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Scale-Dependent Priors for Variance
Parameters in Structured Additive

Distributional Regression

Nadja Klein∗ and Thomas Kneib†

Abstract. The selection of appropriate hyperpriors for variance parameters is an
important and sensible topic in all kinds of Bayesian regression models involving
the specification of (conditionally) Gaussian prior structures where the variance
parameters determine a data-driven, adaptive amount of prior variability or preci-
sion. We consider the special case of structured additive distributional regression
where Gaussian priors are used to enforce specific properties such as smoothness
or shrinkage on various effect types combined in predictors for multiple param-
eters related to the distribution of the response. Relying on a recently proposed
class of penalised complexity priors motivated from a general set of construction
principles, we derive a hyperprior structure where prior elicitation is facilitated by
assumptions on the scaling of the different effect types. The posterior distribution
is assessed with an adaptive Markov chain Monte Carlo scheme and conditions
for its propriety are studied theoretically. We investigate the new type of scale-
dependent priors in simulations and two challenging applications, in particular in
comparison to the standard inverse gamma priors but also alternatives such as
half-normal, half-Cauchy and proper uniform priors for standard deviations.

Keywords: Kullback–Leibler divergence, Markov chain Monte Carlo simulations,
penalised complexity prior, penalised splines, propriety of the posterior.

1 Introduction

Structured additive regression (Fahrmeir et al., 2004; Kneib et al., 2009) provides an im-
portant framework for regression modelling in various areas of applications. It combines
the flexibility of generalised additive models (Hastie and Tibshirani, 1990) with the ad-
ditive inclusion of random effects, spatial components (Kammann and Wand, 2003) and
further types of regression effects (Wood, 2006; Fahrmeir et al., 2013) on the conditional
expectation. In particular, for some known response function h, the expectation E(y|x)
of a response variable y given covariate information x is specified as

E(y|x) = h(β0 +

J∑
j=1

fj(x))

where β0 is an intercept and fj(x), j = 1, . . . , J , are different types of functional ef-
fects depending on (a subset of) the covariate information x. Utilising basis function
expansions to represent the functional effects allows us to write the vector of function
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evaluations f j = (fj(x1), . . . , fj(xn))
′ for n individuals as the matrix vector product

f j = Zjβj with suitable design matrices Zj and vectors of regression coefficients βj to
be estimated. In a Bayesian model specification, a zero mean (conditionally) Gaussian
prior with precision matrix 1

τ2
j
Kj is typically assumed for βj where Kj is chosen to

enforce, for example, smoothness or shrinkage of the coefficient vector βj and the vari-
ance parameter τ2j quantifies our prior uncertainty about the properties enforced by Kj .
Note that in many common model specifications such as Bayesian P-splines (Brezger
and Lang, 2006) or Markov random fields (Rue and Held, 2005), the matrix Kj will be
rank-deficient such that it cannot be inverted to a proper covariance matrix. Further-
more, note that our formulation uses a parameterisation in terms of the prior variance
τ2j while other formulations rely on the prior precision, i.e. the inverse variance, instead.

To complete the Bayesian model specification, suitable hyperpriors have to be aug-
mented to the variance components τ2j . While the inverse gamma prior, τ2j |a, θ ∼
IG(a, θ), is a natural, conjugate prior comprising flat priors for the variance and the
standard deviation as degenerate special cases (see, e.g., Fahrmeir and Kneib, 2009),
there has been considerable debate about the suitability of the inverse gamma dis-
tribution especially in the context of hierarchical random effects models (see, for ex-
ample, Gelman, 2005, 2006; Hodges, 2013) or for overfitting models as demonstrated
in Frühwirth-Schnatter and Wagner (2010, 2011). As a consequence, several alternatives
such as half-normal, half-Cauchy or (proper) uniform priors for the standard deviation
have been suggested as default priors in the literature (e.g. Gelman, 2006; Gelman
et al., 2008; Polson and Scott, 2012). Another branch of the literature encouraged the
choice of ‘objective’ priors (Bernardo, 1979; Berger, 2006; Ghosh, 2011) or Jeffreys pri-
ors (Berger et al., 2009). Unfortunately, prior elicitation of the hyperparameters of these
priors, ensuring the propriety of the posterior and justification of the chosen distribution
type with respect to axiomatic reasoning are often problematic in these cases.

Without relying on a specific modelling context, Simpson et al. (2014) develop a
general approach for determining so-called penalised complexity priors reflecting that
frequently hyperpriors are desired for parameters governing the deviation of a flexible
model from a restrictive base model. Examples include (i) the normal distribution as
a base model which is encompassed in the more flexible t-distribution model for the
limiting case of increasing degrees of freedom or (ii) a first order autoregressive process
for time series deviating from the base model of independence for increasing absolute
value of the autoregressive parameter. In the case of structured additive regression
models, an interesting base model is obtained when setting the smoothing variance to
zero. For random effects, the base model would then correspond to a pure fixed effects
model without random coefficients while for penalised splines with second order random
walk prior, the base model would correspond to a parametric, linear effect.

The penalised complexity prior of Simpson et al. (2014) is developed as follows:
The deviation between the base model and the more flexible alternative is measured
in terms of the Kullback–Leibler divergence. Since usually the base model would be
favoured unless there is evidence in the data for the necessity of the more flexible
alternative, an exponential prior is assigned to the Kullback–Leibler distance such that
the mode of the prior corresponds to the base model. The speed of the exponential
decay is determined by a hyperparameter that, in structured additive regression, can
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be elicited based on prior assumptions about the scaling of the model components. We
therefore refer to the priors as scale-dependent hyperpriors. Based on the prior for the
Kullback–Leibler distance, one can then derive the induced prior for the parameter of
interest (i.e. the smoothing variance in case of structured additive regression). The main
advantages of the approach by Simpson et al. (2014) are (i) the derivation based on a
simple set of axiomatic assumptions (preference of the base model, exponential decay in
the distance between base model and alternative) and (ii) the assistance they offer for
prior elicitation by requesting statements on the expected scaling from the data analyst.

The idea of divergence-based prior constructions can be traced back at least to
Jeffreys (1961) where it led to the derivation of the famous class of Jeffreys priors.
Garćıa-Donato and Sun (2007) and Bayarri and Garćıa-Donato (2008) considered diver-
gence-based priors in the context of Bayesian hypothesis testing. However, they utilise
the Kullback–Leibler divergence for the complete models to be tested while the penalised
complexity prior only takes the divergence between prior structures into account. This
allows for much more versatile derivations since the priors can be used as building blocks
in a variety of models but also comes at the price of more restrictive assumptions on
prior independence. We will return to this issue later in Section 3.1.

In this paper, we utilise the approach of Simpson et al. (2014) to develop scale-
dependent priors for the variance parameters in structured additive distributional re-
gression and to compare it to other types of priors with parameters chosen according
to the same scaling criterion. More specifically, the main contributions of our paper are
as follows:

• While Simpson et al. (2014) already consider some special cases of effects com-
prised in structured additive regression (random walk priors, random effects), they
are restricted to indicator basis functions that induce a design matrix Zj of the
zero / one incidence type. We construct scale-dependent hyperpriors for the gen-
eral case of arbitrary basis functions which makes the determination of the scaling
factor more demanding.

• We develop Markov chain Monte Carlo simulation inference with scale-dependent
priors instead of the integrated nested Laplace approximation framework (INLA,
Rue et al., 2009; Lindgren et al., 2011) of Simpson et al. (2014). This involves the
derivation of a suitable proposal density for the scale-dependent prior based on
a quadratic approximation to the log-full conditional of the log-variance param-
eters. This is particularly relevant since we include scale-dependent hyperpriors
not only in mean regression models for Gaussian responses or responses from the
exponential family, but rather consider the general framework of distributional
regression (Klein, Kneib and Lang, 2015; Klein, Kneib, Lang and Sohn, 2015)
where further moments or general shape parameters of the conditional response
distribution can be related to a predictor (similar as in generalised additive models
for location, scale and shape, Rigby and Stasinopoulos, 2005) which is currently
(to the best of our knowledge) not possible with INLA.

• We establish theoretical results by providing sufficient (and sometimes necessary)
conditions to arrive at a proper posterior distribution. The question of propriety
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arises naturally due to the partially improper priors for the vectors of regression
coefficients for several effect types in structured additive regression.

• We study the potential of scale-dependent hyperpriors to enhance numerical sta-
bility in situations with a flat likelihood and give empirical evidence in favour of
the proposed prior as compared to other prior structures in further simulation
studies and two applications.

• In addition to the common inverse gamma priors that lead to Gibbs sampling
updates, we consider half-normal, half-Cauchy and proper uniform priors for stan-
dard deviations that have been advocated as hyperpriors for variance parameters
in Bayesian mixed effects models (Gelman, 2005, 2006; Hodges, 2013). To derive
suitable proposal densities, we again consider quadratic approximations of the log-
full-conditional for the log-variances. The parameters of the hyperpriors are chosen
according to a similar scaling criterion for the effects as for the scale-dependent
priors.

Accordingly, the rest of the paper is structured as follows. In Section 2, we first
introduce the generic model formulation in structured additive distributional regression
in order to then construct the scale-dependent hyperpriors for the variance components.
Furthermore, we provide a practicable strategy to optimise the scale parameter of the
priors, illustrate it along two exemplary effect types and make further alternative prior
structures applicable (see Table 1 for a summary of the supported prior specifications).
The main theoretical results on the propriety of the posterior are treated in Section 3
while required further theoretical results are in Supplement A (Klein and Kneib, 2015).
In the subsequent Section 4, we describe how inference is performed with an adap-
tive Metropolis–Hastings algorithm for all unknown parameters and describe suitable
adaptations for alternative hyperprior structures. Basic results from simulations cap-
turing various scenarios are briefly summarised in Section 5 while all simulations are
documented in more detail in Supplement B and G. The good performance of scale-
dependent priors is illustrated along applications on patent citations and geoadditive
regressions in the analysis of childhood undernutrition in Zambia in Section 6 before we
end with a discussion in Section 7. Further theoretical details and derivations can be
found in Supplement C to F.

2 Scale-Dependent Hyperpriors

2.1 Distributional Regression

Observation Model We consider the construction of scale-dependent hyperpriors in
the general class of Bayesian structured additive distributional regression, recently de-
veloped in Klein, Kneib, Lang and Sohn (2015) for univariate responses and extended
in Klein, Kneib, Klasen and Lang (2015) to multivariate responses. In these models, it
is assumed that the (not necessarily scalar) response variable y given covariates x has
a parametric distribution with density

p(y|ϑ1, . . . , ϑK) (M1)
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where {ϑk, k = 1, . . . ,K} is a collection of distributional parameters each taking values
in a subset of R. Compared to mean regression where p(·) usually belongs to the expo-
nential family and where K−1 parameters are treated as fixed or nuisance parameters,
in distributional regression each of the distribution parameters is linked to a structured
additive predictor ηk via a suitable one-to-one transformation hk, i.e. hk(ηk) = ϑk. The
predictors are then composed additively as

ηk = β0,k +

Jk∑
j=1

fj,k(x) (M2)

where, in turn, each function fj,k(x) depending on (different subsets of) x is represented
by a linear combination of basis functions. Hence, after dropping the dependence on the
distributional parameter (index k) and the order of the functions (index j), a typical
function f(x) is then specified as

f(x) =

D∑
d=1

βdBd(x) (1)

whereBd(x), d = 1, . . . , D, is a set of appropriate basis functions while β = (β1, . . . , βD)′

is the vector of corresponding basis coefficients. To ensure identifiability of the model,
specific constraints Aβ = 0 with appropriate matrices A representing, for example,
centring of the functional effects are added such that β0 corresponds to the overall level
of the predictor. Specific examples include penalised splines, where the basis functions
correspond to B-splines whereas the amplitudes of these basis functions are estimated
with the vector of coefficients or Markov random fields where the coefficients represent
spatial effects for a prespecified set of regions and the basis functions are indicator func-
tions mapping the individual observations to these regions (see Fahrmeir et al., 2013,
for details and further examples).

Since in many cases the vector of basis coefficients β will be of rather high dimen-
sion, it is important to enforce specific properties of the estimates such as smoothness or
shrinkage to regularise estimation and therefore to reduce variability of estimates. In a
likelihood-based framework, this can be achieved by adding quadratic penalties λβ′Kβ
to the likelihood, where the smoothing parameter λ determines the impact of the penalty
on the estimation result. Data-driven estimates for all smoothing parameters contained
in a structured additive regression model can then, for example, be determined via (ap-
proximate) restricted maximum likelihood estimation (Fahrmeir et al., 2004) or based
on generalised cross-validation (Wood, 2006).

Prior Assumptions for Regression Coefficients In a Bayesian treatment of structured
additive regression models, the stochastic analogue to quadratic penalties are (partially
improper) multivariate Gaussian priors

p(β|τ2) ∝
(

1

τ2

) rk(K)
2

exp

(
− 1

2τ2
β′Kβ

)
(2)

with fixed positive (semi-)definite precision matrix K, variance parameter τ2 and rk(·)
denoting the rank of a matrix. For the overall constants β0, we typically assume flat
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priors
p(β0) ∝ const (3)

similar as for linear effects with design matrix containing covariates and precision matrix
K = 0.

Mixed Model Representation Due to the potential rank deficiency, the null space of
the precision matrix K in (2) will in some cases be non-trivial. For a proper construc-
tion of the hyperprior in the following, we introduce a mixed model type representa-
tion (Wand, 2000; Ruppert et al., 2003; Fahrmeir et al., 2004) for the vector of function
evaluations f = (f(x1), . . . , f(xn))

′ = Zβ of n individuals as

f = Zβ = Z(Ũβunpen + Ṽ βpen) = Uβunpen + V βpen (4)

such that Ṽ
′
KṼ = I and Ũ

′
KŨ = 0 hold. The columns of Ũ are then a basis of the

nullspace of K and Ṽ can be obtained from the spectral decomposition of the prior
precision matrix K = ΓΩ+Γ

′ (with Ω+ the diagonal matrix of positive eigenvalues
and Γ the corresponding orthonormal matrix of eigenvectors) as Ṽ = L(L′L)−1 where

L = ΓΩ
1/2
+ . Furthermore, the spectral decomposition of K delivers the generalised

inverse K− = ΓΩ−
+Γ

′ with diagonal matrix

Ω−
+[d, d] =

{
1/Ω+[d, d] if Ω+[d, d] > 0,

0 otherwise

and the generalised determinant of K−, |K−| =
∏

Ω+[d,d]>0 Ω
−
+[d, d].

As a consequence, the dimension of vector βpen equals the rank of the precision
matrix K, i.e. dim(βpen) = rk(K) = κ and βpen follows a proper i.i.d. normal prior,
βpen |τ2 ∼ N(0, τ2I), while βunpen is the unpenalised part of dimension D−κ with zero
precision matrix and flat prior. In this way, 1/τ2 can be interpreted as the precision of the
deviation from the null space which facilitates the construction of the scale-dependent
hyperprior based on the base model defined by this null space. For a spline component
with second order random walk prior, for example, the null space corresponds to a linear
effect in the covariate and τ2 can therefore be interpreted as a measure for the deviation
from this simpler base model, as explained in more detail in the following.

2.2 Derivation of the New Hyperprior Structure

We will now discuss the construction of a new type of prior structure for the variance pa-
rameters τ2 by applying the general definition of penalised complexity priors developed
in Simpson et al. (2014). The basic reasoning of this derivation relies on the following
principles discussed in Simpson et al. (2014):

Principle 1: Occam’s razor. The hyperprior should invoke the principle of parsimony
in the sense that a suitable, simple base model for each effect is preferred
unless the data provide convincing evidence for a more complex modelling
alternative.
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Principle 2: Measure of complexity. The increased complexity between two models is
measured by the unidirectional measure

d(p||pb) =
√

2KLD(p||pb)

where KLD(p||pb) denotes the Kullback–Leibler divergence between the
base model represented by density pb and the alternative represented by
density p, i.e.

KLD(p||pb) =
∫

p(u) log

(
p(u)

pb(u)

)
du. (5)

Principle 3: Constant rate penalisation. This assumption implies an exponential prior
pd(d) = λ exp(−λd) on the distance scale d such that there is a constant rate
of decay in the distance prior from the base model to stronger deviations
from this base model as quantified by the KLD.

Theorem 1. Let 1
τ2K be the precision matrix of the flexible model for a vector of

regression coefficients β and 1
τ2
b
K the precision matrix of the base model where τ2b → 0.

Furthermore, let p(τ2) be the prior for τ2 depending on a hyperparameter θ. If the prior
p(·) is constructed according to Principles 1 to 3 discussed above, we obtain a Weibull
prior with shape parameter a = 1/2 and scale parameter θ (determined by the rate of
decay λ specified in Principle 3), i.e.

p(τ2) =
1

2θ

(
τ2

θ

)−1/2

exp

(
−
(
τ2

θ

)1/2
)
. (6)

This result is a consequence of the proof in Appendix A2 of Simpson et al. (2014)
applying the change of variable theorem. In Supplement A.1, we provide a detailed proof
that derives the prior based on Principles 1 to 3 to allow for a better understanding of
how the principles lead to the implied prior structure. This proof is an extended and
adapted version of the one in Appendix A2 of Simpson et al. (2014).

Remark 1.

(i) As indicated by Simpson et al. (2014), the invariance property of the prior is
obtained ‘for free’. For example, a type-2 Gumbel distribution is obtained as the
prior for ξ = 1/τ2.

(ii) As already noted by Simpson et al. (2014), the exponential decay assumption can
of course be replaced by alternative priors for the distance if desired. We stick
to the simple exponential prior since it is a convenient default in cases where no
additional prior knowledge on the distance is available.

(iii) Principle 4.(User-defined scaling) of Simpson et al. (2014) controls the decay-rate
r = exp(−λ) by imposing the condition

P(q(τ2) ≤ c) = 1− α (7)

for an interpretable transformation q(·) of τ2 and some user-defined values c > 0
and α ∈ (0, 1). The probability in (7) depends on the intensity λ via the density
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of q(τ2) such that solving the expression with respect to λ yields the exact prior
specification for τ2. We discuss the choice of q(·), c and α in the subsequent section.

2.3 Choosing the Scale Parameter – User-Defined Scaling

Compared to the models with direct linkage between a parameter of interest and its
marginal precisions considered in Simpson et al. (2014) allowing for simple forms of
the transformation q(·) in (7) such as q(τ) = τ , we are interested in relating the scale
parameter θ to the functions f rather than directly to the variances τ2. This means
that the user has some knowledge about the scale of f providing the specification of a
certain interval the function f falls into with a high marginal probability, i.e.

P(|f(x)| ≤ c ∀x ∈ D) ≥ 1− α (8)

where α ∈ (0, 1) and c > 0 are chosen in advance and D denotes the domain of x. The
absolute value can be taken without loss of generality due to the centring constraint in
the additive predictor (M2) for each function to ensure identifiability. For simplification
purposes, we reduce the simultaneous statement above to a finite-dimensional problem
by using a subset of points XP = {x1, . . . ,xP } from D together with the Bonferroni
inequality to arrive at

P(|f(xp)| ≤ c ∀x ∈ XP ) ≥ 1−
P∑

p=1

P (|f(xp)| ≥ c) . (9)

The marginal density of f(xp) = (B1(xp), . . . , BD(xp))β = z′
pβ can be obtained by

integrating τ2 out, i.e. computing the integral

p(z′
pβ) =

∫ ∞

0

p(z′
pβ, τ

2)dτ2 =

∫ ∞

0

p(z′
pβ|τ2)p(τ2)dτ2

where z′
pβ|τ2 ∼ N(0, τ2z′

pK
−zp). Hence, θ can be chosen such that

P∑
p=1

(
1−

∫ c

−c

∫ ∞

0

pz′
pβ

(u|τ2)p(τ2)dτ2du
)

= α (10)

is fulfilled and (10) can be solved numerically. An implementation for given precision
matrix K, design matrix Z = (z′

1, . . . , z
′
P ), probability level α and the threshold c

is provided in the R-package sdPrior (Klein, 2015), available from CRAN (https://
cran.r-project.org/web/packages/sdPrior/). We will illustrate the application of
user-defined scaling in practice along two important predictor components in the fol-
lowing.

Bayesian P-Splines Bayesian P-splines (Lang and Brezger, 2004) are a Bayesian ver-
sion of penalised regression with B-splines (P-splines, Eilers and Marx, 1996), replacing
the difference penalties with Gaussian random walk priors. In this case, the prior preci-
sion matrix is given by K = D′D where D denotes a difference matrix of appropriate

https://cran.r-project.org/web/packages/sdPrior/
https://cran.r-project.org/web/packages/sdPrior/
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order. While for fixed order of the penalty K always has the same structure, the design
matrix Z varies depending on the specification of the knots of the spline basis and the
distribution of the observed covariate values. To empirically evaluate how much the
optimal value θ obtained from (10) depends on these factors and to investigate the loss
of efficiency through the inequality when switching from a simultaneous statement to
a pointwise approximation, we conducted several simulation experiments whose results
are summarised below (a more detailed documentation is provided in Supplement B).
Let therefore XP = {x1, . . . , xP } be the set of realisations of x at which the probabil-
ity statement is evaluated, α ∈ {0.01, 0.05, 0.1, 0.2, 0.5, 0.7} the probability statements
under consideration and c = 3 the threshold of interest. The latter is motivated from
the fact that with the most common link functions such as the log link, the probit link
or the logistic link, there is no more variability in the desired parameter if the pre-
dictor exceeds the range from −3 to 3. Of course, in practice the threshold c as well
as the other settings can (and should) be chosen according to the prior knowledge of
the analyst to induce a user-defined amount of scaling. As mentioned above, this can
easily be done using the functionality provided in the R-package sdPrior. Finally, let
r = 1, . . . , R = 1000 be the number of simulation replications. Then, the results of our
empirical evidence can be summarised as follows:

1. Bonferroni inequality. Let here XP be deterministic equidistant grids within the
interval [−3, 3] of sizes P ∈ {1, 2, 5, 10, 15, 30, 40, 50, 100}. As expected, the de-
sired level is maintained pointwise for all P while for the simultaneous statement,
independently from α, larger P induce more conservative statements, compare
Figure B1.

Note that in general the usage of the Bonferroni inequality only makes the state-
ment in (9) more conservative which is not of very high relevance for our pur-
poses. Furthermore, in simulations the results for θ (and the resulting functional
estimates for f) proved to be very robust across different values for α so that we
expect that the estimation results for the functional effects f will not change (or
only marginally) in practice. As a consequence, we did not invest additional efforts
in reducing the loss of efficiency induced by the Bonferroni inequality.

2. Optimal scale parameter based on observed covariate values. The distribution of x
varies between a uniform, normal and gamma distribution with parameters chosen
such that they have equal quantile ranges dx ∈ {20, 10, 6, 4, 2, 1}. The level α is
fixed to 0.01. As expected, the larger P ∈ {1, 2, 3, 4, 5, 10, 15, 20}, the smaller θ.
However, all absolute values for P > 1 lie in the interval [0.002, 0.005] such that
the differences are relatively small in absolute terms, see Figure B6. For P = 1, we
obtain θ ≈ 0.008. The interval range dx does not seem to influence θ even though
some variation within the interval range is visible.

3. Optimal scale parameter based on knots of the design matrix. Now, x1 ≤ · · · ≤ xP

is the sequence of P = 22 knots corresponding to the design matrices Z of cubic
B-splines and second order random walk prior obtained for univariate, normal or
gamma distributed covariates x in samples of sizes n = 50, 10, 1000, dx as above
and α = 0.01 as before. As expected, for all three distributions, ranges dx and
sample sizes n, the optimal θ is approximately the same (Figure B7).
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Based on the results so far, we decided for a pointwise selection of θ (P = 1) depending
on the chosen values of α and c. Exemplary values for c = 3 are listed in Table B1 of
the supplement.

Markov Random Fields Suppose that spatial information in terms of an index s ∈
{1, . . . , S} representing the location in one of S geographical regions is given and that
a spatial effect should be included in a regression specification. In a Markov random
field specification, each region would be associated with its own regression coefficient
such that the n× S design matrix Z is of zero/one incidence type, linking regions and
individual observations. To obtain spatial smoothness, the S × S precision matrix K
is constructed based on the set of indices δs consisting of the neighbouring regions of
s obtained from the symmetric neighbourhood relation s ∼ t ⇔ t ∈ δs. Then, the
off-diagonal entries of K are given as K[s, t] = K[t, s] = −1{s ∼ t}, s �= t while the
diagonal elements are given by K[s, s] = |δs| such that rk(K) = S − 1. Hence, unlike
for penalised splines where the precision matrix has a fixed structure only depending on
the difference order, the structure of the precision matrix varies with the neighbourhood
structure and in particular the connectivity of the geographical units. In such a case,
our sdPrior package can be used to compute θ for a given map and neighbourhood
structure (and in fact any design matrix Z and precision matrix K).

Note that in general, the same hyperprior for the smoothing variance can induce very
different amounts of smoothing for different effect types as has been shown by Sørbye
and Rue (2014) for Gaussian Markov random field priors. This problem is, however,
avoided in our case by explicitly including the structure of K in the determination of θ
(compare (8) to (10)).

Since conditionally βs given all other regions collected in β−s follows a normal dis-
tribution with expectation equal to the mean of the neighbouring regions and variance
τ2 |δs|−1

, the base model in case of Markov random fields corresponds to the determin-
istic situation of a zero spatial effect.

2.4 Scaling Alternative Prior Structures

While Principles 1 to 3 for penalised complexity priors give rise to the Weibull prior for
the smoothing variance, Principle 4 can also be applied to choose hyperparameters of
other prior structures, such as inverse gamma priors or half-normal, half-Cauchy and
proper uniform priors for standard deviations (Gelman, 2005, 2006; Hodges, 2013).

For example, in case of an inverse gamma prior with a = 1 and θ small (which de-
fines a ‘flat’ prior for the inverse smoothing variance, i.e. the precision), z′

pβ marginally

follows a t-distribution, z′
pβ ∼ t(2a, 0, θz′

pK
−zp/a). This considerably simplifies opti-

mising (10) with respect to θ since it avoids the necessity of numerical integration to
obtain the marginal probability statements.

Unfortunately, however, Principle 4 is not generally applicable. For example, in case
of the inverse gamma prior IG(θ, θ) with θ = ε and ε small, there are certain ranges of
the threshold c and the probability level α for which there is no solution of (10) with
respect to θ. The inherent reason is that ε impacts the shape of the inverse gamma
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density in a complex way such that reducing ε does not allow to concentrate more
probability mass of the marginal distribution close to zero.

In contrast, both the half-normal and the half-Cauchy prior can be transferred to the
scaling principle. Since both priors are usually assumed for the standard deviation τ , we
first derive the implied priors for τ2 and then study the resulting marginal prior for z′

pβ.
For the half-normal prior τ ∼ HN(0, θ2), i.e. the normal distribution with expectation
zero and variance θ2 truncated to the positive half-axis, we obtain a gamma distribution
with shape parameter 1/2 and scale parameter (2θ2)−1 for τ2 (see Supplement D.1 for
details) such that the marginal density of z′

pβ is given by

p(z′
pβ) =

1

πθ
√

z′
pK

−zp

K0(z
′
pβ/

√
θ2z′

pK
−zp)

with K0(x) denoting the modified Bessel function of second kind and order 0. The half-
Cauchy prior τ ∼ HC(0, θ2) with location parameter 0, scale parameter θ and density
proportional to (1+(τ/θ)2)−1 implies a generalised beta prime distribution with density

p(τ2) =
1

πθ2

(
1 +

τ2

θ2

)−1 (
τ2

θ2

)−1/2

for τ2 where the three shape parameters are given by 1/2, 1/2, and 1 while the scale
parameter corresponds to θ2 (see Supplement D.2 for details). In this case, the marginal
distribution of z′

pβ can only be approximated numerically. Due to the heavy tails of the
Cauchy prior, the resulting numerical optimisation of (10) can be unstable especially
for a large number of design points P or small values of the probability level α. We
discuss these numerical challenges in more detail in Supplement B where we conduct the
Monte Carlo experiment on the marginal probabilities and the impact of the Bonferroni
inequality, with settings described previously in the paragraph on Bayesian P-splines.

As a final alternative prior, we consider proper uniform priors τ ∼ U(0, θ) where θ
should be chosen according to the scaling criterion. Unfortunately, this prior turns out
to be difficult to deal with due to the convexity of the log-density. In particular, the
general principle for constructing adaptive proposal densities discussed in Section 4.1.2
relies on a quadratic approximation of the log-full conditional which does not fit with
the convex form of the log-density. We therefore constructed an approximation based
on the sigmoid function

papprox(τ) =
θ−1

1 + log(1 + exp(−c̃))/c̃

(
1− exp(τ c̃/θ − c̃)

1 + exp(τ c̃/θ − c̃)

)

where c̃ := θ/s and s controls the precision of the approximation, see Supplement C
for details on the approximation and the choice of c̃. Note that this approximation also
avoids possible difficulties due to the inherent non-differentiability of the uniform prior
with respect to τ in θ. Density and cumulative distribution function for the distribution
of τ2 under the approximate uniform distribution for τ are available in closed form and
the corresponding implementations (including random number generation) have been
added to the package sdPrior.
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For all four priors (inverse gamma with a = 1 for τ2, half-normal, half-Cauchy and
approximate uniform τ), the scale-dependent determination of θ is implemented in the
R-package sdPrior. In addition, it is possible to derive the implied prior densities on
the distance scale to facilitate the comparison with the construction principle for scale-
dependent priors (see Supplement E). Figure 1 shows the prior densities for the variance
(see Table 1 for details on the parameterisations) as well as the distance scale for five
different prior specifications with parameters chosen according to the scaling criterion
where α = 0.01, c = 3 and P = 1 for a spline component with B-spline basis of degree
3, 20 inner knots and second order difference matrix. There are some rather striking
features of these prior densities:

• Most importantly, as already noted by Simpson et al. (2014), the inverse gamma
prior puts zero density on the base model as can be seen in the right panel of
Figure 1. In fact, even a large amount of models close to the base model are
assigned a prior probability that is approximately zero. As a consequence, the
inverse gamma prior inherently favours the more complex, nonlinear model even
in case of complete absence of evidence for nonlinearity in the data. This is in
fact also true for the inverse gamma distribution with both parameters equal and
small (not included in Figure 1 due to its rather different shape), although the
prior starts to deviate from zero earlier.

• All other priors follow the principle of penalised complexity and prior preference
of the base model, such that the prior density of the base model on the distance
scale is different from zero. What differs is the speed of the decay of the prior on
the distance scale.

• All priors except the inverse gamma are convex on the variance scale. In contrast,
only the scale-dependent and the proper uniform prior are convex on the distance
scale. This corresponds to stronger discrimination between base model and alter-
natives close to the base model for the scale-dependent and the proper uniform
prior while half-normal and half-Cauchy put almost the same prior density on the
base model and small deviations (see the inlay in the right panel of Figure 1).

• On the distance scale, the tail behaviour of the half-normal and the uniform prior
are pretty similar with a fast decay to zero. In contrast, both half-Cauchy and
scale-dependent prior have heavier tails.

Marginal densities of z′
pβ in Figure B8 (Supplement B) indicate that all but the inverse

gamma priors induce a similar structure (but different absolute values of the densities)
with a distinct peak at zero that increases for smaller values of α. Resulting from the
marginal t-distribution, inverse gamma priors imply that the maximum of the densities
is equal for all α. Its computation is available via the R-package sdPrior.

For the four alternative prior specifications (inverse gamma, half-Cauchy, half-normal
and proper uniform), we repeated the Monte Carlo experiment (1) with optimised scale
parameter for each of the priors. As indicated before, some problems can occur with
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Figure 1: Illustration of densities for different hyperpriors for τ2. The left panel shows
the priors p(τ2), the right panel the resulting priors on the distance scale. The scale
parameter θ of the priors is the value resulting from a pointwise optimisation criterion
with α = 0.01, c = 3, P = 1 for a spline component with B-spline basis of degree 3, 20
inner knots and second order difference matrix.

half-Cauchy priors while no inconsistencies for the other priors can be identified, com-
pare Figures B1 to B5 (Supplement B). Note that based on our pointwise selection,
i.e. P = 1, the desired coverage is maintained for all probability levels α (and thus no
biased estimation in that respect is expected), as can be seen in Figure B4.

2.5 Priors for the Error Variance in Gaussian Mean Regression

Distributional regression comprises several simpler models such as structured additive
mean regression as special cases. In particular, the Gaussian mean regression model

y = η + ε, ε ∼ N(0, τ2ε ) (11)

is an important simplification which, however, requires the additional specification of a
prior for the error variance τ2ε . While it may be tempting to use the scale-dependent
hyperprior also in this case, it is important to note that the base model would correspond
to a model with zero variance, i.e. a deterministic model where all residuals are equal
to zero. This is in contrast to the application of scale-dependent priors for regression
effects in structured additive regression where the base model is also deterministic but
this simply implies that complex effects reduce to simpler ones. In case of the error
variance, an interpolating model with zero variances would certainly not be accepted
as a useful base model (and could usually not be estimated anyway if the number of
parameters is smaller than the sample size). As a consequence, we will stick to the usual
IG(aε, θε) prior as default choice in Gaussian mean regression in the following.
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Name Density Information

SD(α) p(τ2) ∝
(
τ2/θ

)−1/2
exp(−(τ2/θ)1/2) scale-dependent prior for τ2

HN(α) p(τ2) ∝ (τ2)1/2−1 exp
(
−τ2/(2θ2)

)
gamma prior for τ2 /
half-normal prior for τ

HC(α) p(τ2) ∝
(
1 + τ2/θ2

)−1 (
τ2/θ2

)−1/2
generalised beta prime prior
for τ2/half-Cauchy prior for τ

U(α) p(τ2) ∝ (τ2)−1/2

(
1− exp((τ2)1/2c̃/θ−c̃)

1+exp((τ2)1/2c̃/θ−c̃)

)
approximate uniform prior
for τ2/proper uniform prior
for τ

IG(α) p(τ2) ∝ (τ2)−2 exp
(
−θ/τ2

)
flat prior for 1/τ2 for θ → 0

IG(ε, ε) p(τ2) ∝ (τ2)−ε−1 exp
(
−ε/τ2

)
‘Jeffreys prior’/flat prior on
log-scale for ε → 0

IG(−1, 0) p(τ2) ∝ const flat prior for τ2

IG(−1/2, 0) p(τ2) ∝ 1/
√
τ2 flat prior for τ

Table 1: Overview of available hyperpriors for τ2. For further details on the densities,
see Supplement C to E.

Still, when investigating propriety of the joint posterior distribution in Section 3,
we will see that models with a scale-dependent prior on τ2ε also arise naturally when
applying a certain reparameterisation. However, these models are then a technical device
to prove propriety rather then being a sensible model specification to use in practice.

3 Propriety of the Posterior Distribution

Since partially improper priors (2) for the vectors of regression coefficients are employed
in structured additive distributional regression, a natural and important question that
arises is whether the joint posterior distribution is proper. Recently, Klein, Kneib and
Lang (2015) found sufficient conditions for the propriety in the general framework of
structured additive distributional regression when the usual inverse gamma hyperpriors
for the smoothing variances τ2 are used. The results are based on the work of Sun et al.
(2001) who derived several upper and lower bounds for the required integrals. Unfor-
tunately, these bounds are very specific to the inverse gamma case and thus cannot be
directly transferred to our model class with scale-dependent priors. We will therefore
establish adapted bounds in Lemma 2 that will allow us to generalise the results of
Klein, Kneib and Lang (2015) to distributional regression with scale-dependent hyper-
priors. We will treat the Gaussian mean regression case first and will then consider the
general framework of distributional regression. Note that unlike in the case of inverse
gamma priors, the distributional regression case cannot be immediately traced back to
the Gaussian case by applying a mixed model representation. The reason is that the
latter results in a working Gaussian model with scale-dependent prior also for the error
variance. As a consequence, additional considerations are required. Further theoretical
details and proofs will be given in Supplement A while we restrict ourselves to the main
results in the rest of this section.
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3.1 Conditional Independence Assumptions and Posterior
Distribution

Before the posterior distribution can be derived using Bayes’ theorem with the observa-
tion model from (M1), (M2) and the prior specifications in (2), (3) and (6), we complete
the Bayesian model formulation by the following conditional independence assumptions.

a. Conditional Independence Assumptions

Given ηk, k = 1, . . . ,K, the responses are conditionally independent.(a.1)

Priors p(βj,k|τ2j,k), j = 0, . . . , Jk, are conditionally independent.(a.2)

Priors p(β0,k) and hyperpriors p(τ2j,k) are mutually independent.(a.3)

Consequently, the posterior

p(β1, . . . ,βK , τ 2
1, . . . , τ

2
K |y)

with βk = (β0,k,β1,k
′, . . . ,βJk,k

′)′, τ 2
k = (τ21,k, . . . , τ

2
Jk,k

)′ and y = (y1, . . . , yn)
′ is up to

a normalising constant proportional to

n∏
i=1

p(yi|ηi1, . . . , ηiK)

K∏
k=1

⎡
⎣p(β0,k)

Jk∏
j=1

[
p(βj,k|τ2j,k)p(τ2j,k)

]⎤⎦ .

Note that assumption (a.2) may be critical in some cases. For example, one often ob-
serves empirically that random intercepts and random slopes tend to be negatively
correlated unless the covariate associated with the random slope is centred. In such
situations, independence between the vectors of regression coefficients comprising the
random intercepts and the random slopes, respectively, would be questionable. In fact,
in such cases the separate specification of user-defined scaling for the random intercepts
and the random slopes may itself be questionable. However, in general prior indepen-
dence should be a reasonable working assumption which also does not rule out posterior
dependence. Moreover, specifying the amount of scaling separately for each effect cer-
tainly facilitates prior elicitability.

3.2 Gaussian Mean Regression

Assume in this section a Gaussian mean regression model for y = (y1, . . . , yn)
′, i.e.

y = β01+

J∑
j=1

Zjβj + ε, ε ∼ N(0, τ2ε In) (12)

with inverse gamma prior

p(τ2ε ) ∝
1

(τ2ε )
aε+1

exp

(
θε
τ2ε

)
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for the error variance and remaining prior specifications as defined before. Note that k =
1 in this section and that Jk is replaced by J . Applying a mixed model representation
as introduced in Section 2 allows us writing (12) as

y = Uβunpen + V βpen + ε. (13)

We furthermore assume that U has full column rank rk(U) = r, see Remark 2(iii) for
details on how this is achieved. Define for ξ = (β′

unpen ,β
′
pen)

′ and X = (U ,V ) the
projection on the orthogonal complement of U as

R1 = In −U(U ′U)−1U ′, (14)

the residual sum of squares

SSE = y′(In −X(X ′X)−X ′)y (15)

and for t = rk(X)− rk(U) ≤ dim(βpen)

rk(X) = rk(U ,V ) = r + t. (16)

Remark 2.

(i) All rank conditions can be formulated directly for the reparameterised model (13)
and do not have to be traced back to the original parameterisation. To see this,
define Z∗ = ZS = Z diag(Sj) with

βj = Sjξj = (Ũ j , Ṽ j)ξj .

The matrix S has full rank such that rk(Z∗) = rk(Z) and rk(R1Z
∗) = rk(R1Z)

hold and finally

R1Z
∗ = R1[(U ,0) + (0,V )] = (R1U ,0) + (0,R1V ) = (0,R1V )

which proves
rk(R1Z) = rk(R1V ) = t.

(ii) With rk(U) = r it can be shown that

rk(U ,V ) = r + t ⇐⇒ rk(R1V ) = rk(V ′R1V ) = t.

The proof is in Supplement A.2 with Proposition 1.

(iii) In order to obtain a full column rank matrix of unpenalised effects in the mixed
model representation (13), all superfluous columns have to be deleted. In par-
ticular, duplicated constant columns representing the levels of the functions are
deleted which is a simple way to include the centring restrictions and is equivalent
to the centring of functions that we include in our MCMC algorithm. Furthermore,
using the one-to-one relationship between original parameterisation (11) and the
reparameterised model (13) the restrictions for one presentation can be deduced
from the other one. Hence, proving propriety of the posterior in the original model
can directly be based on the mixed model which will be done in the following.
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b. Conditions for Gaussian Mean Regression

κj −
J∑

j=1

κj + t− 1 > 0, j = 1, . . . , J.(b.1)

n− r − J + 2aε > 0.(b.2)

SSE + 2θε > 0.(b.3)

Condition (b.1) relates the rank κj of the prior precision matrix of one effect with
Kj �= 0 to the rank of all prior precision matrices. Condition (b.2) restricts the number
of all effects to be smaller or equal to the number of observations but can be relaxed by
increasing the hyperparameter value aε. Condition (b.3) is always fulfilled for θε > 0.
In case of an improper prior for τ2ε , i.e. aε < 0, θε = 0, SSE > 0 has to be assured. If
the number of parameters is equal or larger to the number of observations such that the
data y = (y1, . . . , yn) can be interpolated, θε > 0 becomes necessary. In all other cases
SSE > 0 holds almost surely such that θε = 0 can be chosen in most situations.

Theorem 2. Consider the Gaussian mean regression model (12) with mixed model rep-
resentation (13) and rank conditions from (16). Then, condition (b.3) is necessary for
the propriety of the joint posterior while conditions (b.1), (b.2) and (b.3) are sufficient
for the propriety of the joint posterior

The proof of Theorem 2 is in Supplement A.3 using Lemma 2 and Proposition 1 of
Supplement A.2.

Remark 3.

(i) In Gaussian mean regression with inverse gamma priors for τ2j , additional condi-
tions on the ranks κj and the number of effects compared to the shape parameters
aj of the priors are required. Consequently, one has to consider the cases t = κ or
J = 1 as well as t < κ and J > 1 separately.

(ii) Compared to the inverse gamma case, the sufficient conditions with scale-depen-
dent priors are stronger. This intuitively makes sense since the scale-dependent
prior places additional prior mass close to the base model which is the improper
part of the partially improper normal priors. On the other hand, the necessary
conditions are somewhat weaker with scale-dependent priors.

3.3 Distributional Regression

Assume in this section a distributional regression model as in (M1) and (M2). The basic
idea to obtain sufficient conditions for the propriety is to formulate all k = 1, . . . ,K pre-
dictors ηk in a mixed model representation for an appropriate submodel. The required
assumptions are then the following:

c. Conditions for Distributional Regression.

Assume that the set of observations can (after re-ordering) be partitioned such that
for n∗ ≥ 1
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· · ·

∫
p(yi|ηi1, . . . , ηiK)dηi1 · · · dηiK < ∞ for i = 1, . . . , n∗.(c.1)

p(yi|ηi1, . . . , ηiK) ≤ M for i = n∗ + 1, . . . , n.(c.2)

This implies that for at least one observation the density is integrable (with respect to
the predictors) and that all remaining densities are bounded. For discrete distributions,
all densities are automatically bounded by 1 so that only Condition (c.1) can be an
issue in practice. Condition (c.1) is usually fulfilled if certain restrictions apply on spe-
cific parameters that exclude extreme values on the boundary of the parameter space,
see Klein, Kneib and Lang (2015) for a more detailed discussion on count data distribu-
tions. This is similar to the case of logistic regression with binary responses where finite
integrals can be achieved by restricting the parameter space for the success probability
to either πi > 0 for at least one observation yi = 0 or πi < 1 for one yi = 1 (excluding
one of the boundary cases). For continuous distributions, the densities are sometimes
not bounded (e.g. for the gamma distribution). Note that this is not a problem when
all observations fulfil Condition (c.1) since n∗ = n is allowed. Similar as for the dis-
crete distributions, integrability of the densities can be assured by the assumption that
none of the distributional parameters is on the boundary of the parameter space (an
assumption that would also have to be made to apply standard maximum likelihood
asymptotics).

To explicitly differentiate between model components with proper and improper
prior, we apply a mixed model representation similar as before but now to all K pre-
dictor equations in (M2) in order to obtain vectors of fixed effects with flat prior and
i.i.d. Gaussian random effects with proper prior and dimension κj,k = rk(Kj,k). Fur-
thermore, we separate the random effect with largest dimension in each predictor such
that we obtain

ηk = Ukβunpen,k + V kbk + V ε,kbε,k

where Ukβunpen,k comprises all predictor components with a flat prior, V ε,kbε,k cor-
responds to the random effect with the largest dimension, dim(bε,k) = κε,k, and V kbk
contains all remaining random effects. Note that bk is based on J∗

k = Jk − 1 effects in
the notation of (M2) and βpen in the mixed model representation in (4) corresponds to
the vector resulting from bk and bε,k where, without loss of generality, we assume that
the effects in the predictors are ordered such that the Jkth effects correspond to the
random effects in the mixed model representation with largest dimensions. Similarly,
the design matrices V k and V ε,k correspond to the design matrix of the penalised part
in (4).

Let k̃ε = min{κε,1, . . . , κε,K} and assume that we can choose k̃ε observations includ-
ing at least one observation fulfilling (c.1) to define the submodel

ηk,s = Uk,sβunpen,k + V k,sbk + V ε,k,sbε,k (17)

corresponding to these observations. Then the following rank conditions have to be
fulfilled:

The design matrix Uk,s has full rank rk.(c.3)
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rk(Uk,V k) = rk(Uk,s,V k,s) = rk + tk.(c.4)

rk(V ε,k,s) = k̃ε, i.e. V ε,k,s is of full rank.(c.5)

To ensure (c.3), superfluous columns arising from the reparameterisation have to be
deleted. In particular, duplicated constant columns representing the levels of the func-
tions are deleted, similar to Gaussian mean regression and explained in Remark 2(iii).
Condition (c.4) indicates that the rank of the design matrices in the submodel is the
same as in the complete model whereas (c.5) defines a similar restriction for the design
matrix of the largest random effect arising from the mixed model representation.

Finally, define the normalised submodel

η̃k,s = Ũk,sβunpen,k + Ṽ k,sbk + εk,s (18)

that is obtained by multiplying (18) with Mk = (V ε,k,sV ε,k,s
′)−1/2 such that η̃k,s =

Mkηk,s, Ũk,s = MkUk,s, Ṽ k,s = MkV k,s, and εk,s ∼ N(0, τ2ε,kI k̃ε
) represents an

i.i.d. random effect since V ε,k,sbε,k ∼ N(0, τ2ε,kV ε,k,sV ε,k,s
′).

The corresponding residual sum of squares for the normalised submodel are then
defined as

SSEk,s :=
(
η̃k,s − Ũk,sβunpen,k − Ṽ k,sbk

)′ (
η̃k,s − Ũk,sβunpen,k − Ṽ k,sbk

)
. (19)

Based on this, we finally require the following additional conditions:

κj,k −
J∗
k∑

j=1

κj,k + tk − 1 > 0, j = 1, . . . , J∗
k , k = 1, . . . ,K.(c.6)

SSEk,s > 0.(c.7)

Condition (c.6) relates the rank of the random effects part of one individual effect to
the sum of all rank deficiencies in the corresponding predictor and requires that the
dimensionality is not too small. Condition (c.7) requires that there is variation in the
residual sum of squares in the normalised submodel (implying that not all effects are
zero).

Theorem 3. Consider the distributional regression model from (M1) and (M2). Then,
Conditions (c.1), (c.2) on the densities, (c.3) to (c.5) on the ranks as well as (c.6)
and (c.7) are sufficient conditions for a proper posterior.

A proof for this theorem is in Supplement A.4.

Remark 4.

(i) Compared to Gaussian mean regression in Section 3.2 (where y is directly related
to the mixed model representation rather than the predictors as in distributional
regression) and the distributional approach with inverse gamma priors εk,s now
has a scale-dependent hyperprior with scale parameter θε.
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(ii) The conditions on the densities (c.1) and (c.2) as well as the conditions on the
ranks in the reparameterised model (c.3) to (c.5) are independent of the hyperpri-
ors for τ2j and hence identical to the conditions in Klein, Kneib and Lang (2015).
Conditions (c.6) to (c.7) in contrast are stronger with scale-dependent hyperpri-
ors. For instance, Condition (c.7) of variation in the SSEk,s could be relaxed with
inverse gamma hyperpriors by choosing the scale parameter θε of the errors εk,s
sufficiently large. With inverse gamma priors there is an additional sufficient con-
dition relating the rank of the random effect determining the working error of the
submodel to the number of coefficients with flat prior and the number of terms
with Gaussian priors in one of the predictors. With scale-dependent hyperpriors,
this condition is included in Condition (c.7).

(iii) Theorem 3 gives sufficient but not necessary conditions such that the posterior
can in fact still be proper even if one or more conditions are violated.

4 Inference

While the often employed IG(a, θ) priors in structured additive regression for τ2 induce
full conditionals that are again inverse gamma distributions (and hence Gibbs sampling
steps can be implemented) this is no longer the case for the scale-dependent priors.
To derive proposal densities for a Metropolis–Hastings type update that automatically
adapt to the form of the full conditional distributions without manual tuning, we lo-
cally approximate the full conditionals of the log-variances by a normal distribution
matching the mode and the curvature. This is based on the idea of iteratively weighted
least squares (IWLS, Gamerman, 1997) proposals originally developed for updating
the vectors of regression coefficients, see, e.g. Brezger and Lang (2006) and Gamerman
(1997).

4.1 Metropolis–Hastings Updating Scheme

4.1.1 Full Conditional Distributions for Regression Coefficients

IWLS proposals for different types of distributions in the distributional regression
framework have been investigated in Klein, Kneib and Lang (2015); Klein, Kneib,
Lang and Sohn (2015) and we only briefly recall the principles here. Let l(ηk) ∝
log(

∏n
i=1 p(yi|ηi1, . . . , ηiK)) denote the log-likelihood part depending on the predictor

with index k (where ∝ is abused to denote equality up to an additive constant). Then
the logarithmic full conditional log(p(βj,k|·)) of βj,k is up to additive constants equal
to

l(ηk)−
1

2τ2j,k
β′
j,kKj,kβj,k.

A local approximation fitting the mode and the curvature at the mode suggests to
propose βj,k from a multivariate Gaussian distribution N(μj,k,P

−1
j,k) with distribution-

and parameter-specific mean μj,k and precision matrix P j,k. A proposal is then accepted
with acceptance probability according to a Metropolis–Hastings type step (Hastings,
1970).
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4.1.2 Full Conditional Distributions for the Smoothing Variances

We follow a similar strategy as for βj,k to construct Gaussian proposal densities for
the smoothing variances. While asymptotic theory suggests asymptotic normality of all
model parameters with appropriate location and scale parameters, a Gaussian distri-
bution as proposal density for τ2j,k may cause invalid proposals, i.e. values smaller than
zero, in several MCMC steps when the variances are small. This problem can be over-
come by approximating the log-full conditional log(p(log(τ2j,k)|·)) of log(τ2j,k) rather than
the log-full conditional log(p(τ2j,k|·)) of τ2j,k. Applying the change of variable theorem

with transformation u = log(τ2) to the full conditional for τ2j,k yields

log(p(u|·)) ≡ lu ∝ u

2
(1− rk(Kj,k))−

1

2 exp(u)
β′
j,kKj,kβj,k − (exp(u))1/2√

θ
.

Approximating lu by a second order Taylor expansion around the current state u(c) and
taking the exponent yields the proposal density N(μu, σ

2
u) with

μu = σ2
u

∂lu
∂u

+ u and σ2
u = −1/

∂2lu
∂u2

from which we obtain a proposal for log(τ2j,k).

Remark 5.

(i) It can be shown that the variance of the proposal density arising from the quadratic
approximation of the log-full conditional is always positive. This result is based on
the fact that lu is strictly concave and that ∂2lu/∂u

2 = 0 can be excluded under
the (mild) condition β′Kβ > 0, see Supplement F.3 for details.

(ii) Although the scale-dependent prior requires a Metropolis–Hastings instead of a
Gibbs update, this has virtually no impact on computation times since we are
dealing with a scalar parameter only. In all our analyses, acceptance probabilities
ranged from roughly 70% to 90% and the mixing behaviour did not show any
conspicuous features.

(iii) Let u(p) be the proposal coming from the proposal density q(u(p)|u(c)) =

N(μ
(c)
u , (σ2

u)
(c)) with current value u(c) = log((τ2j,k)

(c)) plugged in. The acceptance
probability αaccept of the Metropolis–Hastings steps is then computed as

αaccept = min

{
1,

p(u(p)|·)q(u(c)|u(p))

p(u(c)|·)q(u(p)|u(c))

}
(20)

which is in distribution equivalent to the acceptance probability

α̃accept = min

{
1,

p((τ2j,k)
(p)|·)q̃((τ2j,k)(c)|(τ2j,k)(p))

p((τ2j,k)
(c)|·)q̃((τ2j,k)(p)|(τ2j,k)(c))

}

where q̃ is the lognormal proposal obtained by the change of variable theorem
from q, see Supplement F.2 for a detailed derivation. The proposals will even be
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identical, when random number generation of lognormally distributed variates is
based on taking the logarithm of a normal variate.

(iv) As an alternative to IWLS proposals, we implemented inverse gamma proposals
with parameters chosen to match shape of the scale-dependent hyperpriors. As
a second option, we approximated the Weibull distribution with a gamma dis-
tribution having the advantage that the resulting full conditional is a generalised
inverse Gaussian distribution. Both options turned out to be less satisfactory, both
due to theoretical considerations but also in their practical performance.

4.1.3 Inference for Alternative Prior Structures

In Section 2.4, we have discussed how the hyperparameters of various alternative prior
structures can be chosen according to a similar scaling criterion as for the scale-dependent
priors. To make these priors work in practice, we require suitable proposal densities and
we follow the same construction principle as for the scale-dependent prior. More specif-
ically, we approximate the log-full conditional quadratically to obtain a local Gaussian
approximation. Details on the resulting derivatives can be found in Supplement F.1.

As for the scale-dependent prior, half-Cauchy, half-normal and the approximate
proper uniform prior lead to strictly concave log-full conditionals such that the Gaussian
proposal has positive variance, compare Supplement F.3.

4.2 Implementation

The new prior structure developed in this paper as well as the alternative prior struc-
tures (half-normal, half-Cauchy, approximate uniform for τ) are integrated into the
open source software BayesX (Belitz et al., 2015), version 3.0.2. A generic MCMC
algorithm is provided in Supplement F.4. We utilise methods for efficient storing of
large data sets and sparse matrix algorithms for sampling from multivariate Gaussian
distributions (George and Liu, 1981; Rue, 2001) and profit from existing procedures
for computing simultaneous confidence bands for nonparametric effects as developed
in Krivobokova et al. (2010) or to specify multilevel models (Lang et al., 2014) that can
immediately be combined with the new prior structures.

5 Empirical Evaluation

We conducted several simulations in which we compared the performance of scale-
dependent priors for varying levels of the probability statement α with the one of inverse
gamma priors with both parameters equal and small, flat priors for τ and τ2, inverse
gamma priors with shape parameter a = 1 and scale parameter optimised according
to the scaling criterion, as well as the other alternative priors discussed in Section 2.4
(again with optimised parameter values). We consider three distinct scenarios:

Scenario 1 Effects close to the base model, i.e. effects that are close to linear in
a penalised spline specification.
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Scenario 2 A flat likelihood due to a small amount of information in the data.

Scenario 3 Strong deviations from the base model, i.e. nonlinear effects with
strong curvature.

In the following, we restrict the presentation to basic settings and core results while the
simulations are documented in detail in Supplement G.

5.1 Simulation Settings

In all the scenarios considered, we keep simulation settings fixed to allow for a consistent
comparison across the settings:

• Sample sizes n are chosen from {50, 100, 250, 500, 1000}.

• Covariates are restricted to one single scalar covariate x ∼ U(−1, 1).

• Simulated effects visualised in Figure 2 are

Scenario 1 f(x) = sin(x).

Scenario 2 f(x) = 7 exp(− exp(5x)).

Scenario 3 f(x) = 1.5 sin(1.25πx+ 0.5)/ exp(x).

• Responses

– y ∼ N(f(x), 1) in Scenario 1 and 3.

– y ∼ Be(π), π = exp(f(x))/(1 + exp(f(x))) in Scenario 2.

• Hyperprior specifications

– (ε, ε)-inverse gamma priors (IG(ε, ε)) with ε ∈ {0.001, 0.01} for τ2.

– IG(1, ε), ε = 0.005 as used frequently in the literature as well as IG(1, θ)
(denoted as IG(α) in the following) for τ2.

– Flat priors for standard deviations τ and variances τ2.

– Half-normal (HN(α)), half-Cauchy (HC(α)) and approximate uniform (U(α))
prior with scale parameters θ for τ .

– Scale-dependent priors (SD(α)) with scale parameters θ for τ2.

• Scale parameters θ are computed with fixed values P = 1, c = 3 and α ∈
{0.01, 0.05, 0.1, 0.2, 0.5, 0.7}.

For each scenario R = 1000 replications are used to compute mean squared errors
(MSEs), bias, credible intervals and coverage rates.
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Figure 2: Empirical Evaluation. Centred simulated functions f(x) in Scenarios 1 to 3
(left) and success probability π with inverse logit link in Scenario 2.

5.2 Results

Scenario 1: Close to the Base Model Estimates for f are less wiggly under scale-
dependent priors as compared to inverse gamma priors (Figures G13, G14) in the sense
that the latter tend to overestimate the sigmoid shape. For scale-dependent, half-normal
and uniform priors, MSEs and widths of credible intervals turn out to be pretty insensi-
tive with respect to the different values of α while variation for the inverse gamma and
half-Cauchy priors is larger, compare Figures 3 and 4. However, the width of credible
intervals is larger with inverse gamma priors as compared to the ones of scale-dependent
priors for α < 0.7. While the bias turns out to be similar for all priors (Figure G12),
scale-dependent priors deliver narrower credible intervals which still maintain the de-
sired coverage levels on average as shown in Figures G10, G11. Across the sample sizes,
scale-dependent priors show a very positive overall performance as compared to all al-
ternative priors, in particular to inverse gamma as well as flat priors which have higher
MSEs and larger widths of credible intervals. Note that the smallest log(MSE) and
widths of credible intervals of half-Cauchy priors for α = 0.01 are at least partly mis-
leading since Figures G10 to G14 give evidence for problems in maintaining the desired
coverage levels. Basically the half-Cauchy prior induces a very strong preference for
variances close to zero that allow to identify linear effects fairly well but also bears the
risk of undercoverage.

Scenario 2: Flat Likelihood Due to the model specification, the success probability π
is likely to be close to one or close to zero for most observations which leads to a rather
low level of information on the regression effects and therefore a flat likelihood. During
the MCMC run, proposals for the regression coefficients yielding either highly negative
or highly positive predictor values occur frequently (in up to 26% of the replications
for n small) with IG(ε, ε) and flat priors. The consequence are numerical instabilities
or posterior mean function estimates with huge MSEs and wide credible intervals when
the sample size is small. In our simulation, these problems are less frequent (less than
1% software crashes) when scale-dependent and the other alternative priors are em-
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Figure 3: Empirical Evaluation, scenario 1. Shown are boxplots of log(MSE) for different
sample sizes n and the different prior settings.

ployed. This beneficial behaviour results from user-defined scaling that helps to avoid
the very extreme and unlikely predictor constellations. Consequently, MSEs and credi-
ble intervals of estimates in small data sets are better for priors with parameters chosen
according to the scaling criterion, compare Figures 5 and G15. While all priors cannot
maintain the coverage levels for small sample sizes, increasing the sample size mostly
solves this problem except for half-normal and uniform priors, see Figures G16, G17.
Overall, again the scale-dependent prior seems to be pretty robust. Note that the ex-
tremely small MSEs observed for half-Cauchy priors for α = 0.01 as seen in Scenario 1
cannot be found in this setting since the performance does not gain from the strong
preference of small variances.

Scenario 3: Strongly Nonlinear Effect In this setting, all priors perform similarly
well with respect to MSEs, coverage rates and widths of credible intervals except the
IG(0.7) and U(0.01) specifications, compare Figures G21 to G22. While IG(0.7) priors
have markedly higher MSEs, width of credible intervals and coverage rates, U(0.01)
priors yield higher MSEs but obviously much to narrow pointwise credible intervals in
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Figure 4: Empirical Evaluation, scenario 1. Shown are widths of pointwise credible
intervals for different sample sizes n and the different prior settings.

the inner range of x, compare Figure G24. The figure also indicates that half-normal
priors tend to underestimate the desired pointwise coverage rates for x ≤ −0.5. The
remaining results are reasonable since the effect signal is moderately large and far from
a linear effect. Basically (and as expected) differences between the prior specifications
tend to be small when enough information is contained in the data.

Overall Conclusion In summary, inverse gamma as well as flat priors turn out to be
rather questionable in situations that require a preference for the base model or that
carry only weak information about the effects of interest. The recently proposed half-
normal, half-Cauchy and uniform priors for τ are then often a better choice. However,
depending on the data, we found that in terms of credible intervals, robustness or accu-
racy of point estimates, scale-dependent priors can yield slightly better results in some
situations and, more importantly, appear to perform robustly well across all considered
aspects. Hence, the new class of scale-dependent priors can be considered a reasonable
default option.
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Figure 5: Empirical Evaluation, scenario 2. Shown are boxplots of log(MSE) for different
sample sizes n and the different prior settings.

6 Applications

6.1 Patent Citations

Klein, Kneib and Lang (2015) analysed the number of citations (ncit) of patents granted
by the European Patent Office (EPO) comparing different distributional regression mod-
els for zero-inflated and overdispersed count data. Following previous analyses by Jerak
and Wagner (2006) and Klein, Kneib and Lang (2015), we removed roughly 1% of ob-
servations with extreme values for some of the covariates such that the data set consists
of n = 4805 patents. Information on several covariates includes the continuous vari-
ables grant year (year), number of designated states (ncountry) and number of claims
(nclaims), see, e.g. Jerak and Wagner (2006) for more details on the data.

The results of Klein, Kneib and Lang (2015) show that (conditionally) the number of
citations are highly overdispersed while there is only small evidence for zero-inflation. In
addition, Klein, Kneib and Lang (2015) had problems in estimating a ‘full’ zero-inflated
negative binomial model, i.e. a model with conditional density
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Figure 6: Patent citations. Comparison of estimated nonlinear effects of continuous
covariates year , ncountry and nclaims on logit(π). Shown are posterior means and 95%
credible intervals with scale-dependent priors, α = 0.01, c = 1, (red) and inverse gamma
priors IG(ε, ε), ε = 0.001, (black).

p(ncit i|μi, δi, πi) = πi1{nciti=0} + (1− πi)
Γ(ncit i + δi)

Γ(ncit i + 1)Γ(δi)

(
δi

δi + μi

)δi ( μi

δi + μi

)nciti

where each of the distribution parameters μi, δi and πi, i = 1, . . . , n is linked to a
generic predictor of the form

ηi = f1(ncountry i) + f2(year i) + f3(nclaimsi) + x′
iβ.

In particular, partly non-stationary MCMC paths for the constant in πi have been
observed which are related to the small evidence for zero-inflation, i.e. the ‘true’ πi is
rather small for some covariate combinations which induces a flat likelihood. Replacing
inverse gamma priors IG(ε, ε) (ε = 0.001) for the spline coefficients of f1 to f3 with the
scale-dependent priors (α = 0.01, c = 3, P = 1) reduces the convergence issues and
avoids the negatively affected relative effect estimates as shown in Figures 6 and 7 (first
and second column).

While exemplary sample paths of one coefficient for the effects of year and nclaims
in Figure 7 do not indicate any convergence problems, the constant β0 and the coef-
ficients for the effect of ncountry show a non-stationary pattern with inverse gamma
priors (second and third column). With the scale-dependent prior (first column), half-
normal (third column) and half-Cauchy prior (fourth column) these problems can be
reduced without requiring manual tuning. Approximate uniform priors have the worst
convergence behaviour of β0.

The effect of year on logit (π) is close to linear and the scale-dependent prior de-
livers less conservative credible intervals, similar as for the effect of nclaims. However,
this effect is not significant. At the boundary values of ncountry , the inverse gamma
prior yields strongly negative predictor values causing numerical instabilities. The scale-
dependent prior seems to penalise against these extreme values (which is reasonable due
to the construction Principle 4 in Section 2.3) and enhances numerical stability in this
situation. Figures H28 to H31 (Supplement H) indicate narrower credible intervals for
all effects when half-normal, half-Cauchy or uniform priors are used. However, from
simulations this has to be interpreted with caution due to the fact that for small α
these two priors tend to underestimate the desired coverage level.
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Figure 7: Patent citations. Sample paths (row wise) of the coefficient for the
constant β0 and one exemplary coefficient for the estimated effects of year ,
ncountry and nclaims each. Columns correspond to the different hyperpriors
SD(α), IG(α),HN(α),HC(α),U(α) with α = 0.01, c = 3 and ε = 0.001 for the in-
verse gamma prior IG(ε, ε). Results are based on 55000 MCMC iterations with burnin
of 5000 and thinning parameter equal to 50.

6.2 Childhood Undernutrition in Zambia

As a second illustration, we use observations on malnutrition of 4421 children from Zam-
bia in the year 1992. The data have been collected as part of nationally representative
demographic and health surveys which are freely available at www.measuredhs.com and
are described in more detail, e.g. in Fahrmeir et al. (2013).

Childhood undernutrition is usually determined by a Z-score

zscorei =
hi −m

s

reflecting the nutritional status of child i with height hi in the population of interest.
The values m and s correspond to the mean height of children and their standard
deviation in a suitable reference population of the same age group and gender.



1100 Scale-Dependent Priors for Variance Parameters

Figure 8: Childhood undernutrition. Comparison of estimated nonlinear effects of con-
tinuous covariates cage, mage and mbmi with scale-dependent priors, α = 0.01, c = 3,
(red) and inverse gamma priors IG(ε, ε), ε = 0.001, (black). Shown are posterior means
and 95% credible intervals on E(zscore) (top) and on log(σ2) (bottom).

For convenience, we assume a Gaussian location-scale model, that is, the Z-scores
are conditionally normally distributed with

zscorei = β0 + f1(cagei) + f2(magei) + f3(mbmi i) + fspat(district i)

+ εi, εi ∼ N(0, σ2
i ),

log(σ2
i ) = β̃0 + f̃1(cagei) + f̃2(magei) + f̃3(mbmi i) + f̃spat(district i).

In the equations above, f1 to f3 (f̃1 to f̃3) are smooth functions of the continuous
covariates cage (child’s age), mage (mother’s age at birth) and mbmi (mother’s body
mass index), while fspat (f̃spat) represents the spatial effect that was assigned a Markov

random field prior, and β0 (β̃0) is the usual overall intercept. For all nonparametric
effects, we use IG(ε, ε) priors with ε = 0.001 and compare the results to scale-dependent
priors (α = 0.01, c = 3, P = 1 for splines and P = n for spatial effects) in Figures 8
and 9. Comparisons with the other alternative priors discussed in Section 2.4 are shown
in Supplement I. In addition, Figure I36 shows spatial effects of all other priors against
the ones of scale-dependent priors per region.

The estimated effects of mage on the conditional expectation E(zscore) and on
log(σ2) as well as the effect ofmbmi on E(zscore) are in accordance with the construction
principles of the scale-dependent prior: Being close to a linear effect, this model is
preferred by the scale-dependent prior and allows for narrower credible intervals. The
effects of cage on both parameters are clearly nonlinear and both hyperpriors deliver
very similar estimated curves. Comparable results can be observed for the spatial effect
which is reasonable since the variable district has significant impact on both distribution
parameters (based on a 95% credible interval). The effect of mbmi on log(σ2) turns out
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Figure 9: Childhood undernutrition. Comparison of estimated spatial effects with inverse
gamma priors IG(ε, ε), ε = 0.001 (left) and scale-dependent priors, α = 0.01, c = 3
(right). Shown are posterior estimates on E(zscore) (top) and on log(σ2) (bottom).

to be insignificant. Differences to the other hyperpriors are rather small, see Figures I32
to I35. One exception are the spatial effects with approximate uniform priors for τ ,
which are estimated on a smaller scale as compared to the remaining hyperpriors, see
Figure I36.

7 Summary and Discussion

As Simpson et al. (2014) point out, ‘priors are the Bayesian’s greatest tool, but they are
also the greatest point for criticism’. In the context of Bayesian inference in structured
additive regression as it has originally been proposed in Fahrmeir and Lang (2001) or
Fahrmeir et al. (2004) for exponential families, prior elicitation is in particular an issue
when it comes to choosing hyperpriors for the smoothing variances. For convenience,
basically all previous applications of structured additive regression focus on inverse
gamma priors that are considered ‘vaguely informative’ but as Simpson et al. (2014)
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show, these priors typically favour more complex specifications over the base model
implied by zero variances.

To overcome this limitation, this paper makes a concrete suggestion for alternative
hyperprior specifications in Bayesian structured additive regression relying on assump-
tions and principles that can be linked directly to the individual predictor components
and that can easily be modified due to the principle of user-defined scaling. This notion
of scale enhances interpretability and justification for hyperparameters (via the scale
parameter θ) as it is related to the magnitude of the effects which are the quantities
of interest. Based on Gaussian approximations of the full conditional distributions for
log(τ2), we implemented an MCMC sampler as a part of a numerically stable and ef-
ficient implementation that provides an attractive option for applied researchers. The
usage of MCMC is only meaningful when the posterior for parameters of interest has a
proper density. We therefore derived sufficient and sometimes necessary conditions for
the propriety and discussed the relevance of the assumptions in practice. Finally, both
empirical studies and applications indicated that our proposed hyperprior is a promis-
ing alternative to the classical inverse gamma priors and also performs competitive with
several alternative suggested prior specifications.

In general, the principle of user-defined scaling can of course be applied beyond the
types of models considered in this paper. For example, the parameters of spike and slab
priors for variable or function selection (George and Mc Culloch, 1993; Ishwaran and
Rao, 2005; Scheipl et al., 2012) could also be based on analogous considerations for the
scaling of effects under both the spike and the slab component. Note that, as discussed
in Section 3.5 of Simpson et al. (2014), the penalised complexity prior itself does not
make a good shrinkage prior due to the basic problem that the base model has been
misspecified: The light tails of an exponential distribution will shrink large effects too
strong towards zero. For spike and slab priors the situation is similar since employing
the scale-dependent priors would worsen effect separability between spike and slab. The
reason is the third principle of constant rate penalisation. This problem, when both
priors have their mode at zero, is similar to the one of a double exponential distribution
discussed in Frühwirth-Schnatter and Wagner (2011). The proper application of scale-
dependent prior specifications in variable and function selection therefore promises to
be a valuable field for future research.

Supplementary Material

Scale-Dependent Priors for Variance Parameters in Structured Additive Distributional
Regression: Supplement (DOI: 10.1214/15-BA983SUPP; .pdf).
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