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GOODNESS OF FIT TESTS FOR A CLASS OF MARKOV
RANDOM FIELD MODELS

BY MARK S. KAISER, SOUMENDRA N. LAHIRI1 AND DANIEL J. NORDMAN2

Iowa State University, Texas A&M University and Iowa State University

This paper develops goodness of fit statistics that can be used to formally
assess Markov random field models for spatial data, when the model distribu-
tions are discrete or continuous and potentially parametric. Test statistics are
formed from generalized spatial residuals which are collected over groups
of nonneighboring spatial observations, called concliques. Under a hypoth-
esized Markov model structure, spatial residuals within each conclique are
shown to be independent and identically distributed as uniform variables. The
information from a series of concliques can be then pooled into goodness of
fit statistics. Under some conditions, large sample distributions of these statis-
tics are explicitly derived for testing both simple and composite hypotheses,
where the latter involves additional parametric estimation steps. The distribu-
tional results are verified through simulation, and a data example illustrates
the method for model assessment.

1. Introduction. Conditionally specified models formulated on the basis of
an underlying Markov random field (MRF) are an attractive alternative to contin-
uous random field specification for the analysis of problems that involve spatial
dependence structures. By far the most common of such models are those formu-
lated using a conditional Gaussian distribution (e.g., [42]), but models may also be
constructed using a number of other conditional distributions such as a beta [23,
31], binary [8], Poisson [4] or Winsorized Poisson [29], and general specifications
are available for many exponential families [2, 31].

In an applied spatial setting, we assume that observations are available at a
finite set of geo-referenced locations {si : i = 1, . . . ,N}, and to these locations
we assign the random variables {Y(si ) : i = 1, . . . ,N}. In general, locations are
arbitrarily indexed in d-dimensional real space. A MRF is typically constructed
by specifying for each location si a neighborhood, consisting of other locations
on which the full conditional distribution of Y(si ) will be functionally depen-
dent. Let the conditional cumulative distribution function (c.d.f.) of Y(si ) given
{Y(sj ) = y(sj ) : j �= i} be denoted as Fi and define Ni ≡ {sj �= si , and Fi de-
pends functionally on y(sj )}. Also define y(Ni ) ≡ {y(sj ) : sj ∈ Ni}. The Markov
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assumption implies that

Fi

(·|{y(sj ) : sj �= si}) = Fi

(·|{y(sj ) : sj ∈ Ni}) = Fi(·|y(Ni )).(1.1)

A model is formulated by specifying, for each i = 1, . . . ,N , a conditional c.d.f.
in (1.1). Conditions necessary for a set of such conditionals to correspond to a
joint distribution for {Y(s1), . . . , Y (sN)} are given by Arnold, Castillo and Sarabia
[2] and a constructive process with useful conditions sufficient for existence of a
joint are laid out in Kaiser and Cressie [30]. Models may be constructed for both
discrete and continuous random variables, on regular or irregular lattices, with or
without an equal number of neighbors for each location (including Ni = ∅ for
some locations) and possibly including information from spatial covariates. The
construction of models for applications is thus very flexible.

A number of our results and, in particular, Theorem 2.1 to follow, can be gener-
alized to some of the variable situations just described, but it will be beneficial for
developing theoretical results to define a setting that is broad but highly structured.
We desire a spatial process defined on grid nodes of the d-dimensional integer
lattice Z

d , where Z = {0,±1,±2, . . .}. We stipulate a number of restrictions for
this process that, while not capable of covering all of the finite-dimensional mod-
els mentioned previously, is flexible enough to be meaningful in many applied
situations. We formally consider specifying an MRF model for a spatial process
Y ≡ {Y(s) : s ∈ Z

d}, rather than a model (1.1) developed with respect to a finite
collection of (possibly nonlattice) data sites {Y(si ) : i = 1, . . . ,N}. To this end,
assume that for any s ∈ Z

d neighborhoods can be constructed using a standard
template M ⊂ Z

d \ {0} as N (s) = s + M, with |M| < ∞ denoting the size of M.
Some examples of M are given in the next section. We then assume that the pro-
cess Y has a stationary distribution function F(·|·) such that, for any s ∈ Z

d , the
conditional c.d.f. of Y(s) given all remaining variables {Y(t) : t ∈ Z

d, t �= s} can be
written as

F
(·|{Y(t) : t ∈ Z

d, t �= s}) = F
(·|{Y(t) : t ∈ N (s)})(1.2)

under a Markov assumption.
Given a hypothesized or estimated model, our concern is how one might con-

duct a goodness of fit (GOF) procedure, either through informal diagnostics or by
using formal probability results that lead to a GOF test. The approach we propose
here may be viewed within either the context of a pure GOF test to address the
question of whether a (possibly fitted) model provides an adequate description of
observed data. This is an issue of model assessment and different from model se-
lection, which has been considered, for example, with penalized pseudo-likelihood
for parametric MRF models; cf. [11, 21, 26]. Additionally, while other GOF tests
may be possible for certain joint model specifications (e.g., a frequency-domain
approach for Gaussian processes; cf. [1]), we focus solely on conditional model
specifications. The GOF variates introduced in the next section may be used as
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either diagnostic quantities or as the basis for a formal GOF test as presented in
Section 3.

The remainder of this article is organized as follows. In Section 2 we introduce
the concept of a conclique and derive GOF variates that form the basis of our ap-
proach, using an adaptation of a multivariate probability integral transform (PIT).
Section 3 develops a formal methodology for combining these variates over con-
cliques to create GOF tests of Markov models under both simple and composite
hypotheses. These tests are omnibus in the sense that they assess the hypothesized
model in total, including the neighborhood structure selected, specification of de-
pendence as isotropic or directional, and the form of the modeled conditional dis-
tributions. Theoretical results are presented in Section 4 that establish the limiting
sampling distributions of GOF tests under the null hypothesis. Section 5 describes
a numerical study to support the theoretical findings. Section 6 provides an ap-
plication of the GOF tests in model assessment for agricultural trials. Section 7
contains concluding remarks and discussions on extensions. Section 8 provides a
proof of the foundational conclique result (Theorem 2.1), and all other proofs re-
garding the asymptotic distribution of GOF test statistics appear in supplementary
material [32].

2. Generalized spatial residuals. In this section we derive the basic quanti-
ties that form the basis for our GOF procedures. We consider these quantities to be
a type of generalized residuals because they fit within the framework suggested by
Cox and Snell [9]. In particular, these generalized spatial residuals will be derived
using an extended version of Rosenblatt’s [41] multivariate PIT combined with a
partitioning of spatial locations into sets such that the residuals within each set
constitute a random sample from a uniform distribution on the unit interval, under
the true model. As discussed by Brockwell [7] and Czado et al. [12], the PIT for-
mulation allows arbitrary model distributions to be considered in assessing GOF,
rather than simply continuous ones. Similar transformations, with subsequent for-
mal or informal checks for uniformity, have been important in evaluating the GOF
of, and the quality of predictive forecasts from, various models for time series; cf.
[13, 15, 16, 19, 24, 27].

2.1. Concliques. Before providing the transform that defines our generalized
spatial residuals, it is necessary to develop a method for partitioning the total set
of spatial locations at which observations are available into subsets with certain
properties. We call such sets concliques because they are defined as the converse
of what are called cliques by Hammersley and Clifford [22]. In the case of regu-
lar lattices with neighborhoods defined using either four-nearest or eight-nearest
neighbor structures, concliques correspond exactly to the so-called coding sets of
Besag [4], which were suggested for use in forming conditional likelihoods for
estimation. The key property of concliques, however, allows construction of such
sets in more general settings including irregular lattices and hence the new name.
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As defined in [22], a clique is a set of locations such that each location in the set
is a neighbor of every other location in the set. Similar terminology exists in graph
theory, where a subset of graph vertices (e.g., locations) form a clique if every two
vertices in the subset are connected by an edge [45]. We define a conclique as a set
of locations such that no location in the set is a neighbor of any other location in
the set. Any two members of a conclique may share common neighbors, but they
cannot be neighbors themselves. Additionally, every set of a single location can
be treated as both a clique or conclique. In the parlance of graphs, the analog of
a conclique is a so-called “independent set,” defined by a set of vertices in which
no two vertices share an edge. This particular graph terminology conflicts with
the probabilistic notion of independence, while a “conclique” truly represents a
conditionally independent set of locations in a MRF model.

While the result of the next subsection holds for any collection of concliques,
in practice what is desired is a collection of concliques that suitably partition all
observed locations. To achieve this under the process model (1.2), we identify a
collection of concliques {Cj : j = 1, . . . , q} that partition the entire grid Z

d . We
define a collection of concliques to be a minimal conclique cover if it contains the
smallest number of concliques needed to partition the set of all locations. In graph
theory, this concept is related to determining the smallest (or chromatic) number
of colors needed to color a graph (with no two edge-connected vertices sharing
the same color) or, equivalently, the smallest number of independent sets needed
to partition graph vertices [25]. In practice, identifying a minimal conclique cover
is valuable since our procedure produces one test statistic for each conclique in a
collection, and those statistics must then be combined into one overall value for a
formal GOF test.

EXAMPLE 2.1 (A 4-nearest neighbor model on Z
2). Here, let s = (u, v)′ ∈ Z

2

for a horizontal coordinate u and a vertical coordinate v. The neighborhood
structure of a 4-nearest neighbor model is produced with the template M =
{(−1,0)′, (1,0)′, (0,1)′, (0,−1)′}, so that N (s) for a given location s and neigh-
bors ∗ is as shown in the following figure:

· ∗ ·
∗ s ∗
· ∗ ·

In this case, the minimal conclique cover contains two members, C1 and C2, with
elements denoted by 1’s and 2’s, respectively, as shown below.

Minimal conclique collection for a 4-nearest neighbor model:

1 2 1 2 1 2 1 2 1 2
2 1 2 1 2 1 2 1 2 1
1 2 1 2 1 2 1 2 1 2
2 1 2 1 2 1 2 1 2 1
1 2 1 2 1 2 1 2 1 2



108 M. S. KAISER, S. N. LAHIRI AND D. J. NORDMAN

EXAMPLE 2.2 (An 8-nearest neighbor model on Z
2). As in the previous ex-

ample, let s = (u, v)′ but take M = {(u, v)′ : max{|u|, |v|} = 1}. The neighborhood
structure of an 8-nearest neighbor model is then shown in the following figure for
a location s ∈ Z

2 and neighbors ∗:

∗ ∗ ∗
∗ s ∗
∗ ∗ ∗

For the 8-nearest neighbor model, there are four concliques in the minimal cover,
C1, . . . , C4, with elements denoted by 1’s, 2’s, 3’s and 4’s in the following figure,
respectively.

Minimal conclique cover for an 8-nearest neighbor model:

1 2 1 2 1 2 1 2 1 2
3 4 3 4 3 4 3 4 3 4
1 2 1 2 1 2 1 2 1 2
3 4 3 4 3 4 3 4 3 4
1 2 1 2 1 2 1 2 1 2

2.2. Defining generalized spatial residuals. Let {A(s) : s ∈ Z
d} denote a col-

lection of independent and identically distributed (i.i.d.) random variables, which
are Uniform (0,1) and also independent of the spatial process Y. For any s ∈ Z

d ,
we then define a random generalized spatial residual as

U(s) = (
1 − A(s)

) · F (
Y(s)|{Y(t) : t ∈ N (s)})

(2.1)
+ A(s) · F−(

Y(s)|{Y(t) : t ∈ N (s)}),
where F(·|·) denotes the (stationary) c.d.f. from (1.2), and F−(·|·) denotes the
left limit of the c.d.f., that is, F−(y|{Y(t) : t ∈ N (s)}) = P(Y (s) < y|{Y(t) : t ∈
N (s)}), y ∈ R. This residual applies the notion of a randomized PIT [7], allowing
for a noncontinuous c.d.f. F(·|·) to be considered. When F(·|·) is continuous, the
spatial residual reduces to a PIT U(s) = F(Y (s)|{Y(t) : t ∈ N (s)}) in Rosenblatt’s
[41] format. Given that a collection of concliques is available for a particular situ-
ation, the fundamental result that serves as the basis for our GOF procedures is as
follows.

THEOREM 2.1. Let the spatial process {Y(s) : s ∈ Z
d} have conditional dis-

tribution functions as in (1.2), and let {Cj : j = 1, . . . , q} be a collection of con-
cliques that partition the integer grid Z

d . Then for any j = 1, . . . , q , the variables
{U(s) : s ∈ Cj } given by (2.1) are i.i.d. Uniform (0,1) variables.

Typically, the conditional c.d.f. F(·|·) of expression (1.2) will be a parameter-
ized function, and we now write this as Fθ(·|·) to emphasize the parametrization.
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Let θ0 denote the true value of the parameter. In an application we have avail-
able a set of observations taken to represent realizations of the random variables
{Y(si ) : i = 1, . . . ,N}. Theorem 2.1 indicates that if we compute generalized spa-
tial residuals as, in the notation of (2.1),

U(si ) = (
1 − A(si )

) · Fθ0

(
y(si )|{y(t) : t ∈ N (si )})

(2.2)
+ A(si ) · F−

θ0

(
y(si )|{y(t) : t ∈ N (si )}), si ∈ Cj ,

then within any conclique Cj these variables should behave as a random sample
from a uniform distribution on the unit interval. If we use a minimal conclique
cover having q members, then we will have q sets of residuals, each of which
should behave as a random sample from a uniform distribution. These sets of resid-
uals will not, however, be independent, so we will not have a total collection that
behaves as q independent random samples.

In practice we will usually also replace the parameter θ with an estimate θ̂

computed on the basis of the observations so that, technically, the values within
any conclique will not actually be independent either. We expect, however, that if
the model is appropriate, then these residuals will exhibit approximately the same
behavior as independent uniform variates, in the same way that ordinary residu-
als from a linear regression model with normal errors behave as an approximate
random sample of normal variates, despite the fact that they cannot technically
represent such a sample.

A basic diagnostic plot can be constructed by plotting the empirical distribu-
tion function of each set of residuals {u(si ) : si ∈ Cj }, j = 1, . . . , q , and examining
them for departures from a standard uniform distribution function. See, for in-
stance, Gneiting et al. [19], Section 3.1, for a summary of graphical approaches
for exploring uniformity in PIT values. Tests for uniformity may be used for indi-
vidual sets of residuals to guide the decision about whether a given fitted model
is adequate or to choose between two competing (even nonnested) models. Such
procedures do not constitute a formal GOF test, however, because there is no guar-
antee that results will agree across differing sets of residuals in a conclique cover.
Formal procedures for combining evidence from the residual sets into one overall
GOF test are presented in the next section.

3. Methodology: Goodness of fit tests.

3.1. General setting. Suppose that for a set of locations on the d-dimensional
integer lattice {s1, . . . , sN } ⊂ Z

d , we want to assess the GOF of a conditional
model specification, based on a set of observed values {Y(si ) : i = 1, . . . ,N}. We
assume that the observed values are a partial realization of a class of process mod-
els defined on Z

d for which the conditional c.d.f. of Y(s) given {Y(t) : t �= s} be-
longs to a class of parameterized conditional distribution functions,

Fθ = {
Fθ

(·|{Y(t) : t ∈ N (s)}) : θ ∈ �
}
,(3.1)
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where � ⊆ R
p , 1 ≤ p < ∞, is a parameter space, N (s) = s+ M and, analogously

to (1.2), M ⊂ Z
d \ {0}. Two testing problems fit into this framework, where the

null hypothesis is simple and where it is composite.
In the next subsections, we describe GOF tests for simple and composite hy-

potheses based on the observations {Y(si ) : i = 1, . . . ,N}, which are assumed to
have arisen in the following way. Suppose that R ⊂ R

d denotes a sampling re-
gion within which N observations are obtained at a set of sampling locations
SN ≡ R ∩Z

d = {s1, . . . , sN }. Define the interior of the set of sampling locations as
S int

N ≡ {s ∈ SN : N (s) ⊂ SN }. Locations in this set are those sampling locations for
which all neighbors are also sampling locations, allowing generalized spatial resid-
uals to be computed for all s ∈ S int

N , even if the physical sampling region R is ir-
regular. Finally, let C1N, . . . , CqN denote the conclique partition of S int

N determined
by CjN = Cj ∩ S int

N , j = 1, . . . , q . In practice we will desire a minimal conclique
cover but this is not necessary in what follows.

3.2. Testing a simple null hypothesis. First consider the case of the simple (S)

null hypothesis in which the testing problem is given by, for some specified θ0 ∈ �,

H0(S): The data {Y(si ) : i = 1, . . . ,N} represent a partial sample of

the process model class (3.1) with θ = θ0;
H1(S): Not H0(S).

To construct test statistics appropriate for these hypotheses, we consider the
generalized spatial residuals under H0(S),

U(s) = (
1 − A(s)

) · Fθ0

(
Y(s)|{Y(t) : t ∈ N (s)})

(3.2)
+ A(s) · F−

θ0

(
Y(s)|{Y(t) : t ∈ N (s)}), s ∈ S int

N .

Now define, for j = 1, . . . , q , the (generalized residual) empirical distribution
function over the j th conclique by

GjN(u) = 1

|CjN |
∑

s∈CjN

I
(
U(s) ≤ u

)
,

u ∈ [0,1]. Here and in the following, I(A) denotes the indicator function of a
statement A, where I(A) = 1 if A is true and I(A) = 0 otherwise. Note that under
H0(S), E{GjN(u)} = u, u ∈ [0,1], as a result of Theorem 2.1. Hence, to assess
the GOF of the model over the j th conclique Cj , we consider the scaled deviations
of the empirical distribution function from the Uniform (0,1) distribution,

WjN(u) ≡ N1/2(
GjN(u) − u

)
, u ∈ [0,1].(3.3)
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A number of GOF test statistics for testing H0(S) may be obtained by combin-
ing the WjN ’s in different ways:

T1N = max
j=1,...,q

sup
u∈[0,1]

|WjN(u)|,(3.4)

T2N =
(

1

q

q∑
j=1

[
sup

u∈[0,1]
|WjN(u)|

]2
)1/2

,(3.5)

T3N = max
j=1,...,q

(∫ 1

0
|WjN(u)|r du

)1/r

,(3.6)

T4N = 1

q

q∑
j=1

(∫ 1

0
|WjN(u)|r du

)1/r

,(3.7)

where r ∈ [1,∞) in (3.6) and (3.7). Note that T1N and T2N are obtained by com-
bining conclique-wise Kolmogorov–Smirnov test statistics, while T3N and T4N are
obtained by combining conclique-wise Cramér–von Mises test statistics. While our
statistics are based exclusively on paired differences (e.g., GjN(u)−u, u ∈ [0,1]),
other test statistics may be formulated to assess agreement between the empirical
GjN and Uniform(0,1) distributions, such as GOF tests based on φ-divergences
studied in [24]. In Section 4, we provide asymptotic distributions for the empirical
processes (3.3), which may be an ingredient for determining limit distributions of
statistics based on φ-divergences; cf. Theorem 3.1 [24].

3.3. Testing a composite null hypothesis. The composite (C) null hypothesis
can be stated as

H0(C): The data {Y(si ) : i = 1, . . . ,N} represent a partial sample of

some member of the process model class (3.1) for an unknown θ;
H1(C): Not H0(C).

Let θ̂ denote an estimator of θ based on {Y(si ) : i = 1, . . . ,N}. Since θ is un-
known, instead of the U(s)’s of (3.2), we work with an estimated version of the
generalized spatial residuals,

Û (s) = (
1 − A(s)

) · F
θ̂

(
Y(s)|{Y(t) : t ∈ N (s)})

(3.8)
+ A(s) · F−

θ̂

(
Y(s)|{Y(t) : t ∈ N (s)}), s ∈ S int

N ,

where, as before, N (s) = s + M. Note that if θ̂ is a reasonable estimator of θ

and if Fθ(·|·) is a smooth function of θ , then the Û (s)’s of (3.8) are approximately
distributed as Uniform (0,1). This suggests that we can base tests of H0(C) versus
H1(C) on the processes

ŴjN(u) ≡ N1/2(
ĜjN(u) − u

)
, u ∈ [0,1],(3.9)
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for j = 1, . . . , q , where

ĜjN(u) = 1

|CjN |
∑

s∈CjN

I
(
Û (s) ≤ u

)
, u ∈ [0,1].

The test statistics for testing H0(C) versus H1(C) are now given by

T̂1N, . . . , T̂4N,(3.10)

where T̂jN is obtained by replacing WjN in expressions (3.4)–(3.7) with ŴjN . In
the next section, we describe the limit distributions of the test statistics under the
null hypothesis.

4. Asymptotic distributional results.

4.1. Basic concliques. To formulate large sample distributional results for the
GOF statistics, we shall assume that the concliques C1, . . . , Cq used for these
statistics can be “built up” from unions of structurally more basic concliques, say
C∗

1 , . . . , C∗
q∗ , q∗ ≥ q . For any given template M ⊂ Z

d \{0} defining neighborhoods

as N (s) = s + M, s ∈ Z
d , we suppose such concliques are constructed as follows.

Let ei ∈ Z
d denote a vector with 1 in the ith component and 0 elsewhere, and

define mi ≡ max{|e′
is| : s ∈ M} as the maximal absolute value of ith component

over integer vectors in the neighborhood template s ∈ M, i = 1, . . . , d . Define a
collection of sublattices as

C∗
j = {aj + �s : s ∈ Z

d}, j = 1, . . . , q∗ ≡
d∏

i=1

(mi + 1),(4.1)

where � = diag(m1 + 1, . . . ,md + 1) is a positive diagonal matrix and

aj ∈ I ≡ {(a1, . . . , ad)′ ∈ Z
d : 0 ≤ ai ≤ mi, i = 1, . . . , d},

where aj �= ak if C∗
j �= C∗

k .
Proposition 4.1 shows that these sets provide a collection of “basic” con-

cliques (or coding sets) since locations within the same sublattice C∗
j are sep-

arated by directional distances � that prohibit neighbors within C∗
j . Addition-

ally, the proposition gives a simple rule for merging basic concliques C∗
j to cre-

ate larger concliques Cj . In the following, write ±M = M ∪ −M, and define
‖s‖∞ = max1≤i≤d |si | for s = (s1, . . . , sd)′ ∈ Z

d .

PROPOSITION 4.1. Under the process assumptions of Theorem 2.1 and for
any neighborhood specified by a finite subset M ⊂ Z

d \ {0}:
(a) sets C∗

1 , . . . , C∗
q∗ of form (4.1) are concliques that partition Z

d ;



GOODNESS OF FIT TESTS FOR SPATIAL DATA 113

(b) if a1, . . . ,ai ,ai+1 ∈ I , i ≥ 1, such that C ≡ ⋃i
j=1 C∗

j is a conclique, then
C ∪ C∗

i+1 is a conclique if and only if

aj − ai+1 + �s /∈ ±M for all s ∈ Z
d , ‖s‖∞ ≤ 1, and any j = 1, . . . , i.

In addition to providing a systematic approach for building concliques, the pur-
pose of this basic conclique representation is to allow the covariance structure of
the limiting Gaussian process of the conclique-wise empirical processes [cf. (3.3)]
to be written explicitly and to simplify the distributional results to follow (as basic
concliques C∗

j above have a uniform structure and are translates of one another).
With many Markov models on a regular lattice described by the neighborhoods
in Besag [4] involving coding sets or “unilateral” structures, there is typically no
loss of generality in building a collection of concliques C1, . . . , Cq from such basic
concliques. We illustrate Proposition 4.1 with some examples.

EXAMPLE 2.1 (Continued). Under the four-nearest neighbor structure in Z
2,

we have M = {±(0,1)′,±(1,0)′} = ±M, m1 = m2 = 1, � = diag(2,2) and
q∗ = 4, so there are four basic concliques {C∗

j }4
j=1 determined by the vectors

a1 = (0,0)′, a2 = (1,1)′, a3 = (1,0)′, a4 = (0,1)′.
Because a2 − a1 + � · s = (1,1)′ + 2s /∈ ±M for any s ∈ Z

2, ‖s‖∞ ≤ 1, then
C1 ≡ C∗

1 ∪ C∗
2 is a conclique, and, similarly, so is C2 ≡ C∗

3 ∪ C∗
4 . Additionally, Propo-

sition 4.1 shows also that C1, C2 cannot be further merged so that these represent
the previously illustrated minimal conclique cover.

EXAMPLE 2.2 (Continued). Under the eight-nearest neighbor structure in Z
2,

we have that M = {±(0,1)′,±(1,0)′,±(1,1)′,±(1,−1)′} and the basic con-
cliques {C∗

j }4
j=1 are the same as in Example 2.1 and correspond to Besag’s [4]

coding sets. However, these basic concliques cannot be merged into larger con-
cliques by Proposition 4.1 and hence match the minimal cover of four concliques
as illustrated previously (i.e., Cj = C∗

j ).

EXAMPLE 4.1. Under a “simple unilateral” neighbor M = {(0,−1)′,
(−1,0)′} in Z

2 (cf. [4], Section 6.2), the basic concliques are again the same and
Proposition 4.1 gives C1 ≡ C∗

1 ∪ C∗
2 , C2 ≡ C∗

3 ∪ C∗
4 as a minimal conclique cover.

4.2. Asymptotic framework. We now consider a sequence of sampling re-
gions Rn indexed by n. For studying the large sample properties of the proposed
GOF statistics, we adopt an “increasing domain spatial asymptotic” structure [10],
where the sampling region Rn becomes unbounded as n → ∞. Let R0 be an open
connected subset of (−1/2,1/2]d containing the origin. We regard R0 as a “pro-
totype” of the sampling region Rn. Let {λn}n≥1 be a sequence of positive numbers
such that λn → ∞ as n → ∞. We assume that the sampling region Rn = λnR0 is
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obtained by “inflating” the set R0 by the scaling factor λn (cf. [40]). Since the ori-
gin is assumed to lie in R0, the shape of Rn remains the same for different values
of n. To avoid pathological cases, we assume that for any sequence of real num-
bers {an}n≥1 with an → 0+ as n → ∞, the number of cubes of the lattice anZ

d

that intersect both R0 and Rc
0 is O((an)

−(d−1)) as n → ∞. This implies that, as
the sampling region grows, the number of observations near the boundary of Rn is
of smaller order O(N

(d−1)/d
n ) than the total number Nn of observations in Rn so

that the volume of Rn, Nn and the number of interior locations are equivalent as
n → ∞. The boundary condition on R0 holds for most regions Rn of practical in-
terest, including common convex subsets of R

d , such as rectangles and ellipsoids,
as well as for many nonconvex star-shaped sets in R

d . (Recall that a set A ⊂ R
d

is called star-shaped if for any x ∈ A, the line segment joining x to the origin lies
in A.) The latter class of sets may have a fairly irregular shape. See, for example,
[38, 43] for more details.

We want to assess the GOF of the process model specification (1.2), under either
the simple or composite hypothesis sets of Section 3. As described in Section 3.1,
we suppose that the spatial process is observed at locations on the integer grid Z

d

that fall in the sampling region Rn producing a set of sampling locations SNn (in-
dexed by n). To simplify notation, we will use Sn rather than the more cumbersome
SNn and S int

n rather than S int
Nn

. Similarly, we will use Wjn to denote the empirical
distribution of generalized spatial residuals for the j th conclique under a simple
hypothesis as given by (3.3) with N = Nn and T1n, . . . , T4n, the corresponding test
statistics of (3.4)–(3.7). Also, Ŵjn, and T̂1n, . . . , T̂4n will denote the quantities in
(3.9) and (3.10) with N = Nn.

4.3. Results for the simple testing problem. For studying the asymptotic distri-
bution of the test statistics T1n, . . . , T4n under the null hypothesis H0(S), we shall
make use of the following condition, which imposes the structure on the concliques
described in Section 4.1.

Condition (C.1): Each conclique C1, . . . , Cq is union of basic concliques
C∗

1 , . . . , C∗
q∗ as in (4.1). Namely, for each j = 1, . . . , q , there exists Jj ⊂

{1, . . . , q∗ ≡ det(�)} where Cj = ⋃
i∈Jj

C∗
i and the index sets {Jj }qj=1 are disjoint.

The following result gives the asymptotic null distribution of conclique-wise
empirical processes Wn = (W1n, . . . ,Wqn)

′ based on the scaled and centered em-
pirical distributions Wjn(u), u ∈ [0,1], as in (3.3). Note that, while each individual
empirical process Wjn can be expected to weakly converge to a Brownian bridge
under H0(S) (cf. [3]), the limit law of Wn will not similarly be distribution-free
due to the dependence in observations across concliques. In particular, the null
model Fθ0 influences the asymptotic covariance structure of Wn.

Let Lq∞ denote the collection of bounded vector-valued functions f = (f1, . . . ,

fq)
′ : [0,1] → R

q defined on the unit interval. Also, let |B| denote the size of a
finite set B ⊂ R.
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THEOREM 4.2. Suppose that condition (C.1) holds. Then, there exists a zero-
mean vector-Gaussian process W(u) = (W1(u), . . . ,Wq(u))′, u ∈ [0,1], with con-
tinuous sample paths on [0,1] (with probability 1) such that

Wn
d→ W as n → ∞

as elements of Lq∞. Further, P(W(u) = 0) = 1 for u = 0,1 and the q × q covari-
ance matrix function of W is given by

EWj(u)Wk(v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

det(�)

|Jj | (min{u, v} − uv), if j = k,

det(�)

|Jj | · |Jk|
∑

i∈Jj ,l∈Jk

σi,l(u, v), if j �= k,

for 0 ≤ u, v ≤ 1, 1 ≤ j, k ≤ q and

σi,l(u, v) ≡ ∑
s∈Zd ,‖s‖∞≤1

{P [U(0) ≤ u,U(al − ai + �s) ≤ v] − uv}

× I(al − ai + �s ∈ ±M).

The indicator function I(·) above pinpoints terms in the covariance expression
which automatically vanish by the independence of residual variables U(s) within
conclique structures (Theorem 2.1). For example, when it is possible to combine
two basic concliques C∗

i and C∗
l , i �= l, into a larger conclique, Proposition 4.1 gives

that, for all ‖s‖∞ ≤ 1, it holds that ai −al +�s /∈ M and so above I(ai −al +�s ∈
±M) = 0. All sums in the limiting covariance structure then involve only a finite
number of terms.

As a direct implication of Theorem 4.2, we get the following result on the
asymptotic null distribution of the test statistics T1n, . . . , T4n.

COROLLARY 4.3. Under the conditions of Theorem 4.2,

Tjn
d→ ϕj (W) as n → ∞

for j = 1, . . . ,4, where the functionals’ ϕj ’s are defined by

ϕ1(f) = max
1≤j≤q

sup
u∈[0,1]

|fj (u)|,

ϕ2(f) =
(

1

q

∑
1≤j≤q

[
sup

u∈[0,1]
|fj (u)|

]2
)1/2

,

(4.2)

ϕ3(f) = max
1≤j≤q

(∫ 1

0
|fj (u)|r du

)1/r

,

ϕ4(f) = 1

q

∑
1≤j≤q

(∫ 1

0
|fj (u)|r du

)1/r
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for f = (f1, . . . , fq)
′ ∈ Lq∞, and for a given r ∈ [1,∞).

4.4. Results for the composite testing problem. As for the simple testing prob-
lem, here we first derive the asymptotic null distribution of the conclique-wise em-
pirical processes Ŵn = (Ŵ1n, . . . , Ŵqn)

′ based on scaled and centered empirical
distributions Ŵjn(u), u ∈ [0,1], in (3.9).

Note that the estimator θ̂n appears in each summand in Ŵjn through the esti-
mated generalized spatial residuals (3.8). In such situations, a common standard
approach to deriving asymptotic distributions of empirical processes is based on
the concept of uniform asymptotic linearity in some local neighborhood of the true
parameter value θ0 (cf. [36, 46]). However, this approach is not directly applicable
here due to the form of the conditional distribution functions in (3.1) when consid-
ered as functions of θ ∈ �. To establish the limit distribution, we embed the em-
pirical process of the estimated generalized residuals in an enlarged space, namely,
the space of locally bounded q-dimensional vector functions on [0,1], equipped
with the metric of uniform convergence on compacts, and then use a version of the
continuous mapping theorem; the argument details are provided in [32].

We require some notation and conditions in addition to those introduced in the
earlier section. Letting again |B| denote the size of a finite set B , define the strong
mixing coefficient of the process {Y(s) : s ∈ Z

d} by

α(a;b) = sup{|P(A ∩ B) − P(A)P (B)| :A ∈ D(S1),B ∈ D(S2),

|S1| ≤ b, |S2| ≤ b, d(S1, S2) ≥ a,S1, S2 ⊂ Z
d},

where D(S) = σ 〈Y(s) : s ∈ S〉 generically denotes the σ -algebra generated by vari-
ables Y(s) with locations in S ⊂ Z

d , d(S1, S2) = inf{‖s − t‖1 : s ∈ S1, t ∈ S2},
‖x‖1 = ∑d

i=1 |xi | for x = (x1, . . . , xd)′ ∈ R
d , and P(·) represents probabilities for

the process. Write F
(1)
θ (·|·) and F

(1)−
θ (·|·) to denote p × 1 vectors of first order

partial derivatives of Fθ(·|·) and F−
θ (·|·) with respect to θ , when these exist. Let

Uθ(0) = (1 − A(0)) · Fθ(Y (0)|{Y(t) : t ∈ M}) + A(0) · F−
θ (Y (0)|{Y(t) : t ∈ M}),

and denote U(1)
θ (0) ∈ R

p as the vector of partial derivatives of Uθ(0) with respect
to θ , when this exists.

Condition (C.2):

(i) There exist constants δ0 ∈ (0,1), c0 ∈ (0,∞) such that∣∣P (
Uθ(0) ≤ u

) − P
(
Uθ0(0) ≤ v

)∣∣ ≤ c0[‖θ − θ0‖ + |u − v|]
for all 0 ≤ u, v ≤ 1 and θ ∈ � satisfying max{‖θ − θ0‖, |u − v|} ≤ δ0.

(ii) sup{‖F (1)
θ (y|x)‖ + ‖F (1)−

θ (y|x)‖ :‖θ − θ0‖ ≤ δ0, y ∈ R,x ∈ R
p} ≤ c0.

(iii) E{sup‖θ−θ0‖<δ ‖U(1)
θ (0) − U(1)

θ0
(0)‖} = o(δ) as δ → 0.

Condition (C.3): Suppose that the joint distribution of (Uθ0(0),U(1)
θ0

(0)) is abso-

lutely continuous with respect to L × μ with Radon–Nikodym derivative f̃ (u,x),
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where L is the Lebesgue measure on R, and μ is a σ -finite measure on R
p . Sup-

pose that

lim
t→∞ sup

u∈(0,1)

∫
‖x‖>t

‖x‖f̃ (u,x) dμ(x) = 0

and ∫
‖x‖ · sup{|f̃ (u,x) − f̃ (v,x)| : |u − v| ≤ δ}dμ(x) → 0

as δ → 0+.
Condition (C.4):

(i) There exist zero-mean random variables {V(s) : s ∈ Z
d} such that

N1/2
n (θ̂n − θ0) = N−1/2

n

∑
s∈Sn

V(s) + op(1).

(ii) For each s ∈ Z
d , the variable V(s) = (V1(s), . . . , Vp(s))′ is D(s + M)-

measurable.
(iii) There exist a ∈ (2,∞), κ > 0 such that sup{E‖V(s)‖2+κ : s ∈ Z

d} < ∞
and

∞∑
j=1

jd−1α(j ;1)κ/(2+κ) < ∞,

∞∑
j=1

jd(2r−1)α(j ;2r − 1)1/a < ∞

for some integer r satisfying r > (p + 1)/(1 − a−1).
(iv) � ≡ limn→∞ Var(N−1/2

n
∑

s∈Sn
V(s)) exists and is nonsingular.

Conditions (C.2) and (C.3) are exclusively used for handling the effects of the
perturbation of the empirical process of the generalized residuals due the esti-
mation of θ . The first displayed condition in (C.3) is an uniform integrability
condition, while the second one is a continuity condition on the densities f̃ (·, ·)
(in u) in a weighted L1(μ)-norm. Without loss of generality, we shall suppose that
f̃ (u,x) = 0 for all u /∈ (0,1) except on a set of x-values with μ-measure zero. Con-
dition (C.4) allows us to relate the limit law of the (unperturbed) empirical process
part with the variability in estimating θ by θ̂n. If the conditional model specifica-
tion is such that the spatial process satisfies Dobrushin’s uniqueness condition (cf.
[20]), then the MRF is strongly mixing (actually, φ-mixing) at an exponential rate
and, hence, mixing conditions in (C.4) trivially hold.

THEOREM 4.4. Suppose that conditions (C.1)–(C.4) and the composite null
hypothesis H0(C) hold. Then, there exist a zero-mean vector-Gaussian process
W(u) = (W1(u), . . . ,Wq(u))′, u ∈ [0,1], with continuous sample paths on [0,1]
(with probability 1) and a random variable Z = (Z1, . . . ,Zp)′ ∼ Np(0,�), both
defined on a common probability space, such that as n → ∞,

Ŵn
d→ W + 1 · Z′

∫
xf̃ (·,x) dμ(x)
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as elements of Lq∞, where 1 = (1, . . . ,1)′ ∈ R
q . The q ×q covariance matrix func-

tion of W is as in Theorem 4.2 and for j = 1, . . . , q , k = 1, . . . , p and u ∈ (0,1),

EWj(u)Zk = 1

|Jj |
∑
i∈Jj

∑
s∈Zd

E
(
Vk(s − ai ) · I

(
U(0) ≤ u

))
.

The following result is a direct consequence of Theorem 4.4 and gives the
asymptotic distribution of the test statistics under the composite null H0(C).

COROLLARY 4.5. Under the conditions of Theorem 4.4,

T̂jn
d→ ϕj

(
W + 1 · Z′

∫
xf̃ (·,x) dμ(x)

)
as n → ∞

for j = 1, . . . ,4, where the functionals ϕj ’s are as defined in (4.2).

Under the composite null H0(C), the limiting distributions involved are not
distribution-free (i.e., depending on the true model c.d.f. Fθ0 in a complex co-
variance structure). Empirical processes based on PIT residuals with parameter
estimates are known to exhibit this behavior in other inference scenarios with time
series and independent data (cf. [17]), and often two general approaches are con-
sidered for implementing GOF tests [37]: resampling or Khmaladze’s [33] martin-
gale transformation. The latter involves a type of continuous de-trending to mini-
mize effects of parameter estimation and has been applied to obtain asymptotically
distribution-free tests with other model checks using residual empirical processes
based on estimated parameters (cf. [34, 35]). In particular, Bai [3] justified this
transformation for tests in parametric, conditionally specified (continuous) distri-
butions for time series, but considered only one empirical process of residuals. If
modified to the spatial setting, this result would entail a transformation of ŴjN

from one conclique j = 1, . . . ,1 so that its limiting distribution is Brownian mo-
tion and distribution-free under H0(C). The complication here is that with resid-
ual empirical processes from multiple concliques, after applying a conclique-wise
transformation, the resulting limit distribution of a test statistic under H0(C) would
not be distribution-free due to dependence across concliques (akin to Theorem 4.2
in the case of no parameter estimation). Another option might be to use plug-in es-
timates of the covariance structure, using, for example, that asymptotic variances
of maximum likelihood and pseudolikelihood estimators (i.e., � in Theorem 4.4)
are known for some Markov field models [21]. But one would also have to estimate
other complicated covariances in the limiting distribution of Theorem 4.4, which
might be possible with subsampling variance estimation [43].

Spatial resampling methodologies, such as the block bootstrap (cf. [39], Chap-
ter 12), might also be used to approximate sampling distributions of GOF statistics
based on spatial residuals and knowledge of the limit distributions in Theorem 4.4
could be applied to toward justifying such bootstrap estimators. Simulations in
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Section 5 also suggest that the finite sample versions of the GOF statistics appear
to converge fairly quickly to their limits, at least in the case of simple null hy-
potheses. This implies that, in application, large-sample bootstrap approximations
of finite-sample sampling distributions may be reasonable. The theoretical devel-
opment of a spatial bootstrap for our GOF statistics is outside of the scope of this
paper, but in Section 6 we use a parametric spatial bootstrap to calibrate GOF test
statistics for a composite null hypothesis.

5. Numerical results. Here we provide a small numerical verification of the
large sample distributional results in the simple null hypothesis case, consid-
ering observations generated from a conditional Gaussian MRF on Z

2 with a
four-nearest neighbor structure specified by M = {±(0,1)′,±(1,0)′} as in Ex-
ample 2.1. The conditional model family (3.1) of Y(s) given {Y(t) : t ∈ N (s)},
s ∈ Z

2 (N (s) = s + M), is normal with mean μα,η(s) ≡ α + η
∑

t∈N (s)[Y(t) − α],
and variance τ 2 > 0, where E(Y (s)) = α ∈ R is the marginal process mean and
|η| < 0.25 denotes a dependence parameter. In total, the model parameters θ are
(α, τ, η)′.

5.1. Limit distributions under a simple null hypothesis. We first examine
asymptotic null distributions of GOF test statistics in the simple testing prob-
lem H0(S) : (α, τ, η)′ = (α0, τ0, η0)

′ of Section 3.2 with residuals (3.2) given by
U(s) = �[{Y(s)−μα0,η0(s)}/τ0]. Here �(·) denotes the standard normal cumula-
tive distribution function, and, for simplicity, we will write hypothesized parame-
ters α0, τ0, η0 as α, τ, η in the following.

As described in Section 3.1, the four-nearest-neighbor structure produces a min-
imal cover of two concliques C1, C2 (cf. Example 2.1), each of which is a union
of two basic concliques C∗

1 , . . . , C∗
4 provided in Section 4.1. These concliques

yield an empirical distribution process Wn = (W1n,W2n)
′ and GOF test statis-

tics T1n, . . . , T4n as in (3.4)–(3.7). By Theorem 4.2, Wn has a mean-zero Gaussian
limit W = (W1,W2)

′ with covariances

EWj(u)Wk(v) =
{

2(min{u, v} − uv), if j = k,
8
[
P

(
X1 ≤ �−1(u),X2 ≤ �−1(v)

) − uv
]
, if j �= k,(5.1)

u, v ∈ [0,1], j, k ∈ {1,2}, where vectors (X1,X2) in (5.1) are bivariate normal,
with marginally standard normal distributions and correlation −η. Hence, under
the simple null hypothesis, the limit process depends on (α, τ, η)′ only through the
dependence parameter η, which we denote by writing W ≡ Wη.

To understand the distribution of ϕj (Wη), j = 1,2,3,4, as the asymptotic
limit of GOF statistics Tjn under Corollary 4.3, we simulated from the theoreti-
cal Gaussian process Wη as follows. For each value of η = 0,0.1,0.24, we gen-
erated 50,000 sequences of mean-zero bivariate Gaussian variables (W1(i/3001),
W2(i/3001)), i = 0, . . . ,3001, with covariance structure (5.1) over a grid in [0,1];
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FIG. 1. Cumulative distribution functions Fϕj (Wη)(w) = P [ϕj (Wη) ≤ w], w ∈ R, for limit func-
tionals ϕ1(Wη), . . . , ϕ4(Wη) for η = 0.1 (dashed) and η = 0.24 (solid).

the sequence length of 3002 was dictated by computational stability. These pro-
vide approximate observations of Wη, with η values chosen to reflect no, weak
and strong forms of positive spatial dependence. Cumulative distribution func-
tions of each functional ϕ1(Wη), . . . , ϕ4(Wη) were then approximated from Wη-
realizations. The resulting distribution curves appear in Figure 1 for η = 0.1 and
η = 0.24, with ϕ3(Wη) and ϕ4(Wη) computed using r = 2 in (4.2).

5.2. Comparisons to finite sample distributions. To compare the agreement
of finite sample distributions of TjN under the simple null hypothesis with their
limit distributions ϕj (Wη), j = 1, . . . ,4, we simulated samples on two grid sizes,
a 10×10 grid having N = 100 locations and a 30×30 grid having N = 900. Here,
we simulated 50,000 realizations of conditional Gaussian samples (setting α = 0
and τ = 1 with no loss of generality) and evaluated functionals T1N, . . . , T4N to ap-



GOODNESS OF FIT TESTS FOR SPATIAL DATA 121

FIG. 2. Difference in quantiles for ϕ2(Wη) and T2N when N = 100 (dashed line) and 900 (solid
line) for η = 0.1,0.24. Pointwise 95% confidence bands (dotted) indicate the Monte Carlo error in
each difference.

proximate the finite-sample distributions of these GOF statistics. Figure 2 shows
the difference between the quantiles of the limit ϕ2(Wη) and those of T2N for
η = 0.1 and η = 0.24; the agreement among quantiles for functional 2 is quite
good even though this plot was one exhibiting the largest quantile-mismatches
among the four GOF functionals. Table 1 shows the proportion of GOF statistics
TjN falling above the 95th and 99th quantiles of the corresponding limit ϕj (Wη)

distribution, j = 1,2,3,4. The agreement between the finite-sample and theoreti-
cal limit distributions is again close in Table 1.

For various sample sizes and dependence parameters, Table 2 compares the
finite-sample distributions of the four GOF statistics {TjN }4

j=1 against their limit-

TABLE 1
Proportion of GOF statistics TjN from a conditional Gaussian model falling above the 95th and
99th quantiles (denoted q95,η and q99,η) of the their limit ϕj (Wη) distribution, j = 1,2,3,4, for

sample sizes N = 100 and N = 900 and with dependence parameters η = 0,0.1,0.24

% of TjN > q95,η % of TjN > q99,η

η N j = 1 2 3 4 j = 1 2 3 4

0 100 4.67 4.38 5.09 4.97 0.90 0.90 0.98 0.91
0 900 5.11 4.91 4.95 4.86 1.03 1.09 1.03 1.03
0.1 100 4.60 4.60 4.88 4.92 0.94 0.95 0.95 1.08
0.1 900 5.11 5.13 5.05 5.08 1.08 1.13 1.07 1.15
0.24 100 4.52 4.57 5.02 5.06 0.80 0.76 0.86 0.92
0.24 900 4.92 4.97 4.86 5.03 0.97 0.96 0.93 0.95
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TABLE 2
Computed values (×1000) from distance metrics comparing finite-sample distributions of statistics

T1N, . . . , T4N to their limiting distributions ϕ1(Wη), . . . , ϕ4(Wη)

DKS(ϕj (Wη),TjN ) DCM(ϕj (Wη),TjN )

η N j = 1 2 3 4 j = 1 2 3 4

0 100 19.6 23.0 8.9 9.1 12.9 14.8 3.7 3.2
0 900 6.7 9.7 3.4 4.8 3.8 4.7 1.0 1.4
0.1 100 24.0 27.7 5.3 5.4 16.5 18.2 2.2 1.7
0.1 900 9.9 10.0 6.5 5.7 5.3 4.7 2.5 1.8
0.24 100 21.6 25.2 7.2 7.0 14.7 15.6 2.7 2.2
0.24 900 9.1 8.2 4.2 3.8 4.8 4.8 1.4 1.4

DKS(ϕj (Wη1),ϕj (Wη2)) DCM(ϕj (Wη1),ϕj (Wη2))

η1 η2 j = 1 2 3 4 j = 1 2 3 4

0 0.1 14.4 11.9 14.9 13.4 7.0 5.7 7.7 6.1
0.1 0.24 70.0 59.6 90.3 72.9 49.9 35.0 50.4 33.1
0 0.24 81.8 69.1 102.3 84.3 56.6 40.5 58.0 38.9

ing distributions ϕj (W) in terms of a Kolmogorov–Smirnov DKS and a Cramér–
von Mises-like DCM distance metric, defined by

DKS(X,Z) ≡ sup
t∈R

|FX(t) − FZ(t)|,

DCM(X,Z) ≡
[∫

|FX(t) − FZ(t)|2 dt

]1/2

,

relative to the cumulative distributions FX,FZ of arbitrary random variables X,Z.
To interpret the relative values of these metrics in assessing the distributional dis-
tance between TjN and ϕj (Wη), it is helpful to reference DKS,DCM values for
comparing the distributions of ϕj (Wη1) and ϕj (Wη2) over parameters η1 �= η2,
which Table 2 also provides. Generally, the convergence of the finite-sample distri-
butions TjN to their limits ϕj (Wη) appears to occur fairly uniformly over different
dependence parameters η and, relative to the distributional differences among dif-
ferent limits [e.g., ϕj (Wη1) and ϕj (Wη2)], the agreement in distributions of TjN

and ϕj (Wη) is quite close even for samples of size 100.

5.3. Power of GOF statistics under simple null hypothesis. Under the sim-
ple null H0(S) : (α, τ, η)′ = (0,1,0)′, we next consider the power of GOF tests
based on statistics T1N, . . . , T4N computed from conditional Gaussian data gener-
ated with η = 0.1 and η = 0.24 and α = 0, τ = 1. This gives an idea of the power
in testing a hypothesis of no spatial dependence, when the data exhibit forms of
positive dependence, both fairly weak (η = 0.1) and strong (η = 0.24). For a given
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FIG. 3. Plots of power versus size γ for GOF tests of H0 :η = 0 in conditional Gaussian mod-
els (fixed α = 0, τ = 1) based on functionals T1N, . . . , T4N , determined by data generated under
η = 0.1,0.24. In these power versus size curves, each functional is numbered 1–4 under sample sizes
N = 100 (grey) and N = 900 (black).

GOF statistic TjN from a sample of size N = 100 or N = 900, a size γ test is con-
ducted by rejecting H0 if TjN exceeds the 1 − γ quantile of the limit distribution
ϕ(Wη=0) under the null hypothesis. Figure 3 plots power versus size γ for these
tests when η = 0.1 and η = 0.24, based on 50,000 simulated data sets. Power is
low under the alternative η = 0.1, as might be expected, but considerably higher
when η = 0.24. Tests with functionals T2N,T4N (based conclique-wise averages
of GOF statistics) tend to perform similarly and exhibit slightly more power than
tests with T1N,T3N (based conclique-wise maxima of GOF statistics).

6. An application to agricultural field trials.

6.1. The problem. Besag and Higdon [5] present an analysis of six agricul-
tural field trials of corn varieties conducted in North Carolina using a hierarchical
model that included an intrinsic Gaussian MRF as an improper prior for spatial
structure. An intrinsic Gaussian MRF results from fixing dependence parameters
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at the boundary of the parameter space. In discussion of this paper, Smith [44]
raised the question of what diagnostics were available to examine potential evi-
dence for spatial structure based on the available data, and presented variograms
of three of the trials. Kaiser and Caragea [28] used data from these same three tri-
als to illustrate a model-based diagnostic they called the S-value. Questions about
the spatial structure suggested by the data included the possibilities of nonstation-
arity and directional dependencies. Here, we use data from all six trials to examine
the question of whether a simple model with constant mean and unidirectional
dependence can be rejected as a plausible representation of spatial structure. Our
question is simply one of whether a basic Gaussian MRF with constant mean and a
single dependence parameter could be rejected as a possible data generating mech-
anism for the data, not whether it might be be most preferred model available.

Each field trial consisted of observations of yield from 64 corn varieties with
each variety replicated 3 times in each trial. The spatial layout of each trial was
essentially that of a 11 × 18 regular lattice, although the last column of that lattice
contained only 5 locations. After subtracting variety by trial means in the same
manner as [28, 44], we deleted the last column to obtain a rectangular 11 × 17
lattice containing 187 observations for each trial. We assumed a four-nearest-
neighborhood structure but without use of a border strip, so that locations had
a variable number of neighboring observations, 4 for each of the 135 interior lo-
cations, 3 for each of the 48 edge locations, and 2 for each of the four corner
locations.

6.2. The model. Although each trial should nominally have marginal mean
zero, to examine a full composite setting we fit a model with conditional Gaussian
distributions having expected values {μ(si ) : i = 1, . . . , n} and constant conditional
variance τ 2 where, with Ni denoting the neighborhood of location si; i = 1, . . . , n,

μ(si ) = α + η
∑

sj∈Ni

{y(sj ) − α}.(6.1)

The joint distribution of this model is then Gaussian with marginal means α an
n-vector with each element equal to α and covariance matrix (I − C)−1M where
I is the n × n identity matrix, M is an n × n diagonal matrix with all nonzero
entries equal to τ 2 and C = ηH with H an n × n matrix having element (i, j)

equal to 1 if locations si and sj are neighbors and 0 otherwise. With this structure,
the parameter space of η can be determined to be (−0.2563,0.2563) based on
eigenvalues of H (cf. [10]); this differs slightly from the parameter space for a
lattice with four-nearest-neighborhood structure wrapped on a torus due to the size
of the lattice and the use of varying numbers of neighbors for edge locations.

6.3. The GOF procedure. The model of expression (6.1) was fit to (centered)
data from each of the six trials using maximum likelihood estimation. Generalized
spatial residuals were computed for each of the two concliques, one having 93
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TABLE 3
Estimates for conditional Gaussian models fit to data from six agricultural field trials; the point

estimates for α for all trials differ from zero by at most 10−15

Point Interval

Trial τ2 η α τ2 η

1 95.56 0.2526 (−10.21,10.40) (79.43,119.54) (0.2107,0.2544)

2 156.90 0.1855 (−3.19,3.42) (125.96,190.08) (0.0922,0.2257)

3 128.94 0.2476 (−7.66,7.76) (105.63,159.54) (0.1976,0.2533)

4 129.92 0.2095 (−3.57,3.74) (104.54,159.76) (0.1264,0.2380)

5 69.33 0.2522 (−8.29,8.23) (57.20,86.44) (0.2091,0.2543)

6 210.75 0.2542 (−20.57,19.68) (175.39,268.45) (0.2136,0.2549)

and the other 94 locations. Using the fitted models, a parametric bootstrap proce-
dure was used to arrive at p-values for each of the four test statistics introduced as
T̂jN ; j = 1, . . . ,4, in Section 3.3. For each fitted model (i.e., trial) 5000 bootstrap
data sets were simulated using a Gibbs algorithm with a burn-in of 500 and spac-
ing of 10, which appeared adequate to result in convergence of the chain based on
scale reduction factors [18] and eliminate dependence between successive data sets
based on autocorrelations. Model (6.1) was fit, generalized spatial residuals pro-
duced and the four test statistics computed for each bootstrap data set, from which
p-values were taken as the proportion of simulated test statistic values greater
than those from the actual data sets. Bootstrap data sets were also used to produce
percentile bootstrap intervals for parameters (cf. [14]). Percentile intervals were
chosen because basic bootstrap intervals extended beyond the parameter space for
η for each of the six trials.

6.4. Results. Results of estimation are presented in Table 3. Intervals were
computed at the 95% level and values for η are reported to four decimal places
because estimates tended to be close to the upper boundary of the parameter space
(0.2563). Overall, estimation was fairly similar for these six trials, which were
conducted in different counties of North Carolina, including an indication of high
variability in estimating these parameters, particularly α and τ 2. Estimates of η

indicate moderate to strong spatial structure in each of the six trials, and estimates
of τ 2 indicate substantial local variability despite this structure.

GOF p-values resulting from the parametric bootstrap procedure of Section 6.3
are presented in Table 4 for each of the four test statistics of Section 3.3. Overall
these values provide no indication that we are able to dismiss model (6.1) as a
plausible representation of the spatial structure present in these data.

7. Conclusions. In this article we have introduced a practical method to as-
sess the aptness of Markov random field models for representing spatial processes.
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TABLE 4
Parametric bootstrap p-values for the six agricultural field trials

Trial T1 T2 T3 T4

1 0.8348 0.7976 0.7086 0.7530
2 0.3844 0.4182 0.2132 0.3262
3 0.0852 0.1168 0.1506 0.1478
4 0.1656 0.1084 0.1426 0.0972
5 0.2162 0.1828 0.1754 0.2024
6 0.3502 0.2382 0.4642 0.2984

This method is based on special sets of locations we have called concliques that
partition the total set of observed locations such that generalized spatial residuals
within each conclique approximate realizations of independent random variables
on the unit interval. These generalized spatial residuals can be combined across
nonindependent concliques in natural ways to produce GOF statistics that cor-
respond to Gaussian empirical processes that have identifiable limit distributions.
While those limit distributions can involve complex covariance structures, we have
demonstrated that finite sample versions of the GOF statistics appear to converge
rather quickly to their limits, at least in the case of a simple null hypothesis. This
implies that, in an application, approximation of their limit distributions under a
suitable null hypothesis will provide a useful reference distribution against which
to compare the value of an observed GOF statistic. The composite hypothesis set-
ting introduces a considerably more complicated situation than does the simple
hypothesis setting, because limit laws involve covariances that cannot be easily
determined either explicitly or numerically. In an application, resampling methods
would seem to hold the greatest promise for approximating distributions of GOF
statistics based on generalized spatial residuals. While developing spatial subsam-
pling or block bootstraps (cf. [39], Chapter 12) for this purpose requires further
investigation, the use of such resampling was illustrated in this article in the appli-
cation to agricultural field trials.

We wish to comment on a number of issues that involve the distinction between
application of the GOF methodology developed and the production of theoretical
results for that methodology. First is the issue of stationarity. There is nothing in
the definition or construction of generalized spatial residuals, or GOF statistics
constructed from them, that requires a stationary model. All that is needed is iden-
tification of a full conditional distribution for each location (1.1) that may then
be used in (2.1), and assurance that a joint distribution having these conditionals
exists. Assumptions of stationarity made in this article facilitate the production of
theoretical results needed to justify use of the methodology. Another issue is appli-
cation to discrete cases. While the data examples given have considered continuous
conditional models, we have applied random generalized spatial residuals to mod-
els formed from Winsorized Poisson conditional distributions [29] with promising
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empirical results. Similar to questions of stationarity and discrete cases, there is
nothing in the constructive methodology that requires a regular lattice or that each
location have the same number of neighbors. Use of a regular lattice in this article
again facilitates the demonstration of theoretical properties, but this is not needed
to implement the procedures suggested. The application of Section 6 involved a
regular lattice, but no border strip or other boundary conditions were imposed to
render neighborhoods of equal size. It should certainly be anticipated that there
may be edge effects on GOF statistics as developed here, just as there are edge
effects on properties of estimators. How severe these effects might be in various
settings, and whether the use of modified boundary conditions (e.g., [6]) could
mitigate such effects is an issue in need of additional investigation. Essentially the
same thoughts can be offered relative to potential sparseness that might occur in
an application. Locations lacking neighbors entirely could be considered members
of any conclique one chooses, and construction of GOF statistics would proceed
unhindered. What the effects of varying degrees of sparseness are remains an open
question. Of course, if no locations have any neighbors, then the methodology pre-
sented here reduces to statistics constructed on the basis of the ordinary probability
integral transform for independent random variables.

As with all GOF tests, the procedure based on generalized spatial residuals de-
veloped in this article serves as a vehicle for assessing a selected model for overall
adequacy, not as a vehicle for selection of the most attractive model in the first
place. This is important in consideration of fitted models under the composite set-
ting, in which we can think of estimation as having “optimized” a given model
structure for description of a set of observed data. There may be two or more such
structures that could be, with the best choice of parameter values possible, viewed
as plausible data generating mechanisms for a set of observations. This does not
necessarily mean, however, that those different structures are equally pleasing as
models for the problem under consideration.

Finally, we mention a connection with the assessment of k-step ahead fore-
casts in a time series setting. Let {Xt ; t ∈ Z} denote a series of random variables
observed at discrete, equally spaced, points in time. The probability integral trans-
form with distributions conditioned on the present and past has been used to con-
struct k-step ahead residuals Ut+k = Ft+k|t (Xt+k), where the conditioning in F

is on {Xt,Xt−1, . . .} (e.g., [15, 16, 19]). While our use of the probability integral
transform is similar to what is done in this time series setting, the conditioning
requirements are quite distinct. In the spatial setting, two spatial residuals are in-
dependent only if neither is in the conditioning set of the other (i.e., are both in the
same conclique). In time series k-step ahead forecasts, two values, Ui and Uj , will
be independent only if either Xi is in the conditioning set of Xj , or vice versa. The
difference stems from the use of full conditionals in spatial Markov random field
models, rather than the sequential conditionals in the time series context which
need not invoke a Markov property at all. The approach taken to the development
of theoretical results in this article could potentially be used in the time series
setting, but the modifications require further investigation.
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8. Proof of generalized spatial residual properties. As Theorem 2.1 pro-
vides the main distributional result for generalized spatial residuals (2.1) from con-
cliques, which are fundamental to the GOF test statistics of Sections 3 and 4, we
establish Theorem 2.1 here. The proofs of other results from the manuscript are
provided in supplementary material [32].

Let Q denote a finite subset of conclique C ⊂ Z
d with |Q| = l ≥ 2, and let I Q =⋃

s∈Q{i : i ∈ N (s)} = {s1, . . . , sL}, L ≥ 1, be the finite index set of all neighbors of
sites in Q; additionally, enumerate the l elements of Q as Q = {s1+L, . . . , sl+L},
say. With respect to the enumeration of I Q and Q, let F1(·) denote the marginal
c.d.f. of Y(s1), and let Fj (·), 2 ≤ j ≤ L + l, denote the conditional c.d.f. of Y(sj )

given Y(s1), . . . , Y (sj−1); define the function F−
j (·) by the left limits of Fj (·).

By the randomized PIT [7], {(1 − A(sj )) · Fj [Y(sj )] + A(sj ) · F−
j [Y(sj )] : j =

1, . . . ,L + l} are i.i.d. Uniform (0,1) random variables.
For any i, k ∈ {L + 1, . . . ,L + l}, variables Y(si ) and Y(sk) belong to the con-

clique Q so that all neighbors of Y(si ) and Y(sk) are among {Y(sj )}Lj=1. By
the Markov property (1.2), Fj [Y(sj )] = F [Y(sj |{Y(s) : s ∈ N (sj )})] holds and
we may equivalently write (2.1) as U(sj ) = (1 − A(sj )) · Fj [Y(sj )] + A(sj ) ·
F−

j [Y(sj )] for any j ∈ {L + 1, . . . ,L + l}, though these relationships may not
necessarily hold for j = 1, . . . ,L. Hence, {U(s) : s ∈ Q} are i.i.d. Uniform (0,1)

variables for any arbitrary finite subset Q of C .
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SUPPLEMENTARY MATERIAL

Proofs of main results for spatial GOF test statistics (DOI: 10.1214/11-
AOS948SUPP; .pdf). A supplement [32] provides proofs of all asymptotic dis-
tributional results from Section 4, regarding the conclique-based spatial GOF test
statistics in simple and composite null hypothesis settings (Proposition 4.1, The-
orem 4.2, Corollary 4.3, Theorem 4.4, Corollary 4.5). The proof in the composite
hypothesis case is particularly nonstandard; see Section 4.4.
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