (2.39) 6 (0.71)

80 100 (0.87) 116 (1.53) 93 (0.94) 0.99 0.93 0.17 51 (1.49) 75 (2.61) 6 (0.46)

70 97 (1.37) 120 (2.10) 86 (1.24) 0.99 0.94 0.11 69 (2.87) 101 (4.30) 9 (0.84)

Scenario 2: dependence with 3 key variables
0.95 90 101 (0.40) 103 (0.50) 99 (0.31) 0.90 0.90 0.26 16 (0.49) 19 (0.56) 4 (0.15)

80 99 (0.59) 103 (0.61) 93 (0.52) 0.96 0.96 0.24 26 (0.58) 29 (0.67) 6 (0.29)

70 95 (0.74) 101 (0.81) 85 (0.59) 0.94 0.97 0.07 36 (1.02) 39 (0.97) 8 (0.37)

0.90 90 102 (0.49) 111 (0.74) 99 (0.45) 0.96 0.82 0.23 27 (0.74) 37 (1.05) 4 (0.22)

80 100 (0.74) 111 (1.07) 92 (0.84) 0.94 0.90 0.15 38 (1.09) 50 (1.49) 6 (0.49)

70 93 (0.96) 107 (1.26) 85 (1.16) 0.92 0.93 0.08 45 (1.41) 60 (1.79) 8 (0.84)

0.85 90 104 (0.66) 120 (1.27) 99 (0.75) 0.98 0.74 0.21 38 (1.21) 58 (2.16) 4 (0.40)

80 100 (1.05) 122 (1.89) 90 (0.71) 0.98 0.82 0.14 51 (1.92) 77 (2.82) 5 (0.41)

70 95 (1.21) 123 (1.84) 82 (0.74) 0.98 0.94 0.05 63 (2.30) 104 (3.69) 6 (0.48)

Scenario 3: independence with 6 key variables
0.95 90 101 (0.27) 101 (0.29) 102 (0.44) 0.83 0.83 0.27 10 (0.25) 11 (0.28) 5 (0.23)

80 101 (0.45) 102 (0.51) 100 (0.64) 0.93 0.95 0.59 19 (0.51) 20 (0.47) 10 (0.37)

70 99 (0.72) 101 (0.74) 95 (0.79) 0.94 0.94 0.59 28 (0.65) 30 (0.67) 14 (0.72)

0.90 90 103 (0.40) 104 (0.54) 102 (0.56) 0.90 0.87 0.26 17 (0.44) 20 (0.65) 5 (0.31)

80 100 (0.66) 104 (0.83) 95 (0.63) 0.98 0.93 0.39 26 (0.80) 32 (1.00) 8 (0.35)

70 98 (0.94) 104 (0.11) 89 (0.10) 0.95 0.91 0.24 40 (1.11) 45 (1.24) 11 (0.58)

0.85 90 105 (0.65) 111 (0.99) 101 (0.59) 0.88 0.82 0.17 29 (0.94) 40 (1.61) 5 (0.29)

80 100 (0.95) 112 (1.65) 93 (0.85) 0.93 0.85 0.15 38 (1.34) 54 (2.42) 6 (0.47)

70 100 (1.22) 118 (1.85) 85 (0.91) 0.98 0.89 0.14 58 (1.96) 81 (3.10) 8 (0.56)

Each cell reports a mean obtained with 100 pairs of data sets drawn from our model with N = 100,

nA = nB = nS and β1 = · · · = βi = · · · = βh. Standard errors are in parentheses.
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posterior mean of N , the estimated coverage of the 95% credibility intervals and
their mean length. Estimated standard errors are also given in parentheses. Note
that in our approach the average value of the posterior mean for N is, in almost
every experimental condition, the closest to the true value N = 100 and the one
with the smallest standard error. However, the reduced bias of our approach was to
be expected because the simulation generating process is exactly part of our model,
while the other approaches present several misspecification elements. Note also
that the Jaro constrained model and the hybrid approach have different behaviours,
the former overestimating N and the latter underestimating it. This is the same
trend already observed in the multiple block application.

The performance of the alternative approaches does not improve when consid-
ering the interval estimates. In fact, with few exceptions, our approach produces
the interval estimates with a coverage level closest to the nominal one. The hy-
brid approach, as expected, has dramatically low coverage level since it does not
account for matching uncertainty. The Jaro constrained model always produces
interval estimates wider than those provided by our model, partly because it only
retrieves from the data the marginal information given by the comparisons.

It is also interesting to note the behavior of the estimates with respect to the
information carried by the data. When the sample sizes or the number of key vari-
ables increase, the uncertainty about N reduces with all three methods. In addition,
both our model and the Jaro constrained model show a decrement in uncertainty
as the measurement error level decreases, that is, when the βi’s approach 1.

In Table 4 we report the results regarding the estimation of the matching ma-
trix C. In particular, for each method we show the average value of the False Match
Rates defined by

FMR1 =
∑

ab Ĉab(1 − Cab)∑
ab Ĉab

and FMR2 =
∑

ab Cab(1 − Ĉab)∑
ab Cab

,

where Ĉ is the point estimate obtained using the quadratic loss. The results of the
comparisons among different methods would depend upon which type of FMR
is used. In particular, under the FMR1 criterion, the better performance is estab-
lished by the Jaro constrained model, followed by our approach and by the hy-
brid approach. However, one should recall that the Jaro constrained model tends
to overestimate N and, consequently, it leads to a potential under-estimation of
T = ∑

ab Cab. This way, the FMR1 criterion would prefer the Jaro constrained
approach, because of its “conservative behavior.” From our perspective this is an-
other argument in favor of the inadequacy of FMR1 as a single measure of per-
formance of record linkage procedures. Finally, note that, when using the FMR2
criterion, the hybrid approach quite often shows the better performance with our
model producing a lower rate than the Jaro constrained model under the indepen-
dence assumption.
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TABLE 4
Simulation study for evaluating the false match rates under the new model (columns M1), the Jaro

constrained model (columns M2) and the Jaro unconstrained hybrid approach (columns M3)

FMR1 FMR2

βi nS M1 M2 M3 M1 M2 M3

Scenario 1: independence with 3 key variables
0.95 90 0.063 (0.004) 0.052 (0.003) 0.101 (0.004) 0.129 (0.004) 0.111 (0.005) 0.126 (0.005)

80 0.074 (0.004) 0.058 (0.004) 0.146 (0.007) 0.147 (0.006) 0.148 (0.006) 0.125 (0.006)
70 0.085 (0.005) 0.073 (0.005) 0.203 (0.008) 0.165 (0.006) 0.168 (0.006) 0.130 (0.006)

0.90 90 0.095 (0.004) 0.088 (0.004) 0.185 (0.006) 0.240 (0.007) 0.244 (0.008) 0.216 (0.006)
80 0.100 (0.005) 0.090 (0.005) 0.244 (0.007) 0.274 (0.007) 0.286 (0.007) 0.212 (0.006)
70 0.123 (0.006) 0.110 (0.006) 0.319 (0.009) 0.293 (0.007) 0.309 (0.008) 0.227 (0.007)

0.85 90 0.130 (0.006) 0.122 (0.006) 0.307 (0.007) 0.401 (0.007) 0.401 (0.008) 0.316 (0.007)
80 0.131 (0.005) 0.122 (0.006) 0.373 (0.008) 0.423 (0.008) 0.429 (0.007) 0.320 (0.009)
70 0.160 (0.007) 0.144 (0.008) 0.420 (0.009) 0.447 (0.010) 0.457 (0.010) 0.322 (0.007)

Scenario 2: dependence with 3 key variables
0.95 90 0.065 (0.003) 0.054 (0.003) 0.138 (0.004) 0.137 (0.005) 0.126 (0.005) 0.123 (0.005)

80 0.075 (0.004) 0.067 (0.005) 0.205 (0.005) 0.173 (0.006) 0.152 (0.005) 0.144 (0.006)
70 0.083 (0.005) 0.087 (0.005) 0.278 (0.006) 0.184 (0.006) 0.170 (0.006) 0.144 (0.006)

0.90 90 0.093 (0.004) 0.091 (0.004) 0.234 (0.007) 0.270 (0.006) 0.268 (0.006) 0.227 (0.006)
80 0.108 (0.005) 0.108 (0.005) 0.295 (0.008) 0.289 (0.007) 0.283 (0.008) 0.228 (0.008)
70 0.117 (0.006) 0.123 (0.007) 0.353 (0.008) 0.308 (0.007) 0.298 (0.008) 0.234 (0.006)

0.85 90 0.128 (0.005) 0.145 (0.005) 0.339 (0.007) 0.426 (0.007) 0.405 (0.007) 0.333 (0.007)
80 0.141 (0.007) 0.139 (0.007) 0.398 (0.007) 0.438 (0.007) 0.422 (0.008) 0.334 (0.007)
70 0.145 (0.007) 0.149 (0.008) 0.454 (0.007) 0.463 (0.010) 0.454 (0.010) 0.331 (0.008)

Scenario 3: independence with 6 key variables
0.95 90 0.034 (0.002) 0.030 (0.002) 0.043 (0.003) 0.054 (0.003) 0.046 (0.003) 0.058 (0.003)

80 0.043 (0.003) 0.040 (0.003) 0.079 (0.005) 0.065 (0.003) 0.065 (0.003) 0.070 (0.004)
70 0.068 (0.004) 0.061 (0.004) 0.134 (0.006) 0.078 (0.005) 0.083 (0.005) 0.073 (0.004)

0.90 90 0.071 (0.003) 0.063 (0.003) 0.115 (0.004) 0.143 (0.005) 0.140 (0.005) 0.124 (0.005)
80 0.089 (0.004) 0.078 (0.003) 0.175 (0.006) 0.158 (0.005) 0.168 (0.005) 0.132 (0.005)
70 0.104 (0.005) 0.097 (0.005) 0.244 (0.007) 0.190 (0.006) 0.204 (0.007) 0.149 (0.006)

0.85 90 0.126 (0.005) 0.108 (0.004) 0.232 (0.006) 0.287 (0.006) 0.297 (0.007) 0.235 (0.006)
80 0.142 (0.006) 0.129 (0.006) 0.297 (0.008) 0.308 (0.009) 0.330 (0.010) 0.241 (0.008)
70 0.151 (0.007) 0.131 (0.006) 0.373 (0.008) 0.342 (0.009) 0.380 (0.011) 0.256 (0.008)

Each cell reports a mean obtained with 100 pairs of data sets drawn from our model with N = 100,

nA = nB = nS and β1 = · · · = βi = · · · = βh. Standard errors are in parentheses.

8. Discussion. Record linkage techniques pose several interesting problems
both from the methodological and the computational viewpoint. From a method-
ological perspective, the definition itself of the statistical framework within which
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comparisons among records should be performed is still under debate: in this paper
we have proposed a novel Bayesian methodology.

While it is definitely true that the result of a statistical analysis produced by an
official organism must be objective (or — at least — it should be perceived as such
by the users), it is also undeniable [see Fienberg (2011)] that Bayesian ideas and
techniques can play an important role in official statistics, especially when impor-
tant prior (or extra-experimental) information about the variables of interest exists
and cannot be adequately exploited in a classical inference framework. In addi-
tion, even when prior information is lacking, a Bayesian analysis may be necessary
simply because a classical approach cannot provide answers without introducing
strong assumptions, not easily testable. In these situations a Bayesian analysis al-
lows us, at least, to perform a sensitivity analysis, with the aim of quantifying the
influence of the assumptions on inferences.

From a computational perspective record linkage problems become formidable
as soon as the sizes of the files are large. The intensive simulation methods re-
quired by any Bayesian approach for a matching problem make the computational
problems in real applications even more crucial. One of the most popular solu-
tions, valid also for our approach, is to perform the record linkage only between
those records which show the same values on some blocking variables which are
assumed to be recorded without errors. In addition, parallel computations for sep-
arated blocks may reduce the computing time in a significant way.

The proposed model is built up on the actually observed categorical variables
drawn from a finite population and no reduction of the available information, for
example, by using Boolean comparison vectors, takes place. We also stress that
prior information, provided by experts or by previous surveys, can be introduced
naturally into the record linkage process via the superpopulation model, for exam-
ple, by giving specific association patterns between the key variables. Another im-
portant benefit is the acknowledgment and incorporation of the matching process
uncertainty in estimating the population size as well as other population parame-
ters. At the same time, the information available about the population parameters
and their uncertainty are accounted for in the record linkage.

Throughout the paper we have made some specific assumptions, such as the
fixed sample sizes or the uniform distribution for the misspecified record fields and
their conditional independence given the true values. Anyway, we are confident
that our framework may provide a basis for several extensions with more general
assumptions. In particular, some of the capture–recapture models used for a closed
population [see, e.g., Wolter (1986) and Fienberg, Johnson and Junker (1999) or
Erosheva, Fienberg and Joutard (2007) and Manrique-Vallier and Fienberg (2008)
for more advanced proposals] could be incorporated as sampling models for the
sample sizes and the number of recaptures. Multiple recaptures could be handled
following Ruffieux and Green (2009), where a method for aligning multiple un-
labeled configurations has been proposed. By assuming an exchangeable prior for
β1, . . . , βh, we may also remove the assumption of conditional independence for
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the measurement error among record fields. In addition, different measurement er-
ror probabilities across files may be considered. Note also that the model has been
developed so that each block is separately evaluated. However, following Larsen
(2005), we could allow a “borrowing of strength” effect across the blocks by intro-
ducing some extra layers in our prior modeling. Some of these extensions will be
the object of future research. A similar approach for handling multivariate normal
data is discussed in Liseo and Tancredi (2009).

An important aspect of record linkage procedures which we have not addressed
here is that of the nonrandomness of the samples, for example, in applications
using administrative lists provided by register offices. This issue has some conse-
quences in every modeling approach to record linkage; however, discussion about
these problems is beyond the scope of this paper. In any case, we believe that the
idea of a Bayesian superpopulation model generating the lists might be useful in
this context too.

Finally, note that the computer science literature on record linkage (also known
as data matching or entity resolution) has developed, in recent times, some im-
pressive algorithms based on machine learning and graph-based matching. Some
relevant papers are Bhattacharya and Getoor (2007) and Kalashnikov and Mehro-
tra (2006) and it would be interesting to compare these or similar approaches with
the statistical models presented in this paper.

APPENDIX A

The sampling models (3.1) and (3.2) can be obtained as the marginal distribution
of p(μA,μB,C, t |F) = p(μA,μB |C, t,F )p(C, t |F). First, we average out C, so
p(μA,μB |t,F ) = ∑

C p(μA,μB,C|t,F ). In this sum we only need to consider
those matrices C with exactly tj matches in the block {(a, b) : μA

a = μB
b = vj } for

j = 1, . . . , k. The total number of such matrices is
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Then,
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APPENDIX B

The derivation of the full conditional distribution of t |F,μA,μB, θ,β, xA, xB :

p(t |F,μA,μB, θ,β, xA, xB)

∝ p(μA,μB |F, t)p(t |F)
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SUPPLEMENTARY MATERIAL

Data files and codes (DOI: 10.1214/10-AOAS447SUPP; .zip). Included
in the supplementary material there are the following files: exampleA.dat,

http://dx.doi.org/10.1214/10-AOAS447SUPP
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exampleB.dat and exampleV.dat contain the data used in Section 5. The files
B.Cat.matching.example.R, example.R, functions.r, gibbs.c contain the codes. The
file supplementary_figure.pdf shows the trace plots for the application described
in Section 5.
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