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The aim of this article is to provoke a discussion concerning the
general nature of the topological closure of the set of rational
solutions of systems of polynomial equations with rational
coefficients.

INTRODUCTION

In the voluminous literature concerning rational
points, has the nature of the topological closure
(with respect to the usual real topology) of the set
of rational points of an algebraic variety in its real
locus ever been discussed head-on in any general
context?

I suspect not. For various reasons—one of which
will be given shortly—I think it might be useful to
have such a discussion, even though the state of our
knowledge concerning these matters is, at present,
primitive.

By a wvariety we will mean a reduced scheme of
finite type over a field (usually Q).

Conjecture 1. Let V' be a smooth variety over Q
such that V(Q) is Zariski-dense in V. Then the
topological closure of V(Q) in V(R) consists of a
(finite) union of connected components of V(R).

I view this conjecture somewhat in the way a
debating society, for example, might view a res-
olution, “Resolved that...”, as a proposal on the
table to be argued for or against. As will be clear
in this paper, I also took the conjecture as a fruitful
pretext for writing to a number of friends. In par-
ticular, I am very much indebted to J.-L. Colliot-
Thélene, D. Rohrlich, J.-P. Serre, J. Silverman,
and M. Waldschmidt for their bountiful help, and
for their corrections and suggestions regarding pre-
liminary versions of this manuscript.

Remark. Conjecture 1 is equivalent to asking that
the topological closure of V(Q) in V(R) be open,
or that (under the hypotheses of the conjecture) if a
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topological component contains one rational point,
the set of rational points is topologically dense in
that component. In other words, in the context of
the conjecture, rational points are “contagious” in
topological components.

If W is any variety over Q, let the nucleus of W
mean the subvariety V that is the Zariski-closure
in the smooth locus of W of the set of smooth Q-
rational points of W. Conjecture 1 then makes an
assertion about the nucleus of any variety over Q.

What types of varieties can have the property
that their rational points are Zariski-dense? The
widespread feeling about this, supported by pre-
cise conjectures due to Lang, Bombieri and Vojta,
is that the Zariski-density of rational points in a
projective variety V cannot occur unless, to put it
vaguely, “K < 07, where K is the canonical line
bundle of V. The arithmetic of some classes of va-
rieties with K < 0 has been closely studied for a
long time (e.g., abelian varieties, pencils of conics).
There have also been some recent, quite precise,
studies of the arithmetic of other classes of varieties
with K < 0. For example, see [Manin 1990; 1991]
and, in particular, Manin’s linear growth conjec-
ture for Fano varieties, that is, projective varieties
where —K is ample. (This is a particularly well-
suited case for study, because one expects lots of
rational points in this situation, and one has a
very natural height function with respect to which
these rational points can be “counted,” namely, the
height function attached to —K.) Also, see [Silver-
man 1991a; 1991b] for a recent detailed study of
the arithmetic of certain K3 surfaces.

Since the real locus of a projective variety Y over
R is, in fact, (finitely) triangulable, and since, if Z
is a given closed subvariety of Y, a triangulation
T of Y can be chosen so that a subcomplex of T’
provides a triangulation of the real locus of Z [Lo-
jasiewicz 1964; Hironaka 1975], Conjecture 1 has
the following consequence.

Conjecture 2. The topological closure of the set of
rational points of any variety over Q in its real lo-
cus 18 homeomorphic to the complement of a finite
subcomplex in a finite complex.

This conjecture implies that the topological clo-
sure of the set of rational points of any variety over
Q in its real locus has the homotopy type of a finite

complex and, in particular, it has the following con-
sequence.

Conjecture 3. The topological closure of the set of
rational points of any variety over Q has at most
a finite number of connected components.

I was led to consider the preceding conjectures
while studying the work of Matijasevic [Davis et
al. 1976], who proved, about twenty years ago, that
any listable (or, synonymously, recursively enumer-
able) subset S C Z is Diophantinely definable, in
the sense that there is a single polynomial

PS(ta‘Tla"'axn)

in Z[t, x1,...,x,) with the property that an integer
to is in S if and only if the polynomial

Ps(to,x1,...,2n)

in Z[x1,...,z,] possesses an integral zero (in the
x;’s). The celebrated effect of this result is to pro-
vide a negative answer to Hilbert’s Tenth Prob-
lem. More specifically, by considering a listable set
S C Z whose complement is not listable, one sees
that there is no machine algorithm whose input is
a general integer ¢y and whose output is an answer
to the question of whether or not Pg(to, z1,...,Zy)
possesses an integral solution.

The analogue of Hilbert’s Tenth Problem for ra-
tional rather than integral solutions is still open.

It has been suggested that one could obtain a
negative answer to Hilbert’s Tenth Problem for ra-
tional solutions (and more specifically, Matijase-
vic’s proof could be directly transported to this
case) if “the set of integers Z were Diophantinely
definable in Q”, that is, if one could produce a
polynomial

Pz<t,:L‘1, . ,.T}n)

in Q[t, x1,...,x,] with the property that a rational
number ty is a rational integer if and only if the
polynomial

Pz(to,wl, e ,:L‘n)

in Q[zy,...,x,] possesses a rational zero (in the
x;’s). (For an expository discussion of these mat-
ters, and of Julia Robinson’s theorem concerning
the definability of the integers in the rationals, see
[Flath and Wagon 1991].)

However, Conjecture 3 is in conflict with this.
The truth of Conjecture 3 would imply that Z is



not Diophantinely definable in Q. For, if a polyno-
mial of the sort Pgz(t,z1,...,x,) existed, we could
take the hypersurface W defined by its zeroes in
affine space A"T! (coordinatized by t,x1,...,z,),
and consider the projection 7 : W — A! given
by n(t,x1,...,2,) = t. Then, directly from the
definition of Pz, we would have

T(W(Q) =Z C Q=ALQ).

Denoting by W the topological closure of W (Q)
in W(R), we would then have 7(W) = Z as well,
since Z is discrete in R. It would follow that W
has an infinite number of connected components,
contradicting the assertion of Conjecture 3.

1. COMPARISON OF DENSITY CONDITIONS

It is natural to compare the question of openness
of the closure of the set of rational points in the
real locus with other “adelic” conditions of “open-
ness” and of density. I am very thankful to Colliot-
Thélene for his detailed letter to me, in which he
explained what is known in various cases about
these conditions, and from which I will be exten-
sively quoting in subsequent paragraphs.

There are three other conditions of density am-
ply discussed in the literature:

A. Weak approximation. We say that a smooth
variety X over a global field k£ has the weak
approzimation property (over k) if the diagonal
imbedding X (k) — [] X (k,) is dense, where v
runs through all places of the global field k, and
k, is the completion of k at v.

B. The condition that the Brauer—Manin ob-
struction is the only obstruction to weak
approximation. Let A denote the adele ring
of a global field k. Let X be a smooth projective
variety over k. Let Br(X) denote the Brauer
group of the scheme X ;. Local class field the-
ory enables one to define a natural (continuous)
right-linear pairing

v:X(Ag) x Br(X) - Q/Z

[Colliot-Thélene and Sansuc 1987]; by global
class field theory, the restriction of the pairing
v to X (k) x Br(X) is trivial. Let X (Ay)P de-
note the “left kernel” of ~, given the topology
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it inherits as a subspace of X(Ay). That is,
X (Ay)Pr equals

{z € X(Ag) | y(x,b) =0 for all b € Br(X)}.
The image of the natural injection
X(k) = X(Ag)

is then in X (A)B*. If the image of the mapping
X (k) < X(Ay)B"is dense in X (A)B", one says
that the Brauer—Manin obstruction is the only

obstruction to weak approximation for X over
k.

C. Weak-weak approximation (over k). Here
one requires merely that there be a finite set of
places T of k such that for all finite sets of places
S of k, disjoint from 7', the diagonal imbedding

X(k) = ] X(ko)
veS

is dense.
Let’s compare these conditions with

D. The S-openness condition. For a fixed non-
empty finite set S of places of k, the topological
closure of the image of the diagonal imbedding

X(k) = T X (k)
veES

is open in [],cg X (ky).

Visibly, A implies C, which, in turn, implies D
for any finite nonempty set of places S disjoint from
T. If X is smooth and projective, A implies B.

Since the pairing ~ is continuous and the range
Q/Z of v is discrete, one sees that B implies D if
S is any finite nonempty set of archimedean places
of k; in particular, if £ = Q, condition B implies
that the closure of the set of Q-rational points of
X is open in the real locus of X, and therefore that
Conjecture 1 is valid for X.

In this regard, it should be remarked that one
cannot replace R by Q, in Conjecture 1. It is
not the case that if X is a smooth variety over Q,
the Zariski-density of X(Q) in X guarantees that
the topological closure of X(Q) in X(Q,) is open.
For an explicit example, taken from [Gordon and
Grant 1991], see the remark following Conjecture
5 in Section 7.

In the remainder of this paper, we will briefly
sample the implications of Conjecture 1 for some
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varieties and produce a few not entirely trivial ex-
amples where the conjecture has been or can be
verified either “unconditionally” or at least condi-
tionally upon some more standard conjectures than
Conjecture 1 (curves, some conic bundles over P!,
smooth cubic hypersurfaces in P, smooth inter-
sections of two quadrics in P?, some elliptic sur-

faces, some abelian varieties, some K3 surfaces).

2. CURVES

Conjecture 1 is true for curves. Without loss of
generality, one can restrict to smooth proper con-
nected curves V; by Mordell’s conjecture, proved
by Faltings, V is of genus < 1 if it satisfies the
hypotheses of the conjecture. Both cases, genus 0
and genus 1, are easily resolved (the latter because
the topological closure of an infinite subgroup in a
one-dimensional Lie group is open).

3. CONIC BUNDLES OVER P'

In [Colliot-Thélene and Sansuc 1982] there is a
careful discussion of much of what is known (ei-
ther unconditionally or dependent upon Schinzel’s
hypothesis) concerning general varieties of the form

Qi(xi,la s 7xi,ni) — -Pi()\la s 7)\71)7

fori=1,...,r, where the Q);’s are quadratic forms
in the independent variables x;j, each of rank >
2, and the P;’s are polynomials in the \’s with
rational coefficients. Among these varieties and,
more specially, among the family of conic bundles
over P!, there is a collection of interesting cases
supporting Conjecture 1.

First consider this somewhat older example due
to Swinnerton-Dyer [1962]: the bundle of conics
over P! (parametrized by the variable \) an affine
piece of which is given by

2?4 y? = (4 -T)(N\? -2). (1)

Swinnerton-Dyer shows that, of the two connected
components in its real locus, one possesses no ratio-
nal points, and the other has a dense set of them.

More generally, as Colliot-Thélene has explained
to me, the following results have been proved.

Theorem. 1. Condition B of Section 1 (over a num-
ber field k) holds for any conic bundle X over
P}k with mo more than four geometric degener-
ate fibers.

2. Condition B (over a number field k) holds for
any conic bundle X over P}k with five geometric
degenerate fibers; it holds for any smooth cubic
surface possessing a line rational over k; and it
holds for a smooth intersection of two quadrics
in P4 with a k-rational point.

For a proof of part 1, see [Colliot-Théléne et
al. 1987] for the special case of Chatelet surfaces
and [Colliot-Thélene 1990, Theorem 2] for all other
cases. Compare also the discussion of this in [Col-
liot-Thélene 1986] and [Colliot-Thélene and Sko-
robogatov 1987].

For a proof of part 2, see [Salberger and Sko-
robogatov 1991].

It follows from this theorem that Conjecture 1
is true for these varieties; but one can establish
Conjecture 1 for some of them by a simpler route.
Specifically, for a discussion of Conjecture 1 in the
case of smooth cubic surfaces, see Section 4.

As for conic bundles over P! with more than five
degenerate fibers, I am also thankful to Lan Wang,
who has communicated to me the following explicit
example: The real locus of the conic bundle

22+ y? = (AN —T)(N2 = 2)(2)\2 - 3)

has three connected components, and its set of ra-
tional points is contained and is dense in exactly
one of them.

4. SMOOTH CUBIC HYPERSURFACES

Here is an idea of Swinnerton-Dyer (going back, at
least, to 1977: see [Colliot-Thélene 1977]) that was
explained to me by Colliot-Thélene. It is a strat-
egy to show that, for certain smooth Q-unirational
varieties X /q, the topological closure of the set of
Q-rational points of X is open in the real locus of
X. You first establish the existence of some open
set V in the real locus in which rational points are
dense, and then, for any connected component C' of
X (R) containing one Q-rational point, you “prop-
agate” the rational points of V' over C' by applying
enough birational Q-automorphisms to V.

This works, for example, in the case of smooth
cubic hypersurfaces:

Theorem (Swinnerton-Dyer). Suppose that X/Q 5 a

smooth cubic hypersurface in PN, for N > 3. Then
the closure of the set of Q-rational points of X is



open in the real locus of X . (In particular, Conjec-
ture 1 holds for X, and in fact X satisfies condition
D of Section 1—the S-openness condition—for any

finite set of places of Q.)

Proof: For a proof, phrased only for smooth cu-
bic surfaces in P? but valid, mutatis mutandis, for
smooth cubic hypersurfaces of dimension at least
two, see [Colliot-Thélene 1977]. Here is a sketch of
it.

One may first assume that X(Q) is nonempty,
because otherwise we would be done. It then fol-
lows from a result of Segre [Manin 1986, Chap.
IV, §87.8 and 8.1] that X is Q-unirational, and
consequently there is a mapping ¢ : PN~ & X
defined over Q, étale on some open nonempty set
of PY=1(R). Since PY71(Q) is dense in PN ~}(R),
we see that there is, indeed, a nonempty open sub-
set V' C X(R) such that X(Q) NV is dense in V.
Fix such a V. For a point P in X (R), define the
V-opposite set V (P) as the set of points @ € X(R)
such that

1. P # @, and the line PQ C PY is neither con-
tained in nor tangent to X (R), and

2. the point of PQ N X (R) distinct from P and @
(there is exactly one such point, by the previous
condition) lies in V.

Since X is smooth, one can show that V' (P) is
open and nonempty for any P € X (R). Note that
conditions 1 and 2 are symmetrical in P and @, and
therefore we have the symmetry property Q € V(P)
if and only if P € V(Q).

Lemma 1. For P € X(R), there is an open neigh-
borhood N(P) C X(R) of P such that V(P) N
V(P') £ 0 if P' € N(P).

Proof: Fix a point Q € V(P) and take N(P) =
V(Q). Then, by the symmetry property, N(P)
contains P and hence is an open neighborhood of
P. Again by the symmetry property, P’ € N(P)
implies @ € V(P’) and therefore V(P) N V(P')
contains . O

Lemma 2. If P € X(Q), the set of Q-rational points
in V(P) is dense in V(P).

Proof: This follows from the fact that the set of
Q-rational points in V is dense in V, and that if
we are given a line in PV whose intersection with
X cousists of exactly three points, two of which are
Q-rational, the third is also Q-rational. O
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Now let P be in the topological closure of the
set of Q-rational points of X. We conclude the
proof of the theorem by showing that there is an
open neighborhood U of P in which the Q-rational
points are dense. Let N(P) be as in Lemma 1, and
let P’ be a Q-rational point in N(P). By Lemma
2, the Q-rational points are dense in V(P'), and by
Lemma 1, V(P) NV (P’) is nonempty (and open).
Take @ as a Q-rational point of V(P)NV (P’) and
put U = V(Q). By the symmetry property, U
contains P (and is therefore an open neighborhood
of P). By Lemma 2, the Q-rational points are
dense in U. O

Colliot-Thélene has remarked that, despite the
preceding result, we have little further information
about the “density properties” of k-rational points
of smooth cubic hypersurfaces, even of high dimen-
sion. For example, do smooth cubic hypersurfaces
of sufficiently high dimension satisfy condition C
of Section 1, weak-weak approximation? Our ig-
norance here contrasts with what is known about
smooth complete intersections of two quadrics, as
shown in the next section.

5. SMOOTH COMPLETE INTERSECTIONS OF TWO
QUADRICS IN PN

Theorem. [Colliot-Thélene et al. 1987; Colliot-Thé-
lene and Skorobogatov 1992] Let X, be a smooth
complete intersection of two quadrics in PN, for
N > 5. If X (k) is not empty, X satisfies condi-
tion A of Section 1, “weak approzimation” over k.
The same result holds if X is the smooth part of
a singular complete intersection of two quadrics in
PV and is not a cone.

6. ELLIPTIC SURFACES

For simplicity, we concentrate here on the case of
pencils over Q of (generically smooth) curves of
genus one possessing (at least one) Q-rational sec-
tion. Fixing such a Q-rational section as the zero-
section, we can say that, for all but a finite number
of points 7 € P}(C) = C U {oo}, the member of
this family obtained by specializing to r is an el-
liptic curve, which we will denote by FE,..

Conjecture 4. Suppose {E,}, is a family of elliptic
curves as above. Then either
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(a) the (specialized) elliptic curve E, has Mordell-
Weil rank equal to zero for all but a finite num-
ber of elements r € Q, or

(b) the Mordell-Weil rank of E, is positive for a
dense set of rational numbers r.

The only example I know of (a) is the banal case
of a constant family, where the constant fiber el-
liptic curve has Mordell-Weil rank zero.

Proposition. Conjecture 1 implies Conjecture 4.

Proof: Let S denote the minimal regular model
of our elliptic surface, and let 7 : S — P! de-
note the projection. If (a) does not hold, the set
of Q-rational points is Zariski-dense in S. The
connected component ¥ of S(R) that contains the
real locus of the zero section then contains one Q-
rational point (in fact, ¥ contains at least a projec-
tive line of them). By Conjecture 1, the Q-rational
points of X are then dense in 3.

Now suppose that (b) does not hold. This im-
plies that there is a nonempty open subset U C
P!(R) such that U contains none of the singu-
lar members of our family and the Mordell-Weil
group of F, is finite for » € U N Q. Now consider
Yo = X N7 YU), which is an open subset in 3;
Y is the union of the connected components con-
taining the identity in E,(R) for all » € U. Since
the Mordell-Weil groups of E,. are finite, there is a
uniform bound B (= 16) for their order (by [Mazur
1976]), and consequently the Q-rational points are
not topologically dense in Y. This contradicts the
conclusion of the preceding paragraph; therefore

(b) holds. a

To get some perspective on Conjecture 4, con-
sider again equation (1) of Section 3, but this time
consider it as a family of elliptic curves E, (in
the variables y and \) parametrized by the vari-
able x. One sees directly that for a certain inter-
val of values of x, the elliptic curve E, has two
real components, and by the result of Swinnerton-
Dyer already quoted, there are no rational points
on the far components of the real locus of the ellip-
tic curves F, for these values of x, whereas the set
of rational points on the connected component of
the elliptic surface containing the identity section
(at c0) is dense in that component.

A particularly simple, but not entirely trivial,
type of elliptic pencil to consider is that of a twisted
constant family Fy, given by

where g3(z) € Q[z] is a monic cubic polynomial
with distinct roots, for D(t) € Q(t). Here one
can try to analyze the situation by making use
of the implications of the Birch—Swinnerton-Dyer
conjecture concerning change of the parity of the
rank of Mordell-Weil of different members of the
family. For this, the reader should consult David
Rohrlich’s recent preprint [Rohrlich 1992] concern-
ing the variation of the “root number” in families of
elliptic curves, and Rohrlich’s Theorems 1-4, which
bear directly on Conjecture 4. We quote his The-
orems 2 and 3 below. Let TF denote the set of
t € Q such that F; is smooth and has root number
+1. The Birch—-Swinnerton-Dyer conjecture would
imply that if t € T or t € T, the parity of the
rank of the Mordell-Weil group of E; is even or
odd, respectively.

Theorem. [Rohrlich 1992, Theorem 2] One of the
two mutually exclusive alternatives holds:

(a) Tt and T~ are both dense in R.
(b) One of the sets T* is {t € Q | D(t) > 0}, and
the other is {t € Q| D(t) > 0}.

Furthermore, if E is given, there exists a D(t)
such that (b) holds and such that the number of
sign changes of f on R exceeds any preassigned
value. On the other hand, there exists D(t) such
that (a) holds if and only if E does not acquire ev-
erywhere good reduction over any abelian extension

of Q.

By elementary arguments (and dependent upon
no conjecture), Rohrlich proves the following the-
orem.

Theorem. [Rohrlich 1992, Theorem 3] With nota-
tion as above, suppose that D(t) is quadratic. If
there exists t € Q for which D(t) # 0, and the
Mordell-Weil group of E; has positive rank, then
the set of all t such that the Mordell-Weil group of
E,; has positive rank is dense in R.

It follows then that Conjecture 4 holds if D(¢) is
of degree < 2. Can elementary arguments be used
to settle the case where D(t) is of degree 37



7. SOME ABELIAN VARIETIES

Conjecture 1 implies the following conjecture for
simple abelian varieties over Q.

Conjecture 5. Let A be a simple abelian variety over
Q whose Mordell-Weil rank is positive. Then the
topological closure of A(Q) in A(R) is open (equiv-
alently, it contains A(R)?, the connected compo-
nent of the identity).

Conjecture 5 can be restated in terms of the re-
lationship between the real periods of the abelian
variety and the “Log” of Q-rational points (“Log”
being the multivalued inverse mapping to the ex-
ponential mapping Exp : T(R) — A(R), where T
is the tangent space to A). Consider, for example,
the case where the rank of A(Q) is 1. Let Q be the
kernel of Exp : T(R) = A(R), let wq,...,wy be a
basis for 2, and let w € T'(R) be such that Exp(w)
is a Q-rational point of infinite order. Write w as a
linear combination of the w;’s with real coefficients,

W = Triwi + rowg + - - + Tgwy,

for r; € R. Then (in the case where A is simple
and A(Q) is of rank 1) Conjecture 5 is equivalent
to saying that the real numbers 1, ry,...,ry are
Q-linearly independent.

I asked Michel Waldschmidt what was known, or
could be proved, in the direction of Conjecture 5.
He replied that such a conjecture is indeed reason-
able from the point of view of the theory of tran-
scendental numbers, adding that Conjecture 5 is
reminiscent of the famous Four Exponentials Con-
jecture (concerning usual logarithms of nonzero al-
gebraic numbers), which reads

log a1 log ay # log as log avg

if loga/logas and logaj/logas are irrational.
In this exponential case, only a weaker result is
known, namely the Six Exponentials Theorem: If
ai,...,qq are algebraic numbers, and

log a1/ log a = log a3/ log ey = log a5/ log avs

is irrational, the three numbers log ay, log a3 and
log as are Q-linearly dependent.

Toward Conjecture 5, Waldschmidt has proved
the following theorem.

Theorem. [Waldschmidt 1991] Let A be a simple
abelian variety over Q of dimension d whose Mor-
dell-Weil rank is at least d*> —d+ 1. Then Conjec-
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ture 5 holds for A, that is, the topological closure
of A(Q) in A(R) is open.

Moreover, by using arguments of D. Roy, Wald-
schmidt can prove that if the rank of A(Q) is at
least d?, there is a single rational point P € A(Q)N
A(R)" with the property that the subgroup gener-
ated by P is dense in A(R)? [Waldschmidt 1991].

Remark. The p-adic analogue of Conjecture 5 (and
hence also of Conjecture 1) is false, since given any
simple abelian surface A over Q whose Mordell-
WEeil rank is equal to 1, the topological closure of
A(Q) in A(Q,) is a p-adic Lie group on one pa-
rameter and therefore is not open in A(Q,). Here
is a nice explicit example of this, taken from [Gor-
don and Grant 1991, §4]—in fact, the only example
currently known to me. Let C' be the curve

y? =2z —1)(z — 2)(z — 5)(z - 6),

and let A q denote its jacobian. Then, by [Gordon
and Grant 1991, Theorem 2], A(Q) is isomorphic
to Z x (Z/2Z)*.

(The method of Gordon and Grant involves a
computer search where 65536 separated cases are
examined. It would be useful to develop a more
conceptual descent argument to cover this and per-
haps a number of other abelian varieties; it would
also be interesting to buttress the descent argu-
ment with a check that the L function of A has
a simple zero at s = 1, in accord with the Birch—
Swinnerton-Dyer conjecture.)

The abelian variety A is simple over Q. This is
because (i) all of its 2-torsion is Q-rational, and
(ii) the order of A(Fi1) is 176 [Gordon and Grant
1991]. Since A has good reduction at 11, if A
were isogenous to a product of elliptic curves over
Fi1, (i) would mean that each of the factor elliptic
curves would have some nontrivial 2-torsion that is
F;-rational, and (ii) would mean that one of these
factors would have an Fij-rational point of order
11. This factor then would have at least 22 Fi;-
rational points, more than 1+ 11 + 2v/11, which is
a contradiction.

8. SOME KUMMER SURFACES

We begin with a brief description of the basic ge-
ometry underlying Kummer surfaces. Let A,q be
an abelian surface, and let W = W4 be its associ-
ated Kummer surface, that is, if W is the quotient
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of A under the action of the involution o — —a,
then W is obtained from W by blowing up (once)
the image in W of each of the sixteen 2-torsion
points of A. The variety W is proper and smooth
and defined over Q. If x is any quadratic Dirich-
let character, and A, /Q is the abelian variety A
twisted via the character y, we have a canonical
identification W4 = Wy . For any two quadratic
characters x; and x2 of the same sign (that is,
satisfying x1(—1) = x2(—1)), we may identify the
real loci Ay, (R) = A\,(R). In particular, if x is
a quadratic character such that x(—1) = 1, then
Ay (R) = A(R); we shall also use the abusive nota-
tion of A(iR) for the locus of points A(R) where x
is any choice of quadratic character with x(—1) =
—1. A(R) and A(iR) have the same number of
connected components, namely, either 1, 2, or 4
(one-quarter of the number of real 2-torsion points
in A).

If we define A*(R) as the complement in A(R)
of the 2-torsion points, and likewise A*(iR), the
topological closure in W4 (R) of the image of each
connected component of A*(R) or of A*(iR) con-
sists, topologically, of the complement in a two-
sphere of the union of the interiors of four disjoint
closed discs, a space that I like to think of as a
plumbers’ cross, or four-way pipe join:

We call each of these crosses, viewed as a closed
submanifold (with boundary) in W4(R), a com-
partment of Wa(R). An even compartment is the
image of a connected component of A*(R), and an
odd compartment is the image of a component of
A*(iR). The compact closed two-manifold W4 (R)
is connected and is a union of v compartments
(whose interiors are mutually disjoint, even com-
partments being joined to odd compartments), for
v =2, 4 or 8, that is, one-half the number of real
2-torsion points in A. The neutral compartments
are the (two) compartments containing the blowup
of the image of the identity element in A.

Multiplication by n € Z in A induces a rational
mapping @, : Wa — W4 on the Kummer surface
(defined over Q), since it commutes with multipli-
cation by —1. The rational mapping ¢, is regu-
lar on the complement of 2n-torsion points. If n
is odd, the restriction of ¢, to W4(R) preserves
compartments (that is, if K is a compartment, and
K' C K is the subspace on which ¢, is defined,
then ¢,(K') C K); if n is even, ¢, brings all of
Wa(R) to the two neutral compartments.

An elementary engine for the production of lots
of rational points on the Kummer surface W is the
following:

(a) Find some curve X of (geometric) genus 0 in
W that is the image of P}Q and that isn’t one of
the exceptional curves obtained by the blowing-
up process;

(b) apply to X the rational mappings ¢,, for n €
Z, to obtain a family X,,, for n € Z, of rational
images of P}Q.

Definition. For X as in (a), let X € W(R) denote
the topological closure in W (R) of the union of ra-

tional points U, cz Xn(Q) in W(Q).

Since X, (Q) is dense in X, (R), it follows that
X is also the topological closure of |J,,cz Xn(R) in
W(R).

Lemma. For any rational curve X as in step (a)
above, either

(i) the inverse image of X in A is an elliptic curve,
or

(ii) the subspace X C W(R) is a union of com-
partments.

Proof: In particular, we will show the equivalent
statement that if any of the real curves X,(R)
meets the interior of any compartment £ C W(R),
then £ C X. We suppose, with no loss of gen-
erality, that n = 1 and that K is an even com-
partment. Let Y C A be the inverse image of X.
Since X (R) meets the interior of an even compart-
ment, it follows that Y (R) meets some component
of A*(R). In particular, Y(R) is nonempty. Let
Y,, for n € Z, denote the image of the curve Y
under the endomorphism of the abelian variety A
given by multiplication by n. Then, for any n € Z,
Y,, is a (possibly reducible) curve, defined over Q,
imbedded in A in such a manner that it is sta-
bilized by the involution given by multiplication



by —1 in the abelian variety A, and such that
its projection to W identifies its quotient (under
this involution) with X,. To prove our lemma, it
suffices to prove that the topological closure U of
Unez Yn(R) in A(R) is open. To prepare for this,
the reader might be amused to first prove that if
(G is a compact, two-dimensional, commutative Lie
group and U C G is topologically closed and closed
under multiplication by n € Z, then U is a finite
union of closed subgroups in GG. Then, returning
to our U (the topological closure of |J,cz Yn(R)
in A(R)), there are two possibilities: either U is
open in A(R), in which case we are done; or U
is contained in a finite union of Lie groups of di-
mension one. In the latter case, Y (R) has infinite
intersection with infinitely many distinct translates
of itself, which can happen only if Y is an elliptic
curve. (]

Now suppose we have a smooth curve C of genus
two defined over Q. Let u : C'— C denote the hy-
perelliptic involution. Let A q denote the jacobian
of C, and W = W its associated Kummer surface.
The action of u on C induces an involution on S*C,
the symmetric square of the curve C; if we denote
by S?C/u the quotient surface under the involu-
tion of S2C that sends (a,b) to (u(a),u(b)), then
S2C/u is defined over Q. We have a natural map-
ping 7 : C x C — S?C/u, and a birational map
(over Q) B : S2C/u — W whose composition with
n sends (a,b) € C' x C to the image in W of the lin-
ear equivalence class of the divisor (a) — (b) on C,
which has degree zero. The birational map 3 comes
from an actual morphism from S?C/u to W, the
quotient of A under the action of multiplication by
—1. This latter morphism can be seen to be regular
off the diagonal curve in S?C/u, and it sends that
diagonal curve to the image of 0 € A in W. We
also have an involution o of S?C/u (defined over
Q) induced from the involution (a,b) — (a, ub) on
C x C. The quotient of S2C/u by the action of
this involution ¢ is easily seen to be isomorphic
to the symmetric square of the genus-zero curve
C/u, and hence to be isomorphic (at least over C)
to a rational surface. Conjugating the involution
o by the birational map ( yields a rational map
T : W — W of order two, defined over Q (“ratio-
nal” in the sense that it is not everywhere defined
as a morphism). This exhibits the map W, at least
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birationally, as a double cover of a surface that,
over C, is birationally isomorphic to P2.

We now turn to some applications of the lemma
just proved. First consider the morphism C' — W
given, on a suitable affine open set, by the compo-
sition

C4LCxC—82C/ulw,

where ¢ is the inclusion C' — C' x C' given by the
formula t(a) = (a,ua). Denote by X the image
of C' in W under this composition. Then X is
isomorphic to the quotient curve C'/u. The curve
C/u is isomorphic over Q to P!, an isomorphism
being induced by the rational function f = wi/ws
on C, where wy,ws are two linearly independent
differentials of the first kind on C, each defined
over Q. Hence the curve X is isomorphic over Q
to P'. We may therefore apply the lemma to X C
W, in particular, it is alternative (ii) that holds,
giving us that the Q-rational points of W lying in
the compartments whose interiors meet X (R) are
dense in those compartments.

Now suppose that ¢y € C' is a Q-rational Weier-
strass point, and consider the morphism which, on
an affine open, is given by the composition

choxosstoulw,

where the morphism j is given by j(a) = (a,cp).
Denoting by X, the image of C' under the above
composition, we are again in a position to apply
our lemma, the conclusion being that the Q-ra-
tional points of W lying in compartments whose
interiors meet X, (R) are dense in those compart-
ments.

If v is the number of fixed points of the involu-
tion u on C' that are defined over R (that is, v =
0, 2, 4 or 6, the number of real Weierstrass points
of C'), one can compute in a straightforward man-
ner the following quantities: the order a of the
group of real 2-torsion in A; the number x of dis-
tinct compartments K of W(R); and (if v > 0) the
number 7 of compartments of W(R) whose interi-
ors meet X, (R), for ¢y any real Weierstrass point.
The results are:
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As a sample of what can be obtained from the
preceding discussion, consider the following corol-
lary.

Corollary. Let g5(x) € Q[x] be a monic quintic poly-
nomial with rational coefficients and distinct roots,
and with the further property that not all of its roots
are real. Let C' denote the smooth projective model
attached to the affine plane curve y* = gs(x), and
let W/q be its associated Kummer surface. Then
the Q-rational points of W are dense in the real

locus of W.

Proof: Having written our genus-two curve C as
above, we have insured that the unique point at
oo is a Q-rational Weierstrass point, and therefore
that v = 2 or 4. Taking ¢g = oo, we see from
the preceding table that X., meets the interior of
every compartment of W(R), and therefore, by the
lemma, the Q-rational points of W are dense in

W (R). 0

One case that eludes this kind of analysis is when
all the roots of gs5(z) are real and none are in Q.
In this case, we have shown by the preceding dis-
cussion that there are eight compartments, six of
which are densely filled with rational points. What
about the other two compartments? (This case
would seem to yield a clean test case of Conjec-
ture 1.)

9. SOME OTHER K3 SURFACE EXAMPLES

Given a K3 surface V or, for that matter, any vari-
ety possessing an infinite group of automorphisms
A acting on it (defined over Q), it is natural to
consider the structure of orbits of rational points
under the action of A. This would suggest that one
try to obtain, beforehand, some understanding of
the action of A on the real locus. An elegant spe-
cial case in which it is tempting to do this is for
the 18-dimensional family of K3 surfaces, originally
considered in [Wehler 1988], and taken up again by
Silverman [1991a], who studies Q-rational points
on such K3 surfaces. Silverman develops an arith-
metic theory surprisingly analogous in format to
the arithmetic of abelian varieties.

A Wehler K3 surface is a smooth surface S con-
tained in P2 x P2 given by the intersection of two
effective divisors, one of bidegree (1,1), and the
other of bidegree (2,2). The projections of S to
each of the two factors P? are each of degree 2, and

therefore each projection determines an involution
of S. Let G denote a subgroup of automorphisms
of S generated by these two involutions. The group
G is shown to be the free product of the two cyclic
groups of order 2 generated by the two involutions
[Wehler 1988]. Silverman has begun some numer-
ical studies of the dynamics of the action of this
group G on the two-manifold of real points of S.

As a specific numerical example, Silverman takes
for S the locus of common zeroes of the form

L(x,y) = z1y1 + w2y2 + 11

on P? x P? of bidegree (1,1), and of the “randomly
chosen” form @ of bidegree (2,2) explicitly given
in [Silverman 1991a, §5].

Starting with the Q-rational point

P = ([12,1,-20].[2, —4, 1])

Silverman plotted two-dimensional projections of
the orbit of P under the action of G. The picture
reproduced below, courtesy of Curt McMullen, is
of this same orbit, taken to 5000 iterations and
projected onto the (x1,x2)-plane (the range shown
is =5 < z1,22 <5). The two empty regions are
those not in the image of the real locus.

Silverman also suggested doing numerical stud-
ies of the dynamics in K3’s where the automor-
phism group is even richer; for example, consider
a smooth surface S given by a form of tridegree
(2,2,2) in P! x P! x P!, The surface S is a K3



and projects as a double cover to each of the three
P! x PUs as a result of deleting a factor in P! x
P! x P!, This gives three involutions on S, which
generate a free product of three cyclic groups of
order 2.
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