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COORDINATE DESCENT ALGORITHMS FOR LASSO
PENALIZED REGRESSION1
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Imposition of a lasso penalty shrinks parameter estimates toward zero
and performs continuous model selection. Lasso penalized regression is ca-
pable of handling linear regression problems where the number of predictors
far exceeds the number of cases. This paper tests two exceptionally fast al-
gorithms for estimating regression coefficients with a lasso penalty. The pre-
viously known �2 algorithm is based on cyclic coordinate descent. Our new
�1 algorithm is based on greedy coordinate descent and Edgeworth’s algo-
rithm for ordinary �1 regression. Each algorithm relies on a tuning constant
that can be chosen by cross-validation. In some regression problems it is nat-
ural to group parameters and penalize parameters group by group rather than
separately. If the group penalty is proportional to the Euclidean norm of the
parameters of the group, then it is possible to majorize the norm and reduce
parameter estimation to �2 regression with a lasso penalty. Thus, the existing
algorithm can be extended to novel settings. Each of the algorithms discussed
is tested via either simulated or real data or both. The Appendix proves that
a greedy form of the �2 algorithm converges to the minimum value of the
objective function.

1. Introduction. This paper explores fast algorithms for lasso penalized re-
gression [Chen et al. (1998), Claerbout and Muir (1973), Santosa and Symes
(1986), Taylor et al. (1979) and Tibshirani (1996)]. The lasso performs continu-
ous model selection and enforces sparse solutions in problems where the number
of predictors p exceeds the number of cases n. In the regression setting, let yi be
the response for case i, xij be the value of predictor j for case i, and βj be the
regression coefficient corresponding to predictor j . The intercept μ is ignored in
the lasso penalty, whose strength is determined by the positive tuning constant λ.
Given the parameter vector θ = (μ,β1, . . . , βp)t and the loss function g(θ), lasso
penalized regression can be phrased as minimizing the criterion

f (θ) = g(θ) + λ

p∑
j=1

|βj |,(1)
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where g(θ) equals
∑n

i=1 |yi − μ − ∑p
j=1 xijβj | for �1 regression and g(θ) equals

1
2

∑n
i=1(yi − μ − ∑p

j=1 xijβj )
2 for �2 regression.

The lasso penalty λ
∑p

j=1 |βj | shrinks each βj toward the origin and tends
to discourage models with large numbers of marginally relevant predictors. The
lasso penalty is more effective in deleting irrelevant predictors than a ridge penalty
λ

∑p
j=1 β2

j because |b| is much bigger than b2 for small b. When protection against
outliers is a major concern, �1 regression is preferable to �2 regression [Wang et al.
(2006a)].

Lasso penalized estimation raises two issues. First, what is the most effective
method of minimizing the objective function (1)? Second, how does one choose
the tuning parameter λ? Although the natural answer to the second question is
cross-validation, the issue of efficient computation arises here as well. We will dis-
cuss a useful approach in Section 6. The answer to the first question is less obvious.
Standard methods of regression involve matrix diagonalization, matrix inversion,
or, at the very least, the solution of large systems of linear equations. Because the
number of arithmetic operations for these processes scales as the cube of the num-
ber of predictors, problems with thousands of predictors appear intractable. Recent
research has shown this assessment to be too pessimistic [Candes and Tao (2007),
Park and Hastie (2006a, 2006b) and Wang et al. (2006a)]. In the current paper
we highlight the method of coordinate descent. Our reasons for liking coordinate
descent boil down to simplicity, speed and stability.

Fu (1998) and Daubechies et al. (2004) explicitly suggest coordinate descent for
lasso penalized �2 regression. For inexplicable reasons, they did not follow up their
theoretical suggestions with numerical confirmation for highly underdetermined
problems. Claerbout and Muir (1973) note that lasso penalized �1 regression also
yields to coordinate descent. Both methods are incredibly quick and have the po-
tential to revolutionize data mining. The competing linear programming algorithm
of Wang et al. (2006a) for penalized �1 regression is motivated by the problem
of choosing the tuning parameter λ. Their algorithm follows the central path de-
termined by the minimum of f (θ) as a function of λ. This procedure reveals ex-
actly when each estimated βj enters the linear prediction model. The central path
method is also applicable to penalized �2 regression and penalized estimation with
generalized linear models [Park and Hastie (2006b)].

Besides introducing a modification of the �1 coordinate descent algorithm, we
want to comment on group selection in �2 regression. To set the stage for both pur-
poses, we will review the previous work of Fu (1998) and Daubechies et al. (2004).
We approach �1 regression through the nearly forgotten algorithm of Edgeworth
(1887, 1888), which for a long time was considered a competitor of least squares.
Portnoy and Koenker (1997) trace the history of the algorithm from Boscovich
to Laplace to Edgeworth. It is fair to say that the algorithm has managed to
cling to life despite decades of obscurity both before and after its rediscovery by
Edgeworth. Armstrong and Kung (1978) published a computer implementation of
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Edgeworth’s algorithm in Applied Statistics. Unfortunately, this version is limited
to simple linear regression. We adapt the Claerbout and Muir (1973) version of
Edgeworth’s algorithm to perform greedy coordinate descent. The resulting �1 al-
gorithm is faster than cyclic coordinate descent in �2 regression.

Many data sets involve groups of correlated predictors. For example, in gene mi-
croarray experiments, genes can sometimes be grouped into biochemical pathways
subject to genetic coregulation. Expression levels for genes in the same pathway
are expected to be highly correlated. In such situations it is prudent to group genes
and design penalties that apply to entire groups. Several authors have taken up the
challenge of penalized estimation in this context [Zou and Hastie (2005), Yuan
and Lin (2006) and Zhao et al. (2006)]. In the current paper we will demonstrate
that cyclic coordinate descent is compatible with penalties constructed from the
Euclidean norms of parameter groups. We attack penalized estimation by com-
bining cyclic coordinate descent with penalty majorization. This replaces the non-
quadratic norm penalties by �1 or �2 penalties. The resulting algorithm is reminis-
cent of the generic MM algorithm for parameter estimation [Lange (2004)].

In the remainder of the paper Section 2 reviews cyclic coordinate descent for
penalized �2 regression, and Section 3 develops Edgeworth’s algorithm for penal-
ized �1 regression. Section 4 briefly discusses convergence of coordinate descent in
penalized �2 regression; the Appendix proves convergence for greedy coordinate
descent. Section 5 amends the �2 algorithm to take into account grouped parame-
ters, and Section 6 gives some guidance on how to select tuning constants. Sections
7 and 8 test the algorithms on simulated and real data, and Section 9 summarizes
their strengths and suggests new avenues of research.

Finally, we would like to draw the reader’s attention to the recent paper of
Friedman et al. (2007) in this journal on coordinate descent and the fused lasso.
Their paper has substantial overlap and substantial differences with ours. The two
papers were written independently and concurrently.

2. Cyclic coordinate descent for �2 regression. Coordinate descent comes in
several varieties. The standard version cycles through the parameters and updates
each in turn. An alternative version is greedy and updates the parameter giving
the largest decrease in the objective function. Because it is impossible to tell in
advance which parameter is best to update, the greedy version uses the surrogate
criterion of steepest descent. In other words, for each parameter we compute for-
ward and backward directional derivatives and then update the parameter with the
most negative directional derivative, either forward or backward. The overhead of
keeping track of these directional derivatives works to the detriment of the greedy
method. For �1 regression, the overhead is relatively light, and greedy coordinate
descent is substantially faster than cyclic coordinate descent.

Although the lasso penalty is nondifferentiable, it does possess directional
derivatives along each forward or backward coordinate direction. For instance, if
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ek is the coordinate direction along which βk varies, then the objective function (1)
has directional derivatives

dek
f (θ) = lim

τ↓0

f (θ + τek) − f (θ)

τ
= dek

g(θ) +
{

λ, βk ≥ 0,
−λ, βk < 0,

and

d−ek
f (θ) = lim

τ↓0

f (θ − τek) − f (θ)

τ
= d−ek

g(θ) +
{−λ, βk > 0,

λ, βk ≤ 0.

In �2 regression, the function g(θ) is differentiable. Therefore, its directional
derivative along ek coincides with its ordinary partial derivative

∂

∂βk

g(θ) = −
n∑

i=1

(
yi − μ −

p∑
j=1

xijβj

)
xik,

and its directional derivative along −ek coincides with the negative of its ordinary
partial derivative. In �1 regression, the coordinate direction derivatives are

dek
g(θ) =

n∑
i=1

⎧⎨
⎩

−xik, yi − μ − xt
i β > 0,

xik, yi − μ − xt
i β < 0,

|xik|, yi − μ − xt
i β = 0,

and

d−ek
g(θ) =

n∑
i=1

⎧⎨
⎩

xik, yi − μ − xt
i β > 0,

−xik, yi − μ − xt
i β < 0,

|xik|, yi − μ − xt
i β = 0,

where xt
i is the row vector (xi1, . . . , xip).

In cyclic coordinate descent we evaluate dek
f (θ) and d−ek

f (θ). If both are non-
negative, then we skip the update for βk . This decision is defensible when g(θ) is
convex because the sign of a directional derivative fully determines whether im-
provement can be made in that direction. If either directional derivative is negative,
then we must solve for the minimum in that direction. Because the objective func-
tion f (θ) is convex, it is impossible for both directional derivatives dek

f (θ) and
d−ek

f (θ) to be negative.
In underdetermined problems with just a few relevant predictors, most updates

are skipped, and the corresponding parameters never budge from their starting val-
ues of 0. This simple fact plus the complete absence of matrix operations explains
the speed of cyclic coordinate descent. It inherits its numerical stability from the
descent property of each update.

Fu (1998) derived cyclic coordinate descent algorithms for �2 regression with
penalties λ

∑
j |βj |α with α ≥ 1. With a lasso penalty (α = 1), the update of the

intercept parameter can be written as

μ̂ = 1

n

n∑
i=1

(yi − xt
i β) = μ − 1

n

∂

∂μ
g(θ).
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For the parameter βk , there are separate solutions to the left and right of 0. These
amount to

β̂k,− = min
{

0, βk −
∂

∂βk
g(θ) − λ∑n
i=1 x2

ik

}
,

β̂k,+ = max
{

0, βk −
∂

∂βk
g(θ) + λ∑n
i=1 x2

ik

}
.

Only one of these two solutions can be nonzero. The partial derivatives

∂

∂μ
g(θ) = −

n∑
i=1

ri,
∂

∂βk

g(θ) = −
n∑

i=1

rixik

of g(θ) are easy to compute if we keep track of the residuals ri = yi −μ−xt
i β . The

residual ri is reset to ri + μ − μ̂ when μ is updated and to ri + xik(βk − β̂k) when
βk is updated. Organizing all updates around residuals promotes fast evaluation of
g(θ).

3. Greedy coordinate descent for �1 regression. In greedy coordinate de-
scent, we update the parameter θk giving the most negative value of min{dfek

(θ),

df−ek
(θ)}. If none of the coordinate directional derivatives is negative, then no

further progress can be made. In lasso constrained �1 regression greedy coordi-
nate descent is quick because directional derivatives are trivial to update. Indeed,
if updating βk does not alter the sign of the residual ri = yi − μ − xt

i β for case i,
then the contributions of case i to the various directional derivatives do not change.
When the residual ri becomes 0 or changes sign, these contributions are modified
by simply adding or subtracting entries of the design matrix. Similar considera-
tions apply when μ is updated.

To illustrate Edgeworth’s algorithm in action, consider minimizing the two-
parameter model g(θ) = ∑n

i=1 |yi − μ − xiβ| with a single slope β . To update
μ, we recall the well-known connection between �1 regression and medians and
replace μ for fixed β by the sample median of the numbers zi = yi − xiβ . This
action drives g(θ) downhill. Updating β for μ fixed depends on writing

g(θ) =
n∑

i=1

|xi |
∣∣∣∣yi − μ

xi

− β

∣∣∣∣,
sorting the numbers zi = (yi −μ)/xi , and finding the weighted median with weight
wi = |xi | assigned to zi . We replace β by the order statistic z[i] whose index i

satisfies
i−1∑
j=1

w[j ] < 1
2

n∑
j=1

w[j ],
i∑

j=1

w[j ] ≥ 1
2

n∑
j=1

w[j ].
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With more than a single predictor, we update parameter βk by writing

g(θ) =
n∑

i=1

|xik|
∣∣∣∣yi − μ − ∑

j �=k xijβj

xik

− βk

∣∣∣∣,
and finding the weighted median.

Two criticisms have been leveled at Edgeworth’s algorithm. First, although
it drives the objective function steadily downhill, it sometimes converges to an
inferior point. Li and Arce (2004) give an example involving the data values
(0.3,−1.0), (−0.4,−0.1), (−2.0,−2.9), (−0.9,−2.4) and (−1.1,2.2) for the
pairs (xi, yi) and parameter starting values (μ,β) = (3.5,−1.0). Unfortunately, Li
and Arce’s suggested improvement to Edgeworth’s algorithm does not generalize
readily to multivariate linear regression. The second criticism is that convergence
often occurs in a slow seesaw pattern. These defects are not fatal.

In fact, our numerical examples show that the greedy version of Edgeworth’s al-
gorithm performs well on most practical problems. It has little difficulty in picking
out relevant predictors, and it usually takes less computing time to converge than
�2 regression by cyclic coordinate descent. In �1 regression, greedy coordinate
descent is considerably faster than cyclic coordinate descent, probably because
greedy coordinate descent attacks the significant predictors early on before it gets
trapped by an inferior point.

Implementing Edgeworth’s algorithm with a lasso penalty requires viewing the
penalty terms as the absolute values of pseudo-residuals. Thus, we write λ|βj | =
|y − xtθ | by taking y = 0 and xk = λ1{k=j}. Edgeworth’s algorithm now applies.

Because the �1 objective function is nondifferentiable, it is difficult to under-
stand the theoretical properties of �1 estimators. Our supplementary appendix [Wu
and Lange (2008)] demonstrates the weak consistency of penalized �1 estimators.
The proof there builds on the previous work of Oberhofer (1983) on nonlinear �1
regression. Since we only consider linear models, it is possible to relax and clar-
ify his stated regularity conditions. Zhao and Yu (2006) summarize and extend
previous consistency results for �2 penalized estimators.

4. Convergence of the algorithms. The counterexample cited for Edge-
worth’s algorithm shows that it may not converge to a minimum point. The ques-
tion of convergence for the �2 algorithms is more interesting. Textbook treatments
of convergence for cyclic coordinate descent are predicated on the assumption
that the objective function f (θ) is continuously differentiable. For example, see
Proposition 5.32 of Ruszczyński (2006). Coordinate descent may fail for a non-
differentiable function because all directional derivatives must be nonnegative at
a minimum point. It does not suffice for just the directional derivatives along the
coordinate directions to be nonnegative. Unfortunately, the lasso penalty is nondif-
ferentiable. The more general theory of Tseng (2001) does cover cyclic coordinate
descent in �2 regression, but it does not apply to greedy coordinate descent. In the
Appendix we demonstrate the following proposition.
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PROPOSITION 1. Every cluster point of the �2 greedy coordinate descent al-
gorithm is a minimum point of the objective function f (θ). If the minimum point
is unique, then the algorithm converges to it. If the algorithm converges, then its
limit is a minimum point.

Our qualitative theory does not specify the rate of convergence. Readers may
want to compare our treatment of convergence to the treatment of Fu (1998).

It would also be helpful to identify a simple sufficient condition making the
minimum point unique. Ordinarily, uniqueness is proved by establishing the strict
convexity of the objective function. If the problem is overdetermined or the penalty
is a ridge penalty, then this is an easy task. For underdetermined problems with
lasso penalties, strict convexity can fail. Of course, strict convexity is not necessary
for a unique minimum; linear programming is full of examples to the contrary.
Based on a conversation with Emanuel Candes, we conjecture that almost all (with
respect to Lebesgue measure) design matrices lead to a unique minimum.

5. �2 regression with group penalties. The issues of modeling and fast es-
timation are also intertwined with grouped effects, where we want coordinated
penalties that tend to include or exclude all of the parameters in a group. Suppose
that the β parameters occur in q disjoint groups and γj denotes the parameter
vector for group j . The lasso penalty λ‖γj‖1 separates parameters and does not
qualify as a sensible group penalty. For the same reason the scaled sum of squares
λ‖γj‖2

2 is disqualified. However, the scaled Euclidean norm λ‖γj‖2 is an ideal
group penalty. It couples the parameters, it preserves convexity, and, as we show
in a moment, it meshes well with cyclic coordinate descent in �2 regression.

To understand its grouping tendency, note that the directional derivative of
‖γj‖2 along ejk , the coordinate vector corresponding to γjk , is 1 when γj = 0
and is 0 when γj �= 0 and γjk = 0. Thus, if any parameter γjl , l �= k, is nonzero,
it becomes easier for γjk to move away from 0. Recall that for a parameter to
move away from 0, the forward or backward directional derivative of the objective
function must be negative. If a penalty contribution to these directional derivatives
drops from 1 to 0, then the directional derivatives are more likely to be negative.

In �2 regression with grouping effects, we recommend minimizing the objective
function

f (θ) = g(θ) + λ2

q∑
j=1

‖γj‖2 + λ1

q∑
j=1

‖γj‖1,

where g(θ) is the residual sum of squares. If the tuning parameter λ2 = 0, then the
penalty reduces to the lasso. On the one hand when λ1 = 0, only group penalties
enter the picture. The mixed penalties with λ1 > 0 and λ2 > 0 enforce shrinkage in
both ways. All mixed penalties are norms and therefore convex functions. Noncon-
vex penalties complicate optimization and should be avoided whenever possible.
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At each stage of cyclic coordinate descent, we are required to minimize g(θ) +
λ2‖γj‖2 + λ1‖γj‖1 with respect to a component γjk of some γj . If γj = 0, then
‖γj‖2 = |γjk| as a function of γjk . Thus, minimization with respect to γjk reduces
to the standard update for �2 regression with a lasso penalty. The lasso tuning
parameter λ equals λ1 + λ2 is this situation. When γj �= 0, the standard update
does not apply.

However, there is an alternative update that stays within the framework of pe-
nalized �2 regression. This alternative involves majorizing the objective function
and is motivated by the MM algorithm for parameter estimation [Lange (2004)].
In view of the concavity of the square root function

√
t , we have the inequality

‖γj‖2 ≤ ‖γ m
j ‖2 + 1

2‖γ m
j ‖2

(‖γj‖2
2 − ‖γ m

j ‖2
2),(2)

where the superscript m indicates iteration number. Equality prevails whenever
γj = γ m

j . The right-hand side of inequality (2) is said to majorize the left-hand
side. This simple majorization leads to the additional majorization

g(θ) + λ2‖γj‖2 + λ1‖γj‖1

≤ g(θ) + λ2

[
‖γ m

j ‖2 + 1

2‖γ m
j ‖2

(‖γj‖2
2 − ‖γ m

j ‖2
2)

]
+ λ1‖γj‖1.

As a function of γjk ignoring γ m
jk , the second majorization amounts to a quadratic

plus a lasso penalty. Fortunately, we know how to minimize such a surrogate func-
tion. According to the arguments justifying the descent property of the MM al-
gorithm, minimizing the surrogate is guaranteed to drive the objective function
downhill.

To summarize, grouped effects can be handled by introducing penalties defined
by the Euclidean norms of the grouped parameters. Updating a parameter follows
the standard recipe when the other parameters of its group are fixed at 0. If one
of the other parameters from its group is nonzero, then we majorize the objec-
tive function and minimize the surrogate function with respect to the designated
parameter. Again, the update relies on the standard recipe. Although convergence
may be slowed by majorization, it is consistent with cyclic coordinate descent and
preserves the structure of the updates.

6. Selection of the tuning constant λ. As we mentioned earlier, selection of
the tuning constant λ can be guided by cross-validation. This is a one-dimensional
problem, so inspection of the graph of the cross-validation error curve c(λ) suffices
in a practical sense. Recall that in k-fold cross-validation, one divides the data
into k equal batches (subsamples) and estimates parameters k times, leaving one
batch out per time. The testing error for each omitted batch is computed using the
estimates derived from the remaining batches, and c(λ) is computed by averaging
testing error across the k batches. In principle, one can substitute other criterion for
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average cross-validation error. For instance, we could define c(λ) by AIC or BIC
criteria. For the sake of brevity, we will rest content with cross-validation error.

Evaluating c(λ) on a grid of points can be computationally inefficient, partic-
ularly if grid points occur near λ = 0. Although we recommend grid sampling
on important problems, it is useful to pursue shortcuts. One shortcut combines
bracketing and golden section search. Because coordinate descent is fastest when
λ is large and the vast majority of βj are estimated as 0, it makes sense to start
looking for a bracketing triple with a very large value λ0 and work downward.
One then repeatedly reduces λ by a fixed proportion r ∈ (0,1) until the con-
dition c(λk+1) > c(λk) first occurs. This quickly identifies a bracketing triple
λk−1 > λk > λk+1 with λk = rkλ0 giving the smallest value of c(λ). One can now
apply golden section search to minimize c(λ) on the interval (λk+1, λk−1). With
grouped parameters, finding the best pair of tuning parameters (λ1, λ2) is consid-
erably more difficult. As a rough guess, we recommend consideration of the three
cases: (a) λ1 = 0, (b) λ2 = 0 and (c) λ1 = λ2. These one-dimensional slices yield
to bracketing and golden section search.

Selection of the tuning constant λ has implications in setting the initial value
of θ . For a single λ, we recommend setting θ0 = 0 and all residuals ri = 0. As
λ decreases, we expect current predictors to be retained and possibly new ones
to enter. If we estimate θ̂ for a given λ, then it makes sense to start with θ̂ and
the corresponding residuals for a nearby but smaller value of λ. This tactic builds
on already good estimates, reduces the number of iterations until convergence and
saves considerable time overall in evaluating the c(λ) curve.

7. Analysis of simulated data. In evaluating the performance of the coor-
dinate descent methods, we put special emphasis on the underdetermined setting
p 	 n highlighted by Wang et al. (2006a). In the regression model

yi = μ +
p∑

j=1

xijβj + εi,

we assume that the random errors εi are independent and follow either a standard
normal distribution or a Laplace (double exponential) distribution with scale 1.
The predictor vectors xi represent a random sample from a multivariate normal
distribution whose marginals are standard normal and whose pairwise correlations
are

Cov(Xij ,Xik) =
{

ρ, j ≤ 10 and k ≤ 10,
0, otherwise.

In every simulation the true parameter values are βj = 1 for 1 ≤ j ≤ 5 and βj = 0
for j > 5.

The quality of the parameter estimates and the optimal value of λ are naturally
of interest. To ameliorate the shrinkage of nonzero estimates for a particular λ,
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we always re-estimate the active parameters, omitting the inactive parameters and
the lasso penalty. This yields better parameter estimates for testing purposes. The
choice of λ depends on the 10-fold average cross-validation error curve c(λ). We
sample c(λ) on a grid and find its minimum by bracketing and golden section
search as previously described. Given the optimal λ, we re-estimate parameters
from the data as a whole and compute prediction error on a testing data set of
20,000 additional cases. It is instructive to compare this approximate prediction
error to the true prediction error using the true regression coefficients.

Table 1 reports average prediction errors in �1 regression based on 50 replicates
and problem sizes of (p,n) = (5000,200), (p,n) = (5000,500) and (p,n) =
(50000,500) and both independent predictors (ρ = 0) and highly correlated pre-
dictors (ρ = 0.8). The average number of predictors selected is listed as Nnonzero,
and the average number of true predictors selected is listed as Ntrue. Average com-

TABLE 1
Simulation results for �1 regression with a lasso penalty. Standard errors of estimates appear in

parentheses. The left error column is testing error under the true parameter values; the right error
column is testing error under the estimated parameter values

β = (1,1,1,1,1,0, . . . ,0)

Distribution (p,n) ρ Error λ Error Nnonzero N true Time

Laplace (5000,200) 0.00 0.99 44.05 1.11 14.06 5.00 0.02
(4.43) (0.08) (8.63) (0.00) (0.01)

Laplace (5000,200) 0.80 0.99 72.39 1.04 6.80 5.00 0.04
(13.60) (0.03) (1.57) (0.00) (0.01)

Laplace (5000,500) 0.00 1.01 101.51 1.01 5.18 5.00 0.09
(10.58) (0.01) (0.65) (0.00) (0.01)

Laplace (5000,500) 0.80 1.01 132.88 1.01 6.22 5.00 0.09
(34.93) (0.01) (1.27) (0.00) (0.02)

Laplace (50000,500) 0.00 1.01 109.21 1.01 5.12 5.00 0.36
(9.45) (0.01) (0.32) (0.00) (0.04)

Laplace (50000,500) 0.80 1.01 150.44 1.01 6.44 5.00 1.59
(43.68) (0.01) (1.12) (0.00) (0.33)

Normal (5000,200) 0.00 0.80 48.46 0.84 7.84 5.00 0.03
(3.58) (0.04) (3.31) (0.00) (0.02)

Normal (5000,200) 0.80 0.80 76.71 0.82 6.08 4.98 0.04
(14.44) (0.02) (0.93) (0.14) (0.01)

Normal (5000,500) 0.00 0.80 101.71 0.81 5.48 5.00 0.05
(16.98) (0.01) (1.19) (0.00) (0.01)

Normal (5000,500) 0.80 0.80 150.83 0.81 6.04 5.00 0.10
(47.28) (0.01) (1.06) (0.00) (0.03)

Normal (50000,500) 0.00 0.80 112.03 0.81 5.10 5.00 0.75
(12.03) (0.01) (0.46) (0.00) (0.07)

Normal (50000,500) 0.80 0.80 149.83 0.81 6.36 5.00 2.02
(42.17) (0.01) (1.09) (0.00) (0.45)
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puting time in seconds at the optimal value of λ is recorded in the last column of
the table. On our personal computers, computing times are remarkably fast even
for data sets as large as (p,n) = (50000,500). It is clear that the coordinate de-
scent algorithms keep almost all true predictors while discarding the vast majority
of irrelevant ones. Approximate prediction errors are very close to true prediction
errors.

To better understand the impact of the tuning constant λ in penalized �1 re-
gression, we plot prediction error versus λ in the left panel of Figure 1 for one
realization of the data. Here we take (p,n) = (5000,200), independent predictors,
and Laplace errors. The solid line shows prediction errors based on 10-fold cross-
validation. The dashed line shows prediction errors based on the 20,000 testing
cases. It is noteworthy that cross-validation underestimates the optimal value of
λ suggested by testing error. The optimal λ based on 10-fold cross-validation is
around 45, and the optimal λ based on 20,000 testing cases is around 50. Many
statisticians are comfortable with this conservative bias of cross-validation.

Table 2 reports the results of �2 regression under the same conditions except for
normal errors. The cyclic coordinate descent algorithm for �2 regression is slightly
more reliable, slightly less parsimonious and considerably slower than the greedy
coordinate descent algorithm for �1 regression. The right panel of Figure 1 plots
cross-validation error and approximate prediction error versus λ.

Table 3 compares the speed and performance of three algorithms for lasso pe-
nalized �2 regression on one realization of each of the simulated data sets with
normally distributed errors. Because LARS [Hastie and Efron (2007)] is consid-
ered by many to be the best competing algorithm, it is reasonable to limit our
comparison of the two versions of coordinate descent to LARS. Three conclusions

FIG. 1. Left panel: Plot of prediction error versus λ in �1 regression of simulated data. Right
panel: Plot of prediction error versus λ in �2 regression of simulated data. In both figures, the solid
line represents the errors based on 10-fold cross-validation, and the dashed line represents the errors
based on 20,000 testing cases.
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TABLE 2
Simulation results of �2 regression with a lasso penalty. Standard errors of estimates appear in

parentheses. The left error column is testing error under the true parameter values; the right error
column is testing error under the estimated parameter values

β = (1,1,1,1,1,0, . . . ,0)

Distribution (p,n) ρ Error λ Error Nnonzero N true Time

Laplace (5000,200) 0.00 1.97 112.17 2.13 5.70 5.00 0.05
(16.37) (0.15) (2.26) (0.00) (0.00)

Laplace (5000,200) 0.80 1.97 197.84 2.13 5.98 4.86 0.33
(90.64) (0.15) (1.39) (0.45) (0.13)

Laplace (5000,500) 0.00 2.03 254.62 2.03 5.20 5.00 0.11
(97.20) (0.06) (1.13) (0.00) (0.01)

Laplace (5000,500) 0.80 2.03 611.90 2.03 5.30 5.00 0.81
(180.68) (0.04) (0.54) (0.00) (0.14)

Laplace (50000,500) 0.00 2.02 255.96 2.03 5.04 5.00 0.91
(71.50) (0.05) (0.28) (0.00) (0.22)

Laplace (50000,500) 0.80 2.02 588.38 2.04 5.64 5.00 12.30
(231.48) (0.04) (0.87) (0.00) (5.05)

Normal (5000,200) 0.00 1.01 107.14 1.03 5.04 5.00 0.05
(22.11) (0.03) (0.20) (0.00) (0.01)

Normal (5000,200) 0.80 1.01 216.30 1.04 5.72 4.98 0.52
(90.02) (0.04) (0.94) (0.14) (0.13)

Normal (5000,500) 0.00 1.01 240.85 1.01 5.02 5.00 0.13
(96.29) (0.01) (0.14) (0.00) (0.01)

Normal (5000,500) 0.80 1.01 555.79 1.01 5.32 5.00 0.71
(214.27) (0.01) (0.55) (0.00) (0.09)

Normal (50000,500) 0.00 1.01 244.31 1.01 5.00 5.00 0.98
(102.34) (0.01) (0.00) (0.00) (0.07)

Normal (50000,500) 0.80 1.01 549.40 1.01 5.50 5.00 6.40
(195.81) (0.01) (0.70) (0.00) (1.05)

can be drawn from Table 3. First, cyclic coordinate descent is definitely faster than
greedy coordinate descent for �2 regression. Second, both methods are consider-
ably faster and more robust than LARS. Third, both methods are more successful
than LARS in model selection. Note that the error estimates in the table for the co-
ordinate descent algorithms reflect the re-estimation step mentioned earlier. This
may put LARS at a disadvantage.

Table 4 compares the greedy coordinate descent and cyclic coordinate descent
algorithms for �1 regression. The settings are the same as in Table 3 except that the
residual errors follow a Laplace distribution rather than a normal distribution. The
last column reports the ratio of the objective functions under the two algorithms at
their converged values. Inspection of the table shows that the greedy algorithm is
faster than the cyclic algorithm. Both algorithms have similar accuracy, and their
accuracies are roughly comparable to the accuracies seen in Table 3 under the
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TABLE 3
Speed and accuracy of different algorithms for lasso penalized �2 regression

Algorithm (p,n) ρ Nnonzero N true Time ‖β̂ − β‖1

Cyclic (5000,200) 0 5 5 0.04 0.51592
Greedy 5 5 0.11 0.51567
LARS 94 5 2.19 3.33400
Cyclic (5000,200) 0.8 5 5 0.18 1.01544
Greedy 5 5 0.36 1.01892
LARS 35 5 5.45 1.48300
Cyclic (50000,500) 0 5 5 0.99 0.68995
Greedy 7 5 2.90 0.68700
LARS not available
Cyclic (50000,500) 0.8 5 5 4.11 0.60956
Greedy 5 5 7.94 0.60875
LARS not available
Cyclic (500,5000) 0 5 5 0.24 0.06338
Greedy 5 5 0.36 0.06336
LARS 27 5 0.78 0.25370
Cyclic (500,5000) 0.8 5 5 0.30 0.11082
Greedy 5 5 0.71 0.11049
LARS 14 5 1.168 0.18884

heading ‖β̂ − β‖1. These positive results relieve our anxieties about premature
convergence with coordinate descent.

TABLE 4
Comparison of greedy and cyclic coordinate descent for lasso penalized �1 regression

Algorithm (p,n) ρ Nnonzero N true Time ‖β̂ − β‖1
f greedy
f cyclic

Greedy (5000,200) 0 7 5 0.02 0.84228 1.01063
Cyclic 7 5 0.10 0.91861 (λ = 50)
Greedy (5000,200) 0.8 5 5 0.04 0.53354 0.99118
Cyclic 6 5 0.39 0.74330 (λ = 57.58)
Greedy (50000,500) 0 5 5 0.34 0.32212 1.00288
Cyclic 5 5 3.99 0.28565 (λ = 124.5)
Greedy (50000,500) 0.8 7 5 1.66 0.97379 1.00018
Cyclic 8 5 8.66 0.84372 (λ = 110)
Greedy (500,5000) 0 5 5 0.07 0.06680 0.99938
Cyclic 5 5 1.01 0.06604 (λ = 1144.14)
Greedy (500,5000) 0.8 5 5 0.13 0.12882 1.00008
Cyclic 5 5 1.53 0.12943 (λ = 1144.14)
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Some of the competing algorithms for �1 regression simply do not work on the
problem sizes encountered in the current comparisons. For instance, the standard
iteratively reweighted least squares method proposed by Schlossmacher (1973)
and Merle and Spath (1974) falters because of the large matrix inversions required.
It is also hampered by infinite weights for those observations with zero residuals.
We were unsuccessful in getting the standard software of Barrodale and Roberts
(1980) to run properly on these large-scale problems.

8. Analysis of real data. We now turn to real data involving gene expression
levels and obesity in mice. Wang et al. (2006b) measured abdominal fat mass on
n = 311 F2 mice (155 males and 156 females). The F2 mice were created by
mating two inbred strains and then mating brother-sister pairs from the resulting
offspring. Wang et al. also recorded the expression levels in liver of p = 23,388
genes in each mouse.

Our first model postulates that the fat mass yi of mouse i satisfies

yi = 1{i male}μ1 + 1{i female}μ2 +
p∑

j=1

xijβj + εi,

where xij is the expression level of gene j of mouse i and εi is random error. Since
male and female mice exhibit across the board differences in size and physiology,
it is prudent to estimate a different intercept for each sex. The left panel of Figure 2
plots as a function of λ the average number of nonzero predictors and the average

FIG. 2. Left panel: Plot of 10-fold cross-validation error and number of predictors versus λ in
�1 regression of the mice microarray data. Right panel: Plot of 10-fold cross-validation error and
number of predictors versus λ in �2 regression of the mice microarray data. The lower x-axis plots
the values of λ, and the upper x-axis plots the number of predictors. The y-axis is prediction error
based on 10-fold cross-validation versus λ.
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prediction error. Here we use �1 regression and 10-fold cross-validation. The right
panel of Figure 2 plots the same quantities under �2 regression.

The 10-fold cross-validation curve c(λ) is ragged under both �1 and �2 regres-
sion. For �1 regression, examination of c(λ) over a fairly dense grid shows an
optimal λ of about 3.5. Here the average number of nonzero predictors is 88.5, and
the average testing error is 0.6533. For the entire data set, the number of nonzero
predictors is 77, and the training error is 0.4248. For �2 regression, the optimal
λ is 7.8. Here the average numbers of predictors is 36.8, and the average testing
error is 0.7704. For the entire data set, the number of nonzero predictors is 41, and
the training error is 0.3714. The preferred �1 and �2 models share 27 predictors in
common.

Given the inherent differences between the sexes, it is enlightening to assign
sex-specific effects to each gene and to group parameters accordingly. These deci-
sions translate into the model

yi = 1{i male}
(
μ1 +

p∑
j=1

xijβ1j

)
+ 1{i female}

(
μ2 +

p∑
j=1

xijβ2j

)
+ εi

=
p∑

j=0

zt
ij γj + εi,

where the bivariate vectors zij and γj group predictors and parameters, respec-
tively. Thus,

zt
ij =

⎧⎪⎪⎨
⎪⎪⎩

(1,0), i is male and j = 0,
(0,1), i is female and j = 0,
(xij ,0), i is male and j > 0,
(0, xij ), i is female and j > 0,

and γ t
0 = (μ1,μ2) and γ t

j = (β1j , β2j ) for j > 0. In this notation, the objective
function becomes

f (θ) = 1
2

n∑
i=1

(
yi −

p∑
j=0

zt
ij γj

)2

+ λ2

q∑
j=1

‖γj‖2 + λ1

q∑
j=1

‖γj‖1.

Under 10-fold cross-validation, the optimal pair (λ1, λ2) occurs at approxi-
mately (5,1). This choice leads to an average of 40.1 nonzero predictors and an
average prediction error of 0.8167. For the entire data set, the number of nonzero
predictors is 44, and the training error is 0.3128. Among the 44 predictors, three
are paired female–male slopes. Thus, the preferred model retains 41 genes in all.
Among these 41 genes, 25 appear in the �1 model, and 26 appear in the �2 model
without the group penalties. For all three models, there are 20 genes in common.

In carrying out these calculations, we departed from the tack taken by Wang
et al. (2006b), who used marker genotypes rather than expression levels as pre-
dictors. Our serendipitous choice identified some genes known to be involved in
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fat metabolism and turned up some interesting candidate genes. One of the known
genes from the short list of 20 just mentioned is pyruvate dehydrogenase kinase
isozyme 4 (Pdk4). This mitochondrial enzyme, which has been studied for its role
in insulin resistance and diabetes, is a negative regulator of the pyruvate dehy-
drogenase complex. The upregulation of Pdk4 promotes gluconeogenesis. In the
coexpression network studies of Ghazalpour et al. (2005, 2006), Pdk4 was one of
the genes found in the module associated with mouse body weight. Here we find
that expression of Pdk4 is a good predictor of fat pad mass. It has been suggested
that enhanced PDK4 expression is a compensatory mechanism countering the ex-
cessive formation of intracellular lipid and the exacerbation of impaired insulin
sensitivity [Huang et al. (2002) and Sugden (2003)].

A second gene on our list is leukotriene a4 hydrolase. This enzyme converts
leukotriene A4 to leukotriene B4 as part of the 5-lipooxygenase inflammatory
pathway, which Mehrabian et al. (2005) report influences adiposity in rodents.
Other genes on our list include three involved in energy metabolism: Ckm, which
plays a central role in energy transduction; 3-hydroxyisobutyrate dehydrogenase,
which is part of the valine, leucine and isoleucine degradation pathway previously
reported to be associated with subcutaneous fat pad mass in a different mouse
cross [Ghazalpour et al. (2005)]; and the thiamine metabolism pathway gene Nsf1,
which uses an endproduct of the steroid metabolism pathway. In addition, we iden-
tified several genes with no obvious ties to fat pad mass, energy metabolism, or
obesity in general, including three riken cDNAs, Plekha8, Gloxd1, the signaling
molecule Rras, and the transcription factor Foxj3. All of these are also present in
our larger list of 27 genes ignoring sex dependent slopes. This larger list includes
another transcription factor, an olfactory receptor gene, and an adhesion molecule.
The olfactory receptor gene is particularly intriguing because it could affect feed-
ing behavior in mice.

9. Discussion. Lasso penalized regression performs continuous model selec-
tion by estimation rather than by hypothesis testing. Several factors converge to
make penalized regression an ideal exploratory data analysis tool. One is the avoid-
ance of the knotty issues of multiple testing. Another is the sheer speed of the co-
ordinate descent algorithms. These algorithms offer decisive advantages in dealing
with modern data sets where predictors wildly outnumber cases. If Fu (1998) had
written his paper a few years later, this trend would have been clearer, and doubt-
less he would not have concentrated on small problems with cases outnumbering
predictors.

We would not have predicted beforehand that the normally plodding coordinate
descent methods would be so fast. In retrospect, it is clear that their avoidance
of matrix operations and quick dismissal of poor predictors make all the differ-
ence. Our initial concern about the adequacy of Edgeworth’s algorithm have been
largely laid to rest by the empirical evidence. On data sets with an adequate num-
ber of cases, the poor behavior reported in the past does not predominate for either
version of coordinate descent.
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Although the supplementary appendix [Wu and Lange (2008)] proves that lasso
constrained �1 regression is consistent, parameter estimates are biased toward zero
in small samples. For this reason, once we have identified the active parameters
for a given value of the tuning constant λ, we re-estimate them ignoring the lasso
penalty. Failure to make this adjustment tends to favor smaller values of λ in cross-
validation and the inclusion of irrelevant predictors in the preferred model.

Better understanding of the convergence properties of the algorithms is sorely
needed. Tseng (2001) proves convergence of cyclic coordinate descent for �2 pe-
nalized regression. Our treatment of greedy coordinate descent in the Appendix is
different and simpler. Neither proof determines the rate of convergence. Even more
pressing is the challenge of overcoming the theoretical defects of Edgeworth’s al-
gorithm without compromising its speed. On a practical level, the reparameteri-
zation of Li and Arce (2004), which operates on pairs of parameters, may allow
Edgeworth’s algorithm to escape many trap points. If this tactic is limited to the
active parameters, then speed may not degrade unacceptably.

Our algorithm for grouped parameters exploits a majorization used in construct-
ing other MM algorithms. The techniques and theory behind MM algorithms de-
serve to be better known [Hunter and Lange (2004)]. Majorization approximately
doubles the number of iterations until convergence in the �2 cyclic coordinate de-
scent algorithm. Although both the original and the grouped �2 algorithms take
hundreds of iterations to converge, each iteration is so cheap that overall speed is
still impressive.

Lasso penalized estimation extends far beyond regression. The papers of Fu
(1998) and Park and Hastie (2006a, 2006b) discuss some of the possibilities in
generalized linear models. We have begun experimenting with cyclic coordinate
descent in logistic regression. Although explicit maxima for the one-dimensional
subproblems are not available, Newton’s method converges reliably in a handful
of steps. The results are very promising and will be dealt with in another paper.

APPENDIX: CONVERGENCE THEORY

Our proof of Proposition 1 splits into a sequence of steps. We first show that a
minimum exists. This is a consequence of the continuity of f (θ) and the coercive-
ness property that lim‖θ‖2→∞ f (θ) = ∞. If any |βj | tends to ∞, then the claimed
limit is obvious. If all βj remain bounded but |μ| tends to ∞, then each squared
residual (yi − μ − xt

i β)2 tends to ∞.
Selection of which component of f (θ) to update is governed by

h(θ) = min
i

min{dei
f (θ), d−ei

f (θ)}.
Although the function h(θ) is not continuous, it is upper semicontinuous. This
weaker property will be enough for our purposes. Upper semicontinuity means
that lim supm→∞ h(θm) ≤ h(θ) whenever θm converges to θ [Rudin (1987)]. The
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collection of upper semicontinuous functions includes all continuous functions and
is closed under the formation of finite sums and minima.

Every directional derivative of the residual sum of squares is continuous. Thus,
to verify that h(θ) is upper semicontinuous, it suffices to show that the coordinate
directional derivatives of the penalty terms λ|βj | are upper semicontinuous. In a
small enough neighborhood of βj �= 0, all coordinate directional derivatives of
λ|βj | are constant and therefore continuous. At βj = 0 the directional derivatives
along ej and −ej are both λ, the maximum value possible. Hence, the limiting
inequality of upper semicontinuity holds.

Any discussion of convergence must take into account the stationary points
of the algorithm. Such a point θ satisfies the conditions dej

f (θ) ≥ 0 and
d−ej

f (θ) ≥ 0 for all j . If we let μ vary along the coordinate direction e0, then
straightforward calculations produce the general directional derivative

dvf (θ) = ∑
j

∂

∂θj

g(θ)vj + λ
∑
j>0

⎧⎨
⎩

vj , θj > 0,
−vj , θj < 0,
|vj |, θj = 0.

It follows that

dvf (θ) = ∑
vj>0

dej
f (θ)vj + ∑

vj<0

d−ej
f (θ)|vj |

and that every directional derivative is nonnegative at a stationary point.
Because f (θ) is convex, the difference quotient s−1[f (θ + sv) − f (θ)] is in-

creasing in s > 0. Therefore, f (θ + v) − f (θ) ≥ dvf (θ), and if θ is a stationary
point, then f (θ + v) ≥ f (θ) for all v. In other words, θ is a minimum point. Con-
versely, it is trivial to check that dvf (θ) ≥ 0 for every v when θ is a minimum
point. Hence, stationary points and minimum points coincide.

With these preliminaries in mind, suppose the sequence θm generated by greedy
coordinate descent has a subsequence θmk converging to a nonstationary point θ∗.
By virtue of semicontinuity, we have

h(θmk) ≤ 1
2h(θ∗) < 0(A.1)

for infinitely many k. We will demonstrate that this inequality forces the de-
creasing sequence f (θm) to converge to −∞, contradicting the fact that f (θ) is
bounded below. In fact, we will demonstrate that there exists a constant c > 0 with
f (θmk+1) ≤ f (θmk) − c for all θmk satisfying inequality (A.1). The existence of
the constant c is tied to the second derivatives

∂2

∂θ2
j

f (θ) =
n∑

i=1

x2
ij

of f (θ) along each coordinate direction. Let b = maxj

∑n
i=1 x2

ij .
Now suppose that θmk satisfies inequality (A.1). For notational simplicity, let

y = θj be the component being updated, x = θ
mk

j , and s(y) = f (θ) as a function



242 T. T. WU AND K. LANGE

of θj . Provided we restrict y to the side of 0 showing the most negative directional
derivative, s(y) is twice differentiable and satisfies the majorization

s(y) = s(x) + s′(x)(y − x) + 1
2s′′(z)(y − x)2

≤ s(x) + s′(x)(y − x) + 1
2b(y − x)2.

If w = x − s′(x)
b

denotes the minimum of the majorizing quadratic, then

s(w) ≤ s(x) + s′(x)(w − x) + 1

2
b(w − x)2 = s(x) − 1

2

s′(x)2

b
.

At the minimum z of s(y) we have

s(z) ≤ s(w) ≤ s(x) − 1

2

s′(x)2

b
.

This identifies the constant c as c = 1
2b

[1
2h(θ∗)]2 and completes the proof of the

proposition.
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SUPPLEMENTARY MATERIAL

Proof of weak consistency of Lasso penalized �1 regression (doi: 10.1214/07-
AOAS147SUPP; .pdf). Our supplementary appendix demonstrates the weak con-
sistency of penalized �1 estimators. The proof is a straightforward adaptation of
the arguments of Oberhofer (1983) on nonlinear �1 regression. Since we only con-
sider linear models, the regularity conditions in Oberhofer (1983) are relaxed and
clarified.
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