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1. Introduction

For ethical reasons, or because of practical difficulties or impossibilities, many
questions concerning the effect of a ‘treatment’ (a medical treatment, a state
intervention, etc.) on a population cannot be studied experimentally—i.e. by
assigning different forms of the treatment to virtually identical individuals, or
by assigning different forms of the treatment randomly to different individuals,
and then determining the treatment effect by comparing individuals who have
undergone different forms of treatment with respect to some ‘response’ (e.g.
survival time following a medical treatment). Instead, such questions have to be
studied by means of observational data, namely of observations made on individ-
uals who by their own volition or through the vicissitudes of life happen to get
certain forms of the treatment. Since the characteristics or attributes of these
individuals (their age, sex, economic status, health, etc.) usually contribute to
determine their responses to treatment as well as the treatments assigned to
them, individuals undergoing different forms of treatment generally fail to be
comparable enough for it to be possible to extricate the differences in their re-
sponses that are due to treatment from those that are due to differences in their
characteristics. This confounding of effects due to treatment with effects due to
individual characteristics, which is a result of the inability to control the treat-
ment assignment and of the impossibility of manipulating the characteristics of
individuals, is the main obstacle to the drawing of valid conclusions about the
existence and magnitude of a treatment effect from observational data. While,
for example, in an experimental study involving a medicine and a placebo the
effect of the medicine is easily estimated by subtracting the average response
in a placebo group from the average response in a treated group—because,
just before the trial, the two groups are statistically indistinguishable—in an
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observational study this procedure will normally lead to biased estimates and
conclusions.

Awareness of the problem of confounding and the use of analytic methods
to circumvent it go back at least to the 19th century; the books by Freedman
[9, 10] and Rothman [30, 31], for instance, sketch some of the historical develop-
ments connected with observational studies and describe classical examples of
analyses—most of which, interestingly, required very little statistical theory—
based on observational data. In addition to the classical method of stratification,
there exist by now a number of more or less well-established statistical methods
and underlying models designed to ‘control for confounding’ and which are po-
tentially useful for the analysis of observational data. Expositions and outlines
of these models and methods, from varying standpoints and at various levels
of detail, can be found in a number of books and articles, among which we
may single out those of Rosenbaum [26, 27], Rubin [33], Pearl [20, 21], Imbens
and Rubin [15], Imbens [14], and Stuart [38]. Despite this, however, when we
decided to learn the newer methods, in particular those based on the propen-
sity score, we have found no single reference that was simultaneously concise,
self-contained and uniformly clear. Moreover, we realized that our sources con-
tained a couple of misconceptions, or at least ambiguous statements,1 that few
of them managed to conform to mathematical usage throughout, usually to the
detriment of clarity,2 and that some of the assumptions under which they pre-
sented the methods could be weakened and clarified.3 Finally, we saw that there
was a lack of consensus, which sometimes led to disputes, concerning the cor-
rectness or superiority of this or that approach.4 This is somewhat surprising
because, provided one avoids stepping too far into the treacherous ground of
‘causality’—which one can afford to do when describing the methods, though
not when applying them—, there is relatively little ‘theory’ to talk about (just
a few central ideas needed to understand a few methods) and the mathematics
is of undergraduate level.

The present work represents an attempt to provide a concise and essentially
self-contained exposition of certain models and methods which we think are
potentially useful for the analysis of observational data, and to illustrate some
aspects of their application—an attempt that, hopefully, will not contribute a
substantial share of obscurities, misconceptions, errors or biases. Although for

1For example, about the responses having to be assumed constant, about their being
constant under the hypothesis of no treatment effect, or about ‘how easy’ it is to get accurate
estimates of the propensity score.

2For example, confusing numerical variables with random variables, or using the same
symbol to denote simultaneously a set function, a function of one variable, and a function of
several variables.

3For example, the assumption that the treatment assignments are independent in the
derivation of conditional tests is unnecessary, and the basic assumptions that make it possible
to ‘correct for confounding’ as well as the definition of treatment effect are best formulated
in terms of random variables rather than in terms of distributions, as Pearl [20, 21] has done
(and has been arguing for), though in our opinion not to the same extent that we do here.

4See, for example, the exchange initiated by Shrier’s letter [35] and pursued in Pearl [22]
and elsewhere, and the claims or implications about estimators weighted by propensity scores
(e.g. [19]).
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the most part we have been guided by Rosenbaum [26], our presentation of
the basic model for observational data in section 2 and of methods of testing
and estimating a treatment effect in sections 3 and 4 contains original elements
and it simplifies, generalizes and clarifies some results. A substantial portion of
the article—sections 5 and 6 and the many appendices with figures—are de-
voted to the illustration of the methods of analysis with simulated data and
to the description of the model used for simulation. We thought it very im-
portant to show the methods at work in some detail, to point out pitfalls and
emphasize certain necessarily subjective aspects of the statistical analyses, for
which purposes it seems best to use data simulated from a model that is nei-
ther completely unrealistic nor overly complicated. On the other hand, in our
illustrations we have not attempted to use, nor purport to use, ‘optimal’ pro-
cedures of any kind; that would have been futile in an area where the least of
all problems is lack of optimality. In particular, we do not consider methods
based on parametric models, which may be optimal when the correct model for
the observational data is known but are seldom justifiable in ‘causal inference’
problems, and we also do not consider estimation methods such as ‘propen-
sity score weighting’, which may be more efficient in certain cases but whose
virtues are far from being pacific—but we do offer occasional comments on these
methods.

There is one aspect in which we certainly fare no better than other authors—
that of realism. Indeed, we do not mention nor provide ‘real-life’ examples.
In an article that aims to explain well-known methods and their workings as
clearly as possible there is plenty of justification for that. Moreover, as demon-
strated by Freedman [9, 10], and despite the optimism shared by many au-
thors (see, for example, the conclusions of Imbens [14] and the explanations
of Pearl [21] for the yet unfulfilled potential of his methods), ‘the number of
successful applications [of the methods described here and in the books and
articles cited above] is at best quite limited’. This is not hard to understand:
While the ‘theory’ is more or less well-established, its application can be ex-
tremely difficult, if not altogether impossible. In fact, the theory is readily
applied—even if only to show that no definite conclusion can be drawn from a
given data set—provided one knows which confounders must be ‘corrected for’
and provided the truly indispensable confounders are represented in the data
set. But these provisions, in turn, presuppose the existence of some scheme—
a ‘causal diagram’ or ‘structural model’ like those studied by Pearl [20, 21]
and co-workers—to describe with a sufficient degree of realism the main ele-
ments and their interrelations appertaining to the question being investigated.
Unfortunately, in most investigations we have met or read about—especially,
and perhaps tellingly, those from areas that seem particularly anxious to use
statistical methods—knowledge of the subject matter is often insufficient for
the construction of a plausible causal scheme. The reader who looks for ap-
plications will find a good presentation of some realistic ones in [26, 27], for
example; for our part, we hope that by helping to simplify and clarify the pre-
sentation of the methods we may contribute a little to their realistic applica-
tion.
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2. Basic Model

We regard a set of observational data as a sample (not necessarily a random
sample) of N random vectors (X1, T1, R1), (X2, T2, R2), . . . , (XN , TN , RN ) , the
i-th random vector (Xi, Ti, Ri) being composed of a vector Xi of covariates
taking values in R

d, a treatment assignment Ti with a distribution on N0, and
a response Ri taking values in R. Each such random vector is thought of as
pertaining to a ‘unit’ or ‘individual’ whose treatment assignment is partly de-
termined by (is associated/correlated with) its covariates and whose response
may be determined in part by the treatment assignment. For example, in a
study to investigate whether or not the regular intake of vitamin supplements
increases life expectancy the vector Xi would stand for a number of personal
characteristics or attributes of an individual labelled i, such as age, educa-
tional level, income, type of household, geographical location, sporting activ-
ities, weight, height, etc., Ti for the amount of vitamins taken by the individual,
and Ri for the individual’s age at death, or perhaps for quality of life at old
age measured according to certain criteria. The crucial aspect of an observa-
tional study—a study based on observational data—is that the treatment is
not assigned randomly to the individuals, as is the case in an experimental
study; rather, it is influenced by a number of characteristics, some of which
are embodied by the vector of covariates. Typically, those individuals who, due
to their personal characteristics, are more likely to be treated or to undergo a
more intensive form of treatment are also those who tend to have better re-
sponses. Thus, individuals who take vitamins on a regular basis may typically
be more conscious about their health and may typically be better off than those
who do not, and therefore will tend to live longer. Consequently, in an obser-
vational study the potential effect of the treatment on the response may be
confounded by the characteristics of the units: even if vitamins have a positive
effect on life expectancy, a greater average life expectancy observed in individ-
uals who take vitamins may be explained, at least in part, by the individuals
who choose to be treated tending to live longer than the rest of the popula-
tion.

In order to be able to draw correct inferences about the effect of treatment
on the response based on observational data one must somehow ‘correct for’
the confounders (the components of the Xis that confound the effect of the
treatment on the response). Unless one possesses a sufficiently accurate formula
describing how the response is affected by the treatment and by the characteris-
tics of the units, the only general way of correcting for confounders is to compare
the responses obtained under different treatments within groups of units whose
values of the confounders are essentially the same, or, more specifically, within
groups of units which at the outset were indistinguishable regarding their chance
of being assigned a given treatment. The creation of such groups may be achieved
by stratification or by matching. In stratification the data are partitioned into
a number of disjoint subsets—the strata—each of which corresponds to a group
of units with (approximately) the same values of the covariates and, ideally, a
variety of levels of treatment. Matching can be seen as a more directed way of
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forming homogeneous groups: as in stratification, units are grouped together—
in so-called matched sets—if their covariate vectors are equal or similar in some
sense, but the grouping may involve constraints on the characteristics of the
units or on the numbers of units that undergo each level of treatment. For in-
stance, each group may be required to contain at least two units with differing
treatments, or each group may be required to contain exactly one unit with a
particular treatment. Because of these constraints, matching is often carried out
in parallel with the selection of units from a database or even in parallel with the
sampling of data. For example, if a particular form of treatment is rare because
it is not the ordinary one and can only be ethically justified under special cir-
cumstances, then the process of matching an individual undergoing the ordinary
treatment to an individual undergoing the rare treatment is subordinate to the
appearance as well as to the characteristics of the latter individual. Although
the strata obtained by stratification may happen to coincide with the matched
sets obtained by matching, stratification and matching generally yield different
groups. Stratification typically discards a substantial proportion of units at the
outset, namely those in strata consisting of units with a single treatment level;
matching can make use of somewhat more data, though in reality that is partly
at the cost of greater dissimilarity between matched units. Sometimes, stratifi-
cation and matching on propensity scores—certain functions of the covariates
defined later in this section—make use of most of the data.

Remarks. (i) In most situations of interest the treatment takes a finite number
of values—the levels of treatment—and often only the values 0 and 1; we take
the range of the Tis as N0 to simplify the presentation.

(ii) Examples of observational studies are given in chapter 1 of [26]. Freedman
[9] provides a lucid and concise account of the difficulties posed by observational
data and of the typical flaws of observational studies. The distinction between
‘covariate’ (or ‘concomitant’) and ‘response’ is usually clear from the problem
at hand, but subsection 3.1.3 of [26] provides a discussion of possible confusions
and overlaps between the two concepts.

The exact form of the approach to correct for confounders outlined above
depends on the model assumed for the observational data, namely on the as-
sumptions about the distribution of the vector (Xi, Ti, Ri) pertaining to unit i
in the sample and about the joint distribution of vectors pertaining to different
units. Perhaps the most general basis for such a model is obtained by assuming
that there are functions τi, ρi and uniform random variables Ui, Vi (i = 1, . . . , N)
such that

Ti = τi(Ui,Xi), Ri = ρi(Vi,Xi, Ti) ≡ ρi(Vi,Xi, τi(Ui,Xi)), (2.1)

τi(u,x) is not constant in x for fixed u nor constant in u for fixed x, and Ui

and Vi are independent conditionally on Xi (but neither the Uis nor the Vis
need to be independent). This basic model says that the treatment depends on
the covariates but is not merely a function of the covariates (for otherwise the
response would be fully determined by the covariates and by another variable
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and then the treatment would vanish from the picture), and that the response
depends partly on the covariates and possibly on the treatment. To say that
there is a treatment effect is then to say that Ti and Ri are not independent
conditionally on Xi or, what is essentially the same, that ρi(v,x, t) is not con-
stant in t for fixed (v,x). Finally, theXis confound the effect of the treatment on
the response to the extent that the variation of ρi(v,x, t) with t is constrained
by x through the equation t = τi(u,x).

We will expand upon the basic model below in subsection 2.1; in particular,
we will explain in detail in what sense Xi is a confounder of the treatment,
why conditioning (stratifying, matching) on it removes confounding, and why
the independence of Ui and Vi conditionally on Xi is indispensable. Before
embarking on explanations, however, let us make some observations and spell
out a couple of immediate but crucial implications of the conditions around
(2.1).5 First, the basic model constitutes our most fundamental assumption—
an assumption under which one can hope to draw ‘unconfounded inferences’
about the existence and nature of a treatment effect—and for that reason it will
be assumed to hold in everything that follows.

Secondly, the model is consistent with—but more explicit than—the so-called
Neyman-Rubin model (e.g. [26, 28]) and with the assumptions normally associ-
ated with it: If t �= t′, ρi(Vi,Xi, t) and ρi(Vi,Xi, t

′) are two potential responses,
and if the datum observed is ρi(Vi,Xi, t) then ρi(Vi,Xi, t

′) is termed a counter-
factual of it; by the independence of Ui and Vi conditionally on Xi, the vector
(ρi(Vi,Xi, t), ρi(Vi,Xi, t

′)) is independent of Ti given Xi; and the conditions on
τi ensure that, for each x, 0 < P (Ti = t|Xi = x) < 1 for some t. To emphasize
the idea of ‘causality’ in equations (2.1) one may regard Xi as being generated
first, followed by Ti and then by Ri.

Thirdly, since a uniform random variable can be ‘unfolded’ into a sequence of
independent uniform random variables, and since the τis can always be thought
of as functionals acting jointly on that sequence and on the Xis, and similarly
for the ρis, the basic model is completely general as a model for the effect
of a treatment on a response, both of which are functions of a set of other
variables.

Finally, it should be kept in mind that the purpose of the basic model is not at
all theoretical: in any given investigation, the ‘applied researcher’ is expected to
stare hard at it and provide convincing arguments to the effect that everything
besides the covariates (the Xi) enters into the treatment and into the response
via separate, independent ways (via the Ui and Vi). Of course, the question of
whether one is entitled to separate the data into components Ui, Vi and Xi

in such clear-cut fashion is one of metaphysics—probably, in most studies the
most one can hope for is to be able to say that the dependence between Ui and
Vi conditionally on Xi is negligible. Still, the degree of validity of an empirical
investigation based on the methods described in this work depends on the degree
to which the basic model may be expected to hold, so for such an investigation

5The reader who feels the need for a concrete example of equations (2.1) may wish to read
section 5 already at this point.
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to have a modicum of credibility it must be founded on careful consideration and
justification of its assumptions. Unfortunately, providing justification for a given
set of confounders is perhaps the most vexing task faced by observational studies
that set out to establish the existence of a ‘causal effect’. Although methods
exist—the ones presented by Pearl [20, 21], mentioned later on—that can help
in selecting confounders and in providing a rationale for a given selection, much
of the effort required for presenting a convincing argument has to be based on
extra-mathematical, extra-statistical knowledge appertaining to the subject of
the investigation. We suspect that, when required to show that the basic model
holds at least approximately, applied researchers will often have to recognize
that it cannot possibly hold or that it cannot hold unless additional covariates
are measured; but this realization alone should have a beneficial effect on many
studies, and may even lead to real progress.

Turning to the implications of the basic model, note first that according to
(2.1) varying Ti in ρi(Vi,Xi, Ti) may (but need not) cause variation in Ri; if
it does then there is a treatment effect in the tautological sense that varying
Ti does have the effect of varying Ri. This is a proper treatment effect in the
sense that it is distinct from that of the covariates, i.e. is not fully determined
by Xi: thanks to the proviso about τi (that this vary in its first argument),
two potential ‘draws’ or ‘realizations’ ω and ω′ from the underlying probability
space may satisfy Ti(ω) �= Ti(ω

′) even when Xi(ω) = Xi(ω
′). In principle, this

allows us to choose or manipulate the value of Ti for a fixed value of Xi and
opens up the possibility of investigating whether and how the third argument of
ρi is capable of making the response change—i.e. it opens up the possibility of
investigating the existence and nature of a treatment effect.

This very concrete definition of treatment effect—expressed in terms of real-
izations ω from the underlying probability space and of how and to what extent
the third argument of ρi, in combination with those realizations, makes the re-
sponse vary—has an automatic translation into a statistical hypothesis. Indeed,
by the independence of Ui and Vi conditionally on the value of Xi, it follows
directly from (2.1) that there is a treatment effect if and only if Ti and Ri are
dependent conditionally on the event {Xi = x} for all x ∈ R

d. In particular, to
say that there is no treatment effect is to say that Ti and Ri are independent
conditionally on {Xi = x} for all x ∈ R

d—the null hypothesis of no treatment
effect. Although this hypothesis refers to a generic unit i, it readily applies to
an arbitrary set I of units (pertaining to a sample—random or not, stratified or
not—from some population): the null hypothesis of no treatment effect relative
to I holds if and only if it holds for each i ∈ I.

It follows that under our basic model a study about the existence and extent
of a treatment effect amounts to a study of the joint distribution of Ti and
Ri conditionally on Xi. Because this joint distribution is determined by the
probabilities

P (Ti = t, Ri ≤ r|Xi = x) = P (τi(Ui,x) = t, ρi(Vi,x, t) ≤ r|Xi = x)

= P (ρi(Vi,x, t) ≤ r|Xi = x)f
(x)
i (t),
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where we write
f
(x)
i (t) = P (Ti = t|Xi = x),

we see that the null hypothesis of no treatment effect holds for unit i if and only
if P (ρi(Vi,x, t) ≤ r|Xi = x) is a function of r and x alone (is independent of t).

Probabilities such as f
(x)
i (t) (t ∈ N0) will be referred to as propensity scores;

they constitute a probability distribution indexed by x and i and as such will
sometimes be referred to as the propensity score (of unit i). There will be no risk

of confusion if we also refer to the random variables f
(Xi)
i (t), which as we shall

see are sometimes covariates in their own right, as propensity scores (of unit i).

Finally, as a vector or scalar function of x the value(s) of f
(x)
i (t) for t in a subset

of N0 will sometimes be called the propensity score function. Propensity scores
play an important role in much of what follows because of the following further
consequence of the basic model: Assuming for simplicity that Xi is discrete,
writing f for a generic probability function on N0, abbreviating the statement

f
(x)
i (t) = f(t) for all t such that f

(x)
i (t) > 0 as f

(x)
i = f , and using

∑
f to

indicate summation over x such that f
(x)
i = f , we have

P
(
Ti = t, Ri ≤ r

∣∣∣f (Xi)
i = f

)
=

P
(
Ti = t, Ri ≤ r, f

(Xi)
i = f

)
P
(
f
(Xi)
i = f

) =

∑
f P (τi(Ui,x) = t, ρi(Vi,x, t) ≤ r,Xi = x)

P
(
f
(Xi)
i = f

) =

∑
f P (ρi(Vi,x, t) ≤ r|Xi = x)P (Ti = t|Xi = x)P (Xi = x)

P
(
f
(Xi)
i = f

) =

∑
f P (ρi(Vi,x, t) ≤ r|Xi = x)f

(x)
i (t)P (Xi=x)

P
(
f
(Xi)
i = f

) ,

whence, using the fact that f
(x)
i (t) = f(t) for the x under the summation sign,

P
(
Ti= t, Ri≤r

∣∣∣f (Xi)
i = f

)
=f(t)

∑
fP (ρi(Vi,x, t)≤r|Xi = x)P (Xi=x)

P
(
f
(Xi)
i = f

) . (2.2)

Letting r → ∞ and using
∑

f P (Xi = x)=P
(
f
(X)
i =f

)
this yields in particular

P
(
Ti = t

∣∣∣f (Xi)
i = f

)
= f(t), (2.3)

whence (take f=f
(x)
i ) the distribution of the treatment is the same condition-

ally on Xi=x and conditionally on f
(Xi)
i = f

(x)
i —that is, P (Ti = t|Xi = x) =

P (Ti = t|f (X)
i =f

(x)
i ). Moreover, as just seen, the probabilities P (ρi(Vi,x

′, t) ≤
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r|Xi = x) appearing on the right side of (2.2) under the summation sign depend
on t if and only if there is a treatment effect; so it follows from (2.2)–(2.3) that Ti

and Ri are independent conditionally on the propensity score if and only if there
is no treatment effect. What this says is that under the basic model inferences on
the treatment effect can be drawn not only by conditioning (stratifying, match-
ing) on the covariates but also by conditioning (stratifying, matching) on the
associated propensity score—although, as will be seen in sections 3 and 4, sta-
tistical procedures based on the propensity score require stronger assumptions
than do statistical procedures based on the covariates.

This observation is a variant of a result of Rosenbaum and Rubin [28], who
first advocated the use of the propensity score in observational studies. Since

Xi = X̃i implies f
(Xi)
i (t) = f

(X̃i)
i (t) ∀ t but the converse is not true, a strat-

ification based on the propensity score will be coarser, and hence yield bigger
and more useable strata (strata containing units with different levels of treat-
ment), than a stratification based on Xi whenever the latter is high-dimensional
and the former low-dimensional; and for the same reason it will usually be eas-
ier to find matches based on propensity scores than based on the covariates.6

The logic of the Rosenbaum-Rubin approach to observational studies is thus
to replace the typically high-dimensional vector of covariates by the typically
low-dimensional propensity score in order to increase the number and the size of
useable strata. This approach is particularly attractive when the Tis are binary,
say with 1 indicating that the unit is treated and 0 that it is a ‘control’, for in

that case stratification is based on a single variable, namely f
(Xi)
i (1) (the prob-

ability that unit i receives treatment conditionally on it having covariate value
Xi), and the resulting strata often contain practically all the data. However,
one does not normally get something for nothing, and there is a price to pay for
this reduction in dimensionality: the estimation of the propensity score, which
is unknown in virtually all applications. Subsection 2.2 below outlines the prob-
lem of estimating propensity scores; the method of stratification on estimated
propensity scores is illustrated in subsections 6.3 and 6.4.

In the rest of the paper we shall consider methods based on conditioning
(stratifying, matching) on the d-dimensional vector Xi involved in the basic
model; let it be said once and for all that these methods apply without change
with the propensity score of unit i in place of Xi at the cost of somewhat stronger
assumptions, to be formulated in each case. Evidently, when conditioning on
estimated propensity scores, or when stratifying continuous data into R

d cells
(rectangles), the methods will apply at most in an approximate sense.

To anticipate a little, let us mention that the methods in question—the meth-
ods of testing and estimation presented in sections 3 and 4—require assumptions
about the joint distribution of the responses and/or treatments from different
units; so far, we have found no need for assumptions of this sort, and the basic
model is really a collection of analogous but generally different statements, each
statement concerning one unit (in particular, the treatment effect may exist
only for some of the units).

6Practical aspects of stratification and matching are discussed in subsections 3.3 and 3.4.



116 J. A. Ferreira

Remarks. (i) The conditional independence of Ui and Vi in the basic model can
be regarded as an explicit version of a condition proposed by [2] (cf. ‘Definition
1’, also in [3]), which of course is itself related to the conditions of the Neyman-
Rubin model.

(ii) Some of the preceding statements (e.g. the validity of the Rosenbaum-
Rubin result when Xi has a continuous distribution) and certain statements
involving conditional probabilities or expectations that appear below can be

made more precise (e.g. by mentioning continuity conditions on x → f
(x)
i );

however, in a work like this it would be somewhat pedantic to do so.
(iii) Observe that in (2.1) Ri need not vary with Vi, so the response could be

constant conditionally on (Xi, Ti). This is as it should be because, while units
are often drawn randomly from a population, in some applications it is more
appropriate to think of them as specific entities that may respond differently
to different levels of treatment. Of course, everything that has been said above
holds true if ρi is constant in the first argument.

2.1. Explication of the basic model

In order to describe the sense in which Xi is a confounder of the treatment
let ω and ω′ represent two draws from the underlying probability space—two
potential ‘runs of reality’—satisfying Ti(ω) = 1 and Ti(ω

′) = 0 (say) and which
may be called counterfactuals of each other. For concreteness (but without loss
of generality) assume that Xi is one-dimensional and that x → τi(u,x) has
inverse τ−1

i,u , so that we can write the first equation in (2.1) as Xi = τ−1
i,Ui

(Ti). If
we cannot see Xi(ω) nor Xi(ω

′) (hence do not condition on their values being
equal or, in other words, do not stratify/match on the random variable Xi) then
we cannot see whether and to what extent a possible difference between the two
potential outcomes

Ri(ω) = ρi(Vi(ω),Xi(ω), Ti(ω)) = ρi(Vi(ω), τ
−1
i,Ui(ω)(1), 1),

Ri(ω
′) = ρi(Vi(ω

′),Xi(ω
′), Ti(ω

′)) = ρi(Vi(ω
′), τ−1

i,Ui(ω′)(0), 0),
(2.4)

is due to the difference in treatment (the difference in the third argument of ρi)
or to a possible difference between τ−1

i,Ui(ω)(1) and τ−1
i,Ui(ω′)(0) (which occur here in

the second argument of ρi). Indeed, while the unobservable difference between
Vi(ω) and Vi(ω

′) (which occur in the first argument of ρi) can, in principle,
be averaged out by drawing ‘runs of reality’ (ω, ω′), the difference between
τ−1
i,Ui(ω)(1) and τ−1

i,Ui(ω′)(0) cannot, by the simple reason that u → τ−1
i,u (1) and

u → τ−1
i,u (0) are different functions (in contrast, the difference between τ−1

i,Ui(ω)(1)

and τ−1
i,Ui(ω′)(1), for example, can in principle be averaged out), and it follows

that the difference between the two potential outcomes cannot be averaged out
in order to exhibit the difference due to having a 1 instead of a 0 in the treatment
variable. In contrast, if we are able to see Xi(ω) and Xi(ω

′) then we can focus
on draws (ω, ω′) for which Ti(ω) �= Ti(ω

′) but Xi(ω) = Xi(ω
′) = x (say), in
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which case a possible difference between the two potential outcomes,

Ri(ω) = ρi(Vi(ω),Xi(ω), Ti(ω)) = ρi(Vi(ω),x, 1),

Ri(ω
′) = ρi(Vi(ω

′),Xi(ω
′), Ti(ω

′)) = ρi(Vi(ω
′),x, 0),

(2.5)

can, in principle, be averaged out in (ω, ω′) to bring out the difference due to
having a 1 instead of a 0 in the third argument of the response function.7

We have emphasized the cautionary ‘in principle’ because the averaging out
over (ω, ω′) is possible only if the conditioning on the events

Xi(ω) = Xi(ω
′) = x,

1 = Ti(ω) ≡ τi(Ui(ω),x) �= τi(Ui(ω
′),x) ≡ Ti(ω

′) = 0
(2.6)

does not create a systematic difference between the Vi(ω) and Vi(ω
′) involved

in (2.5) above. If the values of Ui(ω) and Ui(ω
′) cannot tell us anything about

the values of Vi(ω) and Vi(ω
′) then it is also the case that the second constraint

in (2.6) cannot tell us anything about the values of Vi(ω) and Vi(ω
′), and then

we can average out the difference between the two responses in (2.5) that is
due to Vi and identify the difference that is due to having a 1 instead of a 0 in
the third argument of the response function. If, on the contrary, Ui and Vi are
entangled (in the sense that knowing the value of one tells us something about
the probable range of the other), say that Ui = ϕ(Ũi, Yi) and Vi = ϕ(Ṽi, Yi) with
Ũi, Ṽi and Yi independent standard uniforms and ϕ some R

2-valued function,
then, assuming for concreteness (but without loss of generality) that all the
necessary inverses exist (hence writing Yi(ω) = ϕ−1

Ũi(ω)
(Ui(ω)), and so on), the

second constraint in (2.6) can be solved as

Ui(ω) = τ−1
i,x (1), Ui(ω

′) = τ−1
i,x (0),

and used in (2.5) to yield

Ri(ω) = ρi(Vi(ω),x, 1) = ρi

(
ϕ(Ṽi(ω), Yi(ω)),x, 1

)
= ρi

(
ϕ(Ṽi(ω), ϕ

−1

Ũi(ω)
(Ui(ω))),x, 1

)
= ρi

(
ϕ(Ṽi(ω), ϕ

−1

Ũi(ω)
(τ−1

i,x (1))),x, 1
)

and

Ri(ω
′) = ρi(Vi(ω

′),x, 0) = ρi

(
ϕ(Ṽi(ω

′), Yi(ω
′)),x, 0

)
= ρi

(
ϕ(Ṽi(ω

′), ϕ−1

Ũi(ω′)
(Ui(ω

′))),x, 0
)

= ρi

(
ϕ(Ṽi(ω

′), ϕ−1

Ũi(ω′)
(τ−1

i,x (0))),x, 0
)
.

7Note that we cannot see what τ−1
i,Ui

is doing with the treatments 1 and 0 in the second

argument of the responses in (2.4); in contrast, both responses in (2.5) are being forced a
given x in the second argument.
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But then, just as in the case of (2.4) considered earlier, a possible difference
between these two potential outcomes is due to a difference in treatment and to
a difference between ϕ−1

Ũi(ω)
(τ−1

i,x (1)) and ϕ−1

Ũi(ω′)
(τ−1

i,x (0)) (occurring in the second

argument of the response function), and the latter difference cannot be averaged
out. To remedy the situation one can add Yi to Xi (i.e. to ‘correct for the
confounder’ (Xi, Yi)) and thus focus on draws (ω, ω′) for which Ti(ω) �= Ti(ω

′)
but Xi(ω) = Xi(ω

′) = x and Yi(ω) = Yi(ω
′) = y (say), for then the two

potential outcomes are

Ri(ω) = ρi(Vi(ω),x, 1) = ρi(ϕ(Ṽi(ω), y),x, 1) =: ρ̃i(Ṽi(ω), (x, y), 1),

Ri(ω
′) = ρi(Vi(ω

′),x, 0) = ρi(ϕ(Ṽi(ω
′), y),x, 0) =: ρ̃i(Ṽi(ω

′), (x, y), 0),
(2.7)

say, and the difference between them can be averaged out in (ω, ω′) to bring
out the difference due to having a 1 instead of a 0 in the third argument of the
response—because, Ũi and Ṽi being independent, the events

Xi(ω) = Xi(ω
′) = x, Yi(ω) = Yi(ω

′) = y,

τ̃i(Ũi(ω), (x, y)) := τi(ϕ(Ũi(ω), y),x) = 1

and
τ̃i(Ũi(ω

′), (x, y)) := τi(ϕ(Ũi(ω
′), y),x) = 0

inform nothing about the Ṽi(ω) and Ṽi(ω
′) figuring in (2.7).

This argumentation, based on ‘realizations’ (draws (ω, ω′) from the underly-
ing probability space), has a parallel but more efficient expression in terms of
probability laws: First, the independence of Ui and Vi conditional on Xi ensures
that the probability law of Ri conditional on Xi = x and Ti = t is equal to the
probability law of ρi(Vi,x, t) conditional on Xi = x, that is

L(Ri|Xi = x, Ti = t) = L(ρi(Vi,x, t)|Xi = x, τi(Ui,x) = t)

= L(ρi(Vi,x, t)|Xi = x),

and it opens up the possibility of studying the effect of the treatment on the
response by ‘fixing’ x and ‘varying’ t. Secondly, the violation of the conditions
of the basic model and its rectification through the inclusion of additional con-
founders can be concisely illustrated by the following elaboration of an example
mentioned by [35] (see also [22]).

Example 2.1. Let U , V , W , Y be independent standard uniform variables and
set U ′ = ϕ(U, Y ), V ′ = ϕ(V, Y ), where, for example, ϕ(u, y) = log(y)/ log(u y);
then U ′ and V ′ are dependent standard uniform variables. Suppose that the
data X, T , R on an arbitrary unit satisfy

T = τ(U ′,X), R = ρ(V ′,X, T ), X = χ(W,Y ),

where τ is defined in terms of a continuous function F : Rd →]0, 1[ by τ(u,x) = 1
if F (x) ≥ u and τ(u,x) = 0 otherwise, and ρ and χ are certain functions. The
probability law of R conditional on X = x and T = 1 satisfies
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L(R|X = x, T = 1) = L(ρ(V ′,x, 1)|X = x, T = 1)

= L(ρ(V ′,x, 1)|χ(W,Y ) = x, τ(U ′,x) = 1)

= L(ρ(V ′,x, 1)|χ(W,Y ) = x, F (x) ≥ ϕ(U, Y ))

= L
(
ρ(ϕ(V, Y ),x, 1)

∣∣∣∣∣χ(W,Y ) = x, Y ≤ exp

{
F (x) logU

1− F (x)

})
,

and similarly

L(R|X = x, T = 0)=L
(
ρ(ϕ(V, Y ),x, 0)

∣∣∣∣∣χ(W,Y ) = x, Y > exp

{
F (x) logU

1− F (x)

})
.

Thus, an investigation of a treatment effect based on (X, T, R), which would
necessarily consist of comparing L(R|X = x, T = 1) with L(R|X = x, T = 0),
would compare the probability laws on the right of the two identities above.
But these laws differ not only with respect to the third argument of ρ, where
treatment potentially exerts its influence, but also with respect to the first argu-
ment, since the law of ϕ(V, Y ) conditioned on the event that χ(W,Y ) = x and
Y ≤ exp {log(U)F (x)/(1− F (x))} generally differs from the law of ϕ(V, Y ) con-
ditioned on the event that χ(W,Y ) = x and Y > exp {log(U)F (x)/(1− F (x))}:
even if ρ(v,x, t) were constant in t the two laws would generally differ and their
difference would point, erroneously, to the existence of a treatment effect.

This unpleasant result is a reflection of the fact that in general U ′ and V ′ are
dependent conditionally on X. However, if we replace X by X̃ := (W,Y ) in our
definitions and write

T = τ̃(U, X̃) := τ(ϕ(U, Y ),X), R = ρ̃(V, X̃, T ) := ρ(ϕ(V, Y ),X, T ),

then the basic model holds (U and V being independent), and comparing

L(R|X̃ = (w, y), T = 1)=L
(
R

∣∣∣∣∣(W,Y ) = (w, y), y > exp

{
F (χ(w, y)) logU

1− F (χ(w, y))

})

=L(ρ(ϕ(V, y), χ(w, y), 1))

with
L(R|X̃ = (w, y), T = 0) = L(ρ(ϕ(V, y), χ(w, y), 0))

should lead to unbiased conclusions.
To interpret the difference between conditioning on X and conditioning on

X̃ we may say that although X properly entangles T and R, there is a residual
element of entanglement, Y , that underlies X, is not fully accounted by it,
and acts separately from X on the treatment (through ϕ(U, Y )) and on the
response (through ϕ(V, Y )). By completing X with Y—equivalently: replacing
it by X̃ := (W,Y )—no residual entanglement remains between treatment and
response: what remains is U and V , which act independently on T and R.

Interestingly, the determination of the correct set of confounders may appear
to be less crucial when the response is constant conditionally on the confounders
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and on treatment (when ρ is constant in its first argument; cf. remark (iii) before
the beginning of the present subsection), for no biases of the sort illustrated here
obtain. But, of course, the assumption of constancy itself requires a judicious,
if not exhausting, consideration of the relevant factors. Thus, for example, the
idea that a plot of land is ‘predetermined’ in the sense of its yield under each of
several different treatments being (approximately) predictable presupposes—in
particular—the knowledge of very many of its soil characteristics.

One moral that can be drawn from this example (which, like all morals, need
not offer consolation at all times) is that one should strive to take all the con-
founders into account, for bias can result not only from neglecting confounders
but also from taking account of surrogates of neglected ones: X = χ(W,Y ) is a
surrogate of the confoundersW and Y , which lie deeper and must be conditioned
upon if one is to draw unbiased inferences about the treatment effect.

When we talk of taking all the confounders into account, however, what we
really mean is including as many as possible of the potentially confounding
covariates in the basic model around (2.1) or in a causal diagram (cf. the intro-
duction) underlying it, not necessarily using them in the subsequent statistical
analysis. For it may happen that several different sets of covariates—among
which there may be a smaller or more convenient set—satisfy the assumptions
of the basic model and can therefore be used to investigate the treatment effect.
Pearl [20, 21] has developed criteria and algorithms to determine such subsets
of covariates on the basis of a causal diagram. Alternatively, at least if the
causal diagram is not too complex, one can also identify the relevant subsets of
covariates by inspection of the law of R conditional on X = x and T = t; an
illustration of this procedure is given in appendix A. Finally, we must emphasize
that taking more potential confounders is not necessarily better, for condition-
ing on certain variables may actually create or increase bias: in example 2.1,
conditioning on W and Y takes care of confounding, but conditioning on an
arbitrary number of covariates f1(X), f2(X), . . . defined by functions f1, f2, . . .
generally does not; see also [22] and [35].

2.2. Stratification on the estimated propensity score

We have seen that under the basic model the propensity score—a covariate in
its own right—can, in principle, replace the covariate vector to great advan-
tage in drawing inferences about the treatment effect. Thus, if the propensity
score can be accurately estimated then stratification or matching on the esti-
mated propensity score should yield practically unbiased inferences. Evidently,
the estimation of the propensity score requires assumptions about the joint dis-
tribution of the data from different units—assumptions that are similar to those
needed for testing and estimating the treatment effect, introduced in sections 3
and 4, respectively.

Probably the least that needs to be assumed is that conditionally on the Xis

the Tis have the same distribution, so that the propensity score f (x) ≡ f
(x)
i is

the same for all units sharing the same value x of their covariate. Once this
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holds, and even if the Tis are dependent,8 one can hope to estimate f (x) from
the N pairs (Xi, Ti), for instance by a non-parametric regression estimator (a
Nadaraya-Watson estimator, a nearest neighbour estimator, a random forest
estimator, or any other estimator that is consistent or at least has some chance
of being consistent) when N is sufficiently large, or by a sufficiently flexible
parametric or semi-parametric model.

There seems to be a widespread belief that propensity score estimates are
always warranted (e.g. in the case of binary treatments, by taking a logistic
regression model for f (x)(1) and estimating its parameters from the data) or at
least that the biased or inaccurate estimation of the propensity score does not
represent a serious problem for the testing of treatment effects (see, for example,
p. 7 of [38]). However, we have found no convincing evidence in the literature
that this is so, and the careful study of [11] indicates that in realistic settings
estimated propensity scores can lead to high bias in estimates of treatment
effects. Moreover, we see no reasons to expect that inferences based on estimated
propensity scores dispense with the consistency of propensity score estimators.

3. Testing for a treatment effect

The actual investigation of a treatment effect—in particular the testing for a
treatment effect—requires further assumptions, in addition to those of the basic
model.9 The first additional assumption is really a more stringent version of the
independence of Ui and Vi conditionally on Xi contained in the basic model; in
particular, it is designed to ensure that the conditioning on several units having
covariate vectors equal to the same x ∈ R

d—units which fall into the same
stratum or matched set—does not destroy the independence between the Uis
and Vis of those units, and it will be assumed throughout this section:

A0 For every I = {i1, i2, . . . , in} ⊂ {1, 2, . . . , N}, conditionally on the event
that Xi1 ,Xi2 , . . . ,Xin are all equal to a given arbitrary x ∈ R

d, the
random vectors (Ui1 , Ui2 , . . . , Uin) and (Vi1 , Vi2 , . . . , Vin) are independent.
Moreover, if x1,x2, . . . ,xK ∈ R

d are distinct and I1, I2, . . . , IK form a
partition of I = {i1, i2, . . . , in} then for all (ui)i∈I , (vi)i∈I ∈ R

n,

P (Ui ≤ ui, Vi ≤ vi, i ∈ I|Xi = xj , i ∈ Ij , j = 1, 2, . . . ,K) =

∏K

j=1
P (Ui ≤ ui, Vi ≤ vi, i ∈ Ij |Xi = xj , i ∈ Ij).

The second part of this assumption is intended to make inferences from dif-
ferent strata/matched sets independent of each other; in particular, the condi-
tioning event of one stratum implies nothing about the treatment assignments
and the responses of other strata. The role of the first part will become clear

8Though, as will be seen in section 3, statistical procedures based on the propensity score
probably require independence.

9Alternative assumptions will be introduced in section 4 for purposes of estimating a
treatment effect.
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in a moment, but let us note that it is not implausible that the information
that several units (as opposed to one unit in isolation) have covariate vectors
equal to a given x will ‘entangle’ Ui and Vi: for example, the fact that at a
given moment there are so many patients who possess the same set of personal
characteristics and who therefore are equally eligible for treatment might lead
a doctor responsible for the treatment assignment to pick the patients to be
treated on the basis of a new covariate (a ‘tie-breaker’), which could act both
on Ui and on Vi.

Write
f
(x)
I ((ti)i∈I) = P (Ti = ti, i ∈ I|Xi = x, i ∈ I), (3.1)

(ti)i∈I = (ti1 , ti2 , . . . , tin) ∈ N
n
0 , for the probability function of the treatments

assigned to an arbitrary set I = {i1, i2, . . . , in} ⊂ {1, 2, . . . , N} of n units,
conditional on the event that their covariate vectors all take the value x; when
I = {i} this reduces to the propensity score of section 2. Recall that the null
hypothesis of no treatment effect relative to the units 1, 2, . . . , N holds if and
only if Ti and Ri are independent conditionally on Xi for all i, and that this is
equivalent to all ρi(v,x, t) being constant in t for fixed (v,x). By A0 we have,
for (ri)i∈I ∈ R

n,

P (Ti = ti, Ri ≤ ri, i ∈ I|Xi = x, i ∈ I) =

f
(x)
I ((ti)i∈I)P (ρi(Vi,x, ti) ≤ ri, i ∈ I|Xi = x, i ∈ I).

Since the null hypothesis holds relative to I = {i1, i2, . . . , in} if and only if
ρi(Vi,x, t) is constant in t for all i ∈ I, it follows from this factorization that
(Ti)i∈I ≡ (Ti1 , Ti2 , . . . , Tin) and (Ri)i∈I ≡ (Ri1 , Ri2 , . . . , Rin) are independent
conditionally on {Xi = x, i ∈ I} for all x if and only if the null hypothesis holds
relative to I (if and only if the last probability above is a function of the ris
and x alone). Consequently, the null hypothesis holds relative to {1, 2, . . . , N}
if and only if the vectors (Ti)i∈I and (Ri)i∈I are independent conditionally on
{Xi = x, i ∈ I} for all I ⊂ {1, 2, . . . , N} and all x.

The role of the first part of A0 is thus to allow one to formulate the null
hypothesis relative to a given set of units in terms of the conditional indepen-
dence of vectors of treatments and vectors of responses, and hence in principle
to test it on the basis of such vectors. Of course, the null hypothesis relative to
a set of units is either true or false irrespectively of whether A0 holds or not
(even irrespectively of whether Ui and Vi are independent conditionally on the
value of Xi for each i, as the basic model demands); but A0 provides us with a
form of sampling or replication (the basis of most statistical methods), namely
with two or more pairs of treatments and responses per stratum—something
that the conditional independence of the basic model cannot do because it con-
cerns a single unit at a time. The second part of A0 extends the range of this
sampling/replication, varying the ‘conditions’ x under which hypotheses about
treatment effects can be considered and tested.

The other assumptions that need to be introduced should provide us with a
null distribution for testing the conditional independence of a vector of treat-
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ments and a vector of responses per stratum/matched set.10 There are at least
two ways of proceeding, each of which covers a class of observational studies
commonly encountered. The first is to assume that

A1 For every I = {i1, i2, . . . , in} ⊂ {1, 2, . . . , N}, conditionally on the event
that Xi1 ,Xi2 , . . . ,Xin are all equal to a given arbitrary x ∈ R

d, the
random variables Ti1 ,Ti2 , . . . , Tin are exchangeable in the sense that for
ti1 , ti2 , . . . , tin ∈ N0

P (Ti = ti, i ∈ I|Xi = x, i ∈ I) = P (Ti = t′i, i ∈ I|Xi = x, i ∈ I)

whenever (t′i1 , t
′
i2
, . . . , t′in) results from a permutation of the coordinates

of (ti1 , ti2 , . . . , tin).

This assumption implies that the treatment assignment among units charac-
terized by equal covariate vectors is equally likely to be (1, 0, 0, 2, . . . , 0, 1, 0, 1),
say, as (2, 0, 0, 1, . . . , 1, 0, 1, 0), or any other vector obtained by permuting the
coordinates of these vectors. It corresponds to the assumption that the observa-
tional study has overt bias or is free of hidden bias (cf. section 3.2 of [26]), and
it certainly holds if the τis in (2.1) are all equal and the Uis are exchangeable;
however, it is easy to see that A1 may hold even when the basic model does
not, so it alone does not guarantee the possibility of drawing ‘unconfounded
inferences’. As will be seen in subsection 3.1, A1 (together with A0) implies
that if units are stratified or matched on their covariates then the assignment
of treatments within a stratum or matched set is equivalent to the assignment
of treatments in an experimental study, whence the observational data may be
treated by the same methods as those used to treat experimental data.

Assumption A1 means that the f
(x)
I of (3.1) is a symmetric function: per-

mutation of its arguments does not change its value; the dependence on the
set I could, for example, indicate a group effect, or a group size effect, on the
distribution of the treatments. Clearly, for each I, P (Tj = t|Xi = x, i ∈ I) =
P (Tk = t|Xi = x, i ∈ I) for all t and all j, k ∈ I; that is, all units with the same
values of the covariate vectors have the same marginal conditional distribution
of treatment.11

10To see the need for further assumptions suppose that τi varies systematically with i; for
example, say that i is a time index related to the moment when a unit arrives for (possible)
treatment, that τi tends to become smaller on average with increasing i, and that this has
nothing to do with the characteristics Xi of the successive units but rather with some ‘exoge-
nous’ trend in treatment policy. Then the basic model still offers the theoretical possibility of
drawing inferences about the treatment effect, but the possibility cannot be realized unless
one possesses the correct model for τi. Similarly, if τi = τ for all i but the Ui, though uniform,
are dependent and not exchangeable, then the drawing of inferences requires the knowledge
of the joint distribution of U1, . . . , UN .

11As examples of f
(x)
I ((ti)i∈I) for I={1, 2, . . . , n} we cite p(x)

∑n
i=1 ti (1−p(x))

∑n
i=1(1−ti)

for ti ∈ {0, 1} and 0 < p(x) < 1 (binary independent treatments), r(x)!n−r(x)/(t1!t2! · · · tn!)
for ti ∈ {0, 1, . . . , r(x)} and

∑n
i=1 ti = r(x) ∈ N (non-independent treatments with number of

treatment levels r(x) depending on x), and e−nλ(x)λ(x)
∑n

i=1 ti/(t1!t2! · · · tn!) for ti ∈ N0 and
λ(x) > 0 (independent Poisson treatments with covariate-dependent parameter). However,

the particular form of f
(x)
I is irrelevant for our purposes: it is its symmetric character that

matters and must be justified in applications.
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The following examples exhibit responses and treatment assignments with
various probabilistic structures, all of which are compatible with A1 (though,
as just pointed out, they need not comply with the basic model).

Example 3.1. Suppose that the Tis are binary, Ti = 1 indicating that the i-th
unit has been ‘treated’, Ti = 0 that it has been kept as a ‘control’. Let the
covariate vectors have a finite number of possible values, x1,x2, . . . ,xK ∈ R

d,
and regard the (Xi, Ti, Ri) pertaining to units with the same value of Xi as
data on the same patient obtained at different times. Thus if, for example,
X1 = X2 = · · · = X8 = x and Xi �= x for i > 8 then R1, R2, . . . , R8 repre-
sent all the responses of the same patient measured at eight different times and
T1, T2, . . . , T8 the treatments assigned to that patient at those times. Clearly,
neither R1, R2, . . . , R8 nor T1, T2, . . . , T8 need to be independent, since the re-
sponses are measured on the same patient and the patient’s treatment as-
signment may for instance be constrained to include treatment exactly four
times. If A1 holds then T1, T2, . . . , T8 are exchangeable—so the assignment
(1, 0, 0, 1, 0, 1, 0, 1) is as likely as (1, 1, 1, 0, 0, 0, 1, 0), (1, 0, 0, 0, 0, 1, 0, 0) is as
likely as (0, 0, 1, 1, 0, 0, 0, 0), and so on—and the treatment assignments for dif-
ferent individuals are made independently.

This example may be specialized to that of Fisher’s ‘lady tasting tea’ experi-
ment (section 2.2 of [26]), possibly involving several ladies participating in inde-
pendent tasting experiments; see its continuation in examples 3.7 and 3.9.

Example 3.2. Suppose that the Tis are binary and that the vectors (Xi, Ti, Ri)
pertaining to units with the same value ofXi represent data on different patients
sampled from medical records and sharing (for instance) the same age, sex, and
education and income levels. Let there be K possible values, x1,x2, . . . ,xK ∈
R

d, for the covariate vectors. Assumption A1 says that the treatment assign-
ments among patients with covariate vectors equal to xk, say, are exchangeable.
Suppose that such patients form a simple random sample from a subpopulation
characterized by the same xk; then the treatment assignments are exchangeable
indeed; and if the subpopulation is very large then the treatment assignments
are also approximately independent.

Example 3.3. Take the situation in example 3.2 with the difference that the
patients are sampled in such a way that, of the nk patients with covariate vectors
equal to xk, mk are treated and nk −mk are kept as controls (k = 1, 2, . . . ,K).
Then the treatment assignments are dependent.

Example 3.4. In the situation of example 3.3 assume that the responses of
the nk patients with covariate vectors equal to xk consist of measurements (e.g.
blood pressure readings) made on those patients. Then it is probably all right
to regard the responses as independent random variables.

Example 3.5. In the situation of example 3.3 assume that the responses of the
nk patients with covariate vectors equal to xk do not represent measurements
made on those patients but rather the ranks of such measurements. Then the
responses are dependent random variables.
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The model used later in our illustrations follows (2.1) with τi = τ , �i = � for
all i and certain τ and � and the Uis and the Vis independent, so it satisfies A0
and A1. Certain observational studies, however, such as case-referent studies
(example 3.6 below) require a slight variant of A1:

A1′ For every I = {i1, i2, . . . , in} ⊂ {1, 2, . . . , N}, conditionally on the event
that Xi1 ,Xi2 , . . . ,Xin are all equal to a given arbitrary x ∈ R

d and Ri1 =
Ri2 = · · · = Rin = r ∈ R, the random variables Ti1 ,Ti2 , . . . , Tin are
exchangeable in the sense that for ti1 , ti2 , . . . , tin ∈ N0

P (Ti = ti, i ∈ I|Xi = x, Ri = r, i ∈ I)

is invariant to permutations of (ti1 , ti2 , . . . , tin).

Example 3.6. In a case-referent (or case-control) study a sample of cases—
individuals with a certain, typically rare, disease—is matched with a sample
of individuals drawn from a more general ‘population’ containing referents or
non-cases, and possibly cases as well, and the two samples are compared with
respect to the frequency of a treatment—typically exposure or non-exposure to
a toxic substance (see, for example, pp. 7, 83–86 of [26], or pp. 73–93 of [31]).
The purpose of the study is to investigate whether the exposure contributes to
the disease, and the matching of the two samples, which consists of arranging
cases and referents in groups sharing similar personal characteristics (age, sex,
occupation, etc.), is intended to make cases and referents comparable with re-
spect to everything except disease status. A particularity of a case-referent study
is that the sampling of cases is drawn first and the sampling of referents is, to
some extent, subordinate to the sample of cases that was drawn; this ‘sampling
plan’ is often the only practical one if, due to the rarity of the disease, a simple
random sample of the general population would have to be very large in order
to guarantee the drawing of a substantial number of cases.

To specify a model for a case-referent study assume for simplicity that all
variables are discrete and let pX,T |R=r, pT,R|X=x, etc., denote conditional prob-
ability functions of the vector (X, T, R) pertaining to a unit drawn randomly
from the conceptually infinite general population, and let the event R = 1 mean
that the unit is a case and R = 0 that it is a non-case. Let the first unit be a
case: (X1, T1, R1) ≡ (X1, T1, 1), where (X1, T1) is drawn according to pX,T |R=1.
To find a match (X2, T2, R2) ≡ (X1, T2, R2) for the first unit we draw R2 ac-
cording to pR|X=X1

and then T2 according to pT |X=X1,R=R2
, each draw being

independent of the preceding draws. Since the event R1 = 1 is certain, we have

f
(x)
{1,2}(t1, t2) ≡ P (T1 = t1, T2 = t2|X1 = X2 = x)

= P (T1 = t1, T2 = t2|X1 = X2 = x, R1 = R2 = 1)pR|X=x(1) +

= P (T1 = t1, T2 = t2|X1 = X2 = x, R1 = 1, R2 = 0)pR|X=x(0).

Conditionally on {X1 = X2 = x, R1 = R2 = 1}, the variables T1 and T2 have
the same distribution and are independent, hence P (T1 = t1, T2 = t2|X1 =
X2 = x, R1 = R2 = 1) is symmetric in t1 and t2; in contrast, t1 and t2 are not
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interchangeable in P (T1 = t1, T2 = t2|X1 = X2 = x, R1 = 1, R2 = 0) if there
is a treatment effect, since in that case the distribution of T2 conditional on
R2 = 0 differs from that of T1 conditional on R1 = 1. Thus, A1 does not hold

in general because f
(x)
{1,2}(t1, t2) need not be symmetric in its arguments. On the

other hand, A1′ holds with I = {1, 2} since as noted above

P (T1 = t1, T2 = t2|X1 = X2 = x, R1 = R2 = r)

is symmetric in t1, t2 for r = 1, and for r = 0 this conditional probability can
be defined arbitrarily.

To formulate the sampling of the first two units explicitly in terms of the
equations in (2.1) write the conditional distribution functions of (X, T, R) as
PX,T |R=r, PT,R|X=x, etc., and let U1, U2, V2 and W1 be independent standard
uniform random variables. First, (X1, T1, R1) can be generated by R1 = 1 and
X1 = P−1

X|R=1(W1) followed by T1 = P−1
T |X=X1,R=1(U1) (as usual, the superscript

‘−1’ indicates the inverse of a non-decreasing function). Conditionally on this
first draw, (X2, T2, R2) ≡ (X1, T2, R2) can be generated by T2 = P−1

T |X=X1
(U2)

followed by R2 = P−1
R|X=X1,T=T2

(V2). Clearly, P
−1
T |X=X1,R=1 and P−1

T |X=X1
need

not be equal if T and R are not independent, so T1 and T2 need not be ex-
changeable conditionally on X1 = X2 = x.

The drawing of (Xi, Ti, Ri) for i > 2 is an iteration of the procedure for gen-
erating (X1, T1, R1) and (X2, T2, R2), in any of its two versions now described.
Thus, if the first case is to be matched to k referents one draws (X3, T3, R3), . . . ,
(Xk, Tk, Rk) by repeating the procedure used to generate (X2, T2, R2); then the
second case, (Xk+1, Tk+1, Rk+1) ≡ (Xk+1, Tk+1, 1), is generated by repeating
the procedure used to generate (X1, T1, R1); and so on.

An essential point about the method of sampling in a case-referent study is
that the referents, even if they do not include cases, must be sampled as if they
could include cases; otherwise, ‘selection bias’ (pp. 85–86 of [26], pp. 96–101 of

[31]) may occur and alter the form of probabilities such as f
(x)
{1,2}.

Under the null hypothesis of no treatment effect (and under A0, as always in
the present section), A1 and A1′ are equivalent since the probabilistic identity
in the latter reduces to that in the former. Moreover, under both A1 and A1′

to say that there is no treatment effect is to say that conditioning further on
the values of the responses does not change the distribution of the treatments:

P (Ti = ti, i ∈ I|Xi = x, Ri = ri, i ∈ I) = f
(x)
I ((ti)i∈I) (3.2)

for I = {i1, i2, . . . , in} ⊂ {1, 2, . . . , N}, (ti)i∈I ∈ N
n
0 , and (ri)i∈I ∈ R

n. Con-
versely, to say that there is a treatment effect is to say that the probabilities
on the left here depend on the ris for some choice of the tis. In other words,
the treatment has an effect if and only if the knowledge of the responses (in
addition to the knowledge that all covariate vectors are identical to some x)
provides information on the treatments.

Because of the equivalence of A1 and A1′ under the null hypothesis, the
methods of testing to be described in subsections 3.1 and 3.2 are the same under
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the two assumptions—they are based solely on (3.2) and on the symmetrical

character of f
(x)
I .

Before going on to present the testing procedures, we must show that there
is a strengthening of A0 under which A1 holds with the propensity scores in
place of the Xis and the methods of subsections 3.1 and 3.2 are applicable with
the propensity score as a covariate (hence should be approximately valid with
the estimated propensity score as a covariate):

A0′ For every I = {i1, i2, . . . , in} ⊂ {1, 2, . . . , N}, conditionally on the event
{Xi = xi, i ∈ I}, where xi1 ,xi2 , . . . ,xin ∈ R

d are arbitrary, the random
vectors (Ui1 , Ui2 , . . . , Uin) and (Vi1 , Vi2 , . . . , Vin) are independent. More-
over, if x1,x2, . . . ,xK ∈ R

d are distinct and I1, I2, . . . , IK form a partition
of I = {i1, i2, . . . , in} then for all (ui)i∈I , (vi)i∈I ∈ R

n,

P (Ui ≤ ui, Vi ≤ vi, i ∈ I|Xi = xj , i ∈ Ij , j = 1, 2, . . . ,K) =

∏K

j=1
P (Ui ≤ ui, Vi ≤ vi, i ∈ Ij |Xi = xj , i ∈ Ij).

Finally, (Xi1 , Ti1), (Xi2 , Ti2), . . . , (Xin , Tin) are independent and identi-
cally distributed.

To show that this assumption (which differs fromA0 only in its third and last
proviso) yields the desired results we have to show that if the Xis are replaced
by the propensity scores then (i) A1 holds, (ii) the null hypothesis to be tested
is the same when conditioning on the propensity scores as when conditioning on
the Xis, and (iii) the second part of A0 holds (so that inferences from different
strata/matched sets continue to be independent if based on propensity scores).
For simplicity we consider the case where Xi is discrete, when the propensity
score is also discrete.

First, for arbitrary I = {i1, i2, . . . , in} ⊂ {1, 2, . . . , N} the set of random vec-
tors {(Xi, Ti) : i ∈ I} is exchangeable (its elements being independent and iden-

tically distributed), and in particular the propensity score f (x)(t) ≡ f
(x)
i (t) =

P (Ti = t|Xi = x) is independent of i. Then, given a permutation π on I, we
have, on writing f for a generic probability function on N0 and using f (Xi) = f as
an abbreviation of the event that f (Xi)(t) = f(t) for all t such that f (Xi)(t) > 0,

P
(
Ti = tπ(i), i ∈ I

∣∣∣f (Xi) = f, i ∈ I
)
=

P
(
Ti = tπ(i), f

(Xi) = f, i ∈ I
)

P
(
f (Xi) = f, i ∈ I

) =

P
(
Tπ−1(j) = tj , f

(Xπ−1(j)) = f, j ∈ I
)

P
(
f (Xi) = f, i ∈ I

) =
P
(
Tj = tj , f

(Xj) = f, j ∈ I
)

P
(
f (Xi) = f, i ∈ I

) =

P
(
Ti = ti, i ∈ I

∣∣∣f (Xi) = f, i ∈ I
)

for (ti)i∈I ∈ N
n
0 . Thus P (Ti = ti, i ∈ I|f (Xi) = f, i ∈ I) is a symmetric function

of the tis and A1 is satisfied with the propensity score f (Xi) in place of Xi.
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Secondly, abbreviating summation over {xi, i ∈ I} such that f (xi) = f for
i ∈ I as

∑
f , using the conditional independence of the Ui and Vi (first part of

A0′) and the identity

P (Ti = ti, i ∈ I|Xi = xi, i ∈ I) =
∏
i∈I

P (Ti = ti|Xi = xi) =
∏
i∈I

f (xi)(ti)

(which follows from the last part of A0′), and finally noting that under the
summation sign we have f (xi)(ti) = f(ti), we see that for (ri)i∈I ∈ R

n

P
(
Ti = ti,Ri ≤ ri, i ∈ I

∣∣∣f (Xi)=f, i ∈ I
)
=

P
(
Ti = ti,Ri ≤ ri,f

(Xi)=f, i ∈ I
)

P
(
f (Xi)=f, i ∈ I

) =

∑
f P (τi(Ui,xi) = ti, �i(Vi,xi, ti) ≤ ri,Xi = xi, i ∈ I)

P
(
f (Xi) = f, i ∈ I

) =

∑
fP (τi(Ui,xi) = ti, �i(Vi,xi, ti) ≤ ri, i ∈ I|Xi = xi, i ∈ I)P (Xi = xi, i ∈ I)

P
(
f (Xi) = f, i ∈ I

) =

∑
fP (�i(Vi,xi, ti) ≤ ri, i ∈ I|Xi = xi, i ∈ I)

∏
j∈I f

(xj)(tj)P (Xi = xi, i ∈ I)

P
(
f (Xi) = f, i ∈ I

) =

∏
j∈I

f(tj)

∑
fP (�i(Vi,xi, ti) ≤ ri, i ∈ I|Xi = xi, i ∈ I)P (Xi = xi, i ∈ I)

P
(
f (Xi) = f, i ∈ I

) =

∏
j∈I

f(tj)

∑
f P (�i(Vi,Xi, ti) ≤ ri,Xi = xi, i ∈ I)

P
(
f (Xi) = f, i ∈ I

) =

∏
j∈I

f(tj)
P
(
�i(Vi,Xi, ti) ≤ ri, f

(Xi) = f, i ∈ I
)

P
(
f (Xi) = f, i ∈ I

) =

∏
j∈I

f(tj)P
(
�i(Vi,Xi, ti) ≤ ri, i ∈ I

∣∣∣f (Xi) = f, i ∈ I
)
.

Thus (let ri → ∞ in the first and last terms)

P
(
Ti = ti, Ri ≤ ri, i ∈ I

∣∣∣f (Xi) = f, i ∈ I
)
=

P
(
Ti = ti, i ∈ I

∣∣∣f (Xi) = f, i ∈ I
)
P
(
�i(Vi,Xi, ti) ≤ ri, i ∈ I

∣∣∣f (Xi) = f, i ∈ I
)
,

and it follows (recall the argument after (3.1)) that the null hypothesis of no
treatment effect as formulated at the beginning of this section (after the intro-
duction of A0) holds if and only if it holds with

{
f (Xi) = f, i ∈ I

}
in place of

{Xi = xi, i ∈ I}.
Finally, let I1, I2 be disjoint subsets of indices and put I = I1∪I2; in obvious

notation, we have, on using the second and third parts of A0′,
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P
(
Ui ≤ ui,Vi ≤ vi, f

(Xj)=f1, f
(Xk)=f2, i ∈ I, j ∈ I1, k ∈ I2

)
=∑

x1:f(x1)=f1

∑
x2:f(x2)=f2

P (Ui ≤ ui,Vi ≤ vi,Xj=x1,Xk=x2, i∈I, j∈I1, k∈I2) =

∑
f1,f2

P
(
Ui≤ui,Vi≤vi, i∈I

∣∣Xi=xj , i∈Ij , j=1, 2
)
P (Xi=xj , i∈Ij , j=1, 2) =

∑
f1,f2

2∏
j=1

P
(
Ui ≤ ui,Vi ≤ vi, i ∈ Ij

∣∣Xi= xj , i ∈ Ij
)
P (Xi= xi, i ∈ Ij) =

∑
x1:f(x1)=f1

∑
x2:f(x2)=f2

2∏
j=1

P (Ui ≤ ui,Vi ≤ vi,Xi= xj , i ∈ Ij) =

2∏
j=1

⎧⎨
⎩

∑
xj :f

(xj)=fj

P (Ui ≤ ui,Vi ≤ vi,Xi= xj , i ∈ Ij)

⎫⎬
⎭ =

2∏
j=1

P
(
Ui ≤ ui,Vi ≤ vi, f

(Xi)=fj , i ∈ Ij

)
.

Dividing by P
(
f (Xj)=f1, f

(Xk)=f2, j ∈ I1, k ∈ I2
)
and noting that (by the last

part of A0′) this probability equals P
(
f (Xi)=f1, i ∈ I1

)
P
(
f (Xi)=f2, i ∈ I2

)
, we

conclude (the proof for K sets I1, I2, . . . , IK being completely analogous) that
the second part of A0 also holds with the propensity scores as covariates, and
hence inferences from different strata continue to be independent when based
on propensity scores.

Remarks. (i) Regarding the last part of A0′, it can be seen that if τi = τ for
all i in the basic model then the exchangeability of the (Xi, Ui)s implies that of
the (Xi, Ti)s and similarly the independence of the (Xi, Ui)s implies that of the
(Xi, Ti)s.

(ii) The first part of A0 (A0′) could perhaps be described as ‘independence
within strata’, and the second part as ‘independence between strata’; but in
the first part it is the Ui and Vi of each unit i in the same stratum/matched
set that are independent and in the second it is the (Ui, Vi)s from different
strata/matched sets. The assumption could be more concisely formulated in
somewhat more abstract terms: If x1,x2, . . . ,xK ∈ R

d and I1, I2, . . . , IK form
a partition of I = {i1, i2, . . . , in} then for all (ui)i∈I , (vi)i∈I ∈ R

n,

P (Ui ≤ ui, Vi ≤ vi, i ∈ I|Xi = xj , i ∈ Ij , j = 1, 2, . . . ,K) =

∏K

j=1
P (Ui ≤ ui, i ∈ Ij |Xi = xj , i ∈ Ij)P (Vi ≤ vi, i ∈ Ij |Xi = xj , i ∈ Ij).

If K = 1 this reduces to the first part of A0.
(iii) The method of assessing strata and matched sets described in subsection

3.4 and illustrated in section 6—which is essentially a means of assessing whether
A1 and A1′ are at least plausible and which is an integral part of any analysis of
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observational data based on the type of methods presented here—can sometimes
help detecting violations of A1 and A1′. But since, as already mentioned, these
assumptions may hold even if the basic model does not, their plausibility in the
face of a data set need not provide assurance that all the important confounders
are being taken into account: the justification of the basic model and ofA0 (A0′)
will nearly always require extra-statistical justification. Chapters 6 to 8 of [26]
describe some general strategies for detecting violations of A1 and A1′—and
in some cases violations of the basic model and of A0 (A0′)—on the basis of
several observational data sets.

3.1. Testing per stratum

A1 and A1′ have both one consequence that can be used to test the null hy-
pothesis of no treatment effect in a way that does not involve the probabilities

(3.1), which in applications are unknown. For fixed I = {i1, i2, . . . , in} let C
(t)
I

count the number of Tis with i ∈ I assuming the value t ∈ N0:

C
(t)
I =

∑
i∈I

1{Ti=t}, (3.3)

where 1A is the indicator function of the event A (1A = 1 if A occurs, 1A = 0
otherwise). For c0, c1, c2, . . . ∈ N0 such that n =

∑
t∈N0

ct let T ≡T (c0, c1, c2, . . .)
stand for the set of vectors (ti)i∈I = (ti1 , ti2 , . . . , tin) of treatment assignments
such that

c0 =
∑
i∈I

δti,0, c1 =
∑
i∈I

δti,1, c2 =
∑
i∈I

δti,2, . . .

(as usual, δx,y denotes Kronecker’s delta: δx,x = 1 and δx,y = 0 if x �= y). Clearly,
if (t∗i )i∈I = (t∗i1 , t

∗
i2
, . . . , t∗in) is one particular element of T then any other el-

ement of T can be obtained by permuting the coordinates of (t∗i1 , t
∗
i2
, . . . , t∗in).

Thus, since by assumption the probabilities f
(x)
I ((ti)i∈I) are invariant under

permutations of their arguments, we have, on abbreviating summation over the
indices in (ti)i∈I ∈ T by ΣT ,

P
(
C

(t)
I = ct, t ∈ N0

∣∣∣Xi = x, i ∈ I
)
=

∑
T

f
(x)
I ((ti)i∈I) = #T × f

(x)
I ((t∗i )i∈I),

where (t∗i )i∈I is one particular element of T and as usual #T stands for the
number of elements of T . Now consider the ratio of

P
(
Ti = t∗i , i ∈ I, C

(t)
I = ct, t ∈ N0

∣∣∣Xi = x, i ∈ I
)
= f

(x)
I ((t∗i )i∈I)

to the preceding probability:

P
(
Ti = t∗i , i ∈ I, C

(t)
I = ct, t ∈ N0

∣∣∣Xi = x, i ∈ I
)

P
(
C

(t)
I = ct, t ∈ N0

∣∣∣Xi = x, i ∈ I
) =

1

#T
.
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Since—as is easy to see if the covariates are discrete—the term on the left here
is the probability that Ti = t∗i ∀ i conditionally on the event that Xi = x ∀ i
and C

(t)
I = ct ∀ t, we conclude that

P
(
Ti = t∗i , i ∈ I

∣∣∣Xi = x, i ∈ I, C
(t)
I = ct, t ∈ N0

)
=

1

#T

for each (t∗1, t
∗
2, . . . , t

∗
n) ∈ T (c0, c1, c2, . . .). Since by definition of T the number

of elements in it corresponds to the number of distinct strings of length n =∑
t∈N0

ct made up of c0 elements labelled 0, c1 elements labelled 1, c2 elements
labelled 2, etc., we also see that

#T =
n!∏

t∈N0
ct!

.

The same argument (one need only replace the event {Xi = x, i ∈ I} by {Xi =
x, Ri = ri, i ∈ I} in the above) shows that under the null hypothesis we have,
for all (t∗1, t

∗
2, . . . , t

∗
n) ∈ T (c0, c1, c2, . . .) and (ri)i∈I = (ri1 , ri2 , . . . , rin) ∈ R

n,

P
(
Ti = t∗i , i ∈ I

∣∣∣Xi = x, Ri = ri, i ∈ I, C
(t)
I = ct, t ∈ N0

)
=

∏
t∈N0

ct!

n!
. (3.4)

It is this result that allows us to develop tests of the null hypothesis by condi-
tioning on the covariates and on the number of times that each level of treatment
occurs and then confronting the actual treatment assignments with the condi-
tional null distribution, or null probabilities, (3.4). Such tests are conditional in

the sense that it is by conditioning further (on the C
(t)
I s of (3.3), not just on the

covariates) that the null distribution of treatment assignments becomes fully

specified (in contrast to f
(x)
I , which is an unknown function of x and I). Many

tests are possible, of course, since there are many ways of looking for discrepan-
cies between the observed treatment assignments and the treatment assignments
expected under the null. One possibility is to consider a test based on the sample
covariance between treatments and responses. This test is appealing because the
covariance is a measure of association and the relationship between a treatment
and a response often manifests itself in a straightforward manner, higher levels
of treatment being generally accompanied by higher responses or else by lower
responses. We shall now elaborate on this test.

Assume that the treatment can only manifest itself by a positive association
with the response, increasing levels of treatment tending to cause increasing
responses. Suppose that {1, 2, . . . , N}, or a subset of it, can be partitioned into
K disjoint subsets I1, I2, . . . , IK of sizes n1, n2, . . . , nK such that all units with
labels in Ik have covariate vectors equal to the same xk ∈ R

d. For simplicity, in
what follows we shall refer to the K sets of indices, and to the corresponding
sets of units, as strata, keeping in mind that they may also denote matched sets
(groups obtained by matching). The sample covariance associated with the k-th
stratum is

Kk ≡ Kk((Ti, Ri)i∈Ik) :=
1

nk

∑
i∈Ik

RiTi − R̄kT̄k,
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where R̄k = n−1
k

∑
i∈Ik

Ri and T̄k = n−1
k

∑
i∈Ik

Ti. For fixed k, condition on

the event that the covariates (Xi)i∈Ik are all equal to xk ∈ R
d, the responses

(Ri)i∈Ik are equal to (ri)i∈Ik = (ri1 ,ri2 ,. . ., rink
) ∈ R

nk , and the numbers of
times that the different levels of treatment occur satisfy

c
(k)
t = C

(t)
Ik

:=
∑
i∈Ik

1{Ti=t} (t ∈ N0) (3.5)

for some c
(k)
t s in N0 such that

∑
t∈N0

c
(k)
t = nk; as shown above, under the

null hypothesis the (conditional) distribution of the vector of treatment assign-

ments (Ti)i∈Ik is uniform on the set T (c
(k)
0 , c

(k)
1 , c

(k)
2 , . . .) that consists of the

nk!/
∏

t∈N0
c
(k)
t ! points (ti)i∈Ik ∈ N

nk
0 satisfying c

(k)
t =

∑
i∈Ik

δti,t ∀ t. In prin-
ciple, these points (ti)i∈Ik may be enumerated and the corresponding values of
Kk((ti, ri)i∈Ik) computed, yielding the conditional null distribution of the sam-
ple covariance. Then, with q1−α denoting the quantile of probability 1−α of this
distribution, one rejects the null hypothesis—more precisely the null hypothesis
relative to the k-th stratum—at the significance level of α if and only if the
sample covariance actually observed, Kk((Ti, Ri)i∈Ik), exceeds q1−α.

To show that the size of this test is indeed α, let us define q1−α as the smallest
number q satisfying

#{(ti)i∈Ik ∈ T (c
(k)
0 , c

(k)
1 , c

(k)
2 , . . .) : Kk((ti, ri)i∈Ik) ≥ q}

#T (c
(k)
0 , c

(k)
1 , c

(k)
2 , . . .)

≤ α.

Under the null hypothesis and with q = q1−α, the left-hand side here equals

P
(
Kk((Ti, Ri)i∈Ik)≥q1−α

∣∣∣Xi=xk, Ri=ri, i∈Ik, (Ti)i∈Ik ∈T (c
(k)
0 , c

(k)
1 , c

(k)
2 , . . .)

)
;

thus, under the null, this probability is ≤ α, and integrating out the ris and the

c
(k)
t s yields

P
(
Kk((Ti, Ri)i∈Ik) ≥ q1−α

∣∣∣Xi = xk, i ∈ Ik

)
≤ α.

The conditional test can be carried out in another, equivalent manner, namely
by computing the p-value—call it pk((Ti, Ri)i∈Ik)—of the observed sample co-
variance:

#{(ti)i∈Ik ∈T (c
(k)
0 , c

(k)
1 , c

(k)
2 , . . .) : Kk((ti, ri)i∈Ik)≥Kk((Ti, Ri)i∈Ik)}

#T (c
(k)
0 , c

(k)
1 , c

(k)
2 , . . .)

;

if this is ≤ α then the null hypothesis is rejected at the level of α.

For large nk the complete enumeration of the elements of T (c
(k)
0 , c

(k)
1 , c

(k)
2 , . . .)

required for the computation of the quantile or of the p-value can be impracti-
cable. Fortunately, simulation can always be used to compute the two quanti-
ties approximately, namely by drawing a treatment assignment (ti)i∈Ik pseudo-

randomly from T (c
(k)
0 , c

(k)
1 , c

(k)
2 , . . .) and computing the corresponding value of



Methods for observational data 133

Kk((ti, ri)i∈Ik) a large number of times to get an estimate of the null distribu-
tion of the test statistic Kk((Ti, Ri)i∈Ik), from which an estimate of q1−α and
an estimate of pk((Ti, Ri)i∈Ik) are readily calculated (as the sample quantile of
the values of Kk((ti, ri)i∈Ik) thus generated and as the proportion of times that
those values exceed the observed test statistic Kk((Ti, Ri)i∈Ik), respectively). In
addition, there exist excellent approximations based on central limit theorems
for rank statistics which make it possible to compute the p-values of ‘random-
ization tests’ like the present one easily and accurately (see proposition 2, p. 35,
of [26], and more generally chapter 12 of [8]).

Finally, let us observe that the conditional test based on the sample covariance
Kk((Ti, Ri)i∈Ik) is equivalent to the conditional test based on the inner product

R(k) ·T(k) :=
∑
i∈Ik

RkTk

between the vector R(k) := (Ri)i∈Ik of responses and the vector T(k) := (Ti)i∈Ik

of treatments, which Rosenbaum ([26], p. 35) calls a sum statistic. This follows
from the fact that conditionally on the Ris and on the number of times that
each level of treatment occurs (viz. (3.5)) the term R̄kT̄k in Kk((Ti, Ri)i∈Ik) is a
constant, so the conditional distribution of Kk((Ti, Ri)i∈Ik) differs from that of
R(k) ·T(k) by a change of scale and location.

Remarks. (i) The method used here to derive conditional tests is a special case
of a standard method (see, for example, pp. 145–7 of [36]) for deriving tests by

conditioning on sufficient statistics (which in our case are the C
(t)
Ik

s of (3.5)).
(ii) Lehmann ([17], sections 5.10–5.13) establishes the unbiasedness and op-

timality of this test under general assumptions in the case of treatments with
two levels and independent Ris. Rosenbaum ([26], pp. 44, 54) proves the unbi-
asedness of tests based on sum statistics in the case of binary treatments and
responses of the form Ri = riTi + r′i(1 − Ti) and under assumptions about the
constants ri and r′i.

Example 3.7. Consider the situation of example 3.1 with K = 1, so that there
is a single stratum characterized by covariate vectors equal to a given x ∈ R

d.
Let the stratum have size n = 8 and let there be exactly m = 4 treated units.
The set T of treatment assignments satisfying these restrictions consists of the

#T =
8!

4!4!
= 70

vectors (t1, t2, . . . , t8) with binary coordinates such that
∑8

i=1 δti,0 = 4 and∑8
i=1 δti,1 = 4, or equivalently such that

∑8
i=1 ti = 4. The conditional distribu-

tion of the treatment assignments under the null hypothesis is therefore

P

(
Ti = ti, i = 1, . . . , 8

∣∣∣∣∣Xi = x, Ri = ri, i = 1, . . . , 8,
∑8

j=1
tj = 4

)
=

1

70

for (t1, t2, . . . , t8) ∈ T . The elements of T are listed in table 1, sorted by in-
creasing values of a test statistic S to be introduced below.
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In order to illustrate the workings of the test and its conditional charac-
ter let us first consider two situations where the responses may take arbi-
trary integer values: In the first, the vector of responses that turns up is r =
(1, 2, 3, 4, 5, 6, 7, 8), and in the second it is r′ = (1, 1, 1, 2, 2, 3, 6, 7); in both sit-
uations we take the observed treatment assignment as t := (0, 0, 1, 0, 1, 0, 1, 1).
The observed values of the inner product statistics in the two situations are
therefore

s := r · t = 3 + 5 + 7 + 8 = 23 and s′ := r′ · t = 1 + 2 + 6 + 7 = 16.

The inner product statistics themselves are the random variables S := r · T
and S′ := r′ · T, which depend on the random vector T := (T1, T2, . . . , T8) of
treatment assignments. The possible values of these random variables are also
given in table 1 next to the 70 possible values of T (the elements of T ). The
conditional probability functions of S and S′ under the null hypothesis,

gS(s) := P

(
S = s

∣∣∣∣∣Xi = x, i = 1, . . . , 8,
∑8

j=1
Tj = 4

)
, s = 10, 11, . . . , 26,

gS′(s) := P

(
S′ = s

∣∣∣∣∣Xi = x, i = 1, . . . , 8,
∑8

j=1
Tj = 4

)
, s = 5, 6, . . . , 18,

are represented in figure 1; they are readily computed from table 1 by aggre-
gating and adding up the probabilities corresponding to the possible values of
S and S′. It is seen that, although the size of the test is always α, the form of
the conditional distribution can vary quite much with the responses.

From the bottom of the last two columns in the table we see that seven
treatment assignments yield a value of S at least as large as s = 23 and 12
assignments yield a value of S′ at least as large as s′ = 16. Thus, under the null
hypothesis the probability that S would yield a value at least as large as the one
observed is 7

70 = 0.1 and the probability that S′ would yield a value at least as
large as the one observed is 12

70 = 0.17. These are the p-values of the conditional
tests based on the inner product statistic in the two situations; for instance, in
none of them is the null rejected at the level of 0.05.

As pointed out by Rosenbaum ([26], pp. 34–35), as n increases the size of T
increases at such a high rate—for instance, if we increased n from 8 to 10 and
m from 4 to 5 in this illustration then the size of table 1 would quadruple—
that it becomes a problem to compute p-values by complete enumeration of its
elements. The method of simulation that we have described as an alternative to
enumeration is in this case equivalent to the pseudo-random generation of rows
from table 1 and the selection of the corresponding values of s or s′, which serve
as random samples from the distribution of S or S′.

Let us now consider a situation where the random vector R of responses is
binary and its coordinates are constrained by the condition

∑8
i=1 Ri = 4, so that

the set of possible outcomes for R coincides with T . This situation corresponds
to Fisher’s tea tasting experiment, alluded to at the end of example 3.1, in
which the lady tries to distinguish the four cups of tea prepared by pouring milk
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Fig 1. Null conditional probability functions of the test statistics S and S′.

first from the four cups prepared by pouring milk last; identifying the binary
treatments with the two ways of serving the tea and the binary responses with
the determination by the lady of the cups prepared according to her favourite
recipe, the null hypothesis corresponds to the assumption that the lady has no
discriminating powers whatsoever. Here, the mechanics of the conditional test
based on the statistic R ·T are exactly the same as before. What is worth noting
in this case is that the test reduces to a Fisher exact test, namely to Fisher’s
test for a 2×2 contingency table with all marginal totals fixed at 4. This follows
by arranging the pairs (Ri, Ti) into a contingency table and observing that
the number of pairs (1, 1) in the table equals R ·T. Moreover, the conditional
distribution of this statistic is multinomial, viz.(

4

s

)(
4

4− s

)/(
8

4

)

for s = 0, 1, 2, 3, 4. Indeed, the randomization picks 4 out of 8 cups to treat
and under the null hypothesis the lady picks 4 of the 8 at random; the ex-
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Table 1

Enumeration of the elements of T and of the corresponding values of the inner product
statistics S and S′

t1 t2 t3 t4 t5 t6 t7 t8 S S′ t1 t2 t3 t4 t5 t6 t7 t8 S S′

1 1 1 1 0 0 0 0 10 5 1 0 1 0 0 1 0 1 18 12
1 1 1 0 1 0 0 0 11 5 0 1 1 0 1 0 0 1 18 11
1 1 1 0 0 1 0 0 12 6 0 1 1 0 0 1 1 0 18 11
1 1 0 1 1 0 0 0 12 6 1 0 0 1 1 0 0 1 18 12
1 1 0 1 0 1 0 0 13 7 1 0 0 0 1 1 1 0 19 12
1 1 1 0 0 0 1 0 13 9 0 0 1 1 1 0 1 0 19 11
1 0 1 1 1 0 0 0 13 6 1 0 1 0 0 0 1 1 19 15
0 1 1 1 1 0 0 0 14 6 0 1 1 0 0 1 0 1 19 12
1 1 1 0 0 0 0 1 14 10 1 0 0 1 0 1 0 1 19 13
1 1 0 1 0 0 1 0 14 10 0 1 0 1 1 0 0 1 19 12
1 0 1 1 0 1 0 0 14 7 0 1 0 1 0 1 1 0 19 12
1 1 0 0 1 1 0 0 14 7 0 0 1 1 0 1 1 0 20 12
1 1 0 0 1 0 1 0 15 10 0 0 1 1 1 0 0 1 20 12
1 0 1 0 1 1 0 0 15 7 0 1 0 0 1 1 1 0 20 12
0 1 1 1 0 1 0 0 15 7 1 0 0 0 1 1 0 1 20 13
1 0 1 1 0 0 1 0 15 10 0 1 1 0 0 0 1 1 20 15
1 1 0 1 0 0 0 1 15 11 1 0 0 1 0 0 1 1 20 16
1 1 0 0 1 0 0 1 16 11 0 1 0 1 0 1 0 1 20 13
1 0 1 0 1 0 1 0 16 10 0 1 0 1 0 0 1 1 21 16
1 1 0 0 0 1 1 0 16 11 0 1 0 0 1 1 0 1 21 13
0 1 1 0 1 1 0 0 16 7 0 0 1 1 0 1 0 1 21 13
0 1 1 1 0 0 1 0 16 10 0 0 1 0 1 1 1 0 21 12
1 0 0 1 1 1 0 0 16 8 1 0 0 0 1 0 1 1 21 16
1 0 1 1 0 0 0 1 16 11 0 1 0 0 1 0 1 1 22 16
0 1 0 1 1 1 0 0 17 8 0 0 1 0 1 1 0 1 22 13
1 1 0 0 0 1 0 1 17 12 0 0 0 1 1 1 1 0 22 13
1 0 1 0 0 1 1 0 17 11 1 0 0 0 0 1 1 1 22 17
0 1 1 1 0 0 0 1 17 11 0 0 1 1 0 0 1 1 22 16
1 0 1 0 1 0 0 1 17 11 0 0 1 0 1 0 1 1 23 16
0 1 1 0 1 0 1 0 17 10 0 1 0 0 0 1 1 1 23 17
1 0 0 1 1 0 1 0 17 11 0 0 0 1 1 1 0 1 23 14
1 1 0 0 0 0 1 1 18 15 0 0 1 0 0 1 1 1 24 17
0 1 0 1 1 0 1 0 18 11 0 0 0 1 1 0 1 1 24 17
1 0 0 1 0 1 1 0 18 12 0 0 0 1 0 1 1 1 25 18
0 0 1 1 1 1 0 0 18 8 0 0 0 0 1 1 1 1 26 18

pression above gives the probability that the lady picks exactly s cups of the 4
treated.

Example 3.8. In any of the situations of examples 3.3–3.5 with nk = 8 and
mk = 4 the workings of the conditional test on the k-th stratum are exactly as
in example 3.7. However, for general nk and mk examples 3.4 and 3.5 exhibit
interesting connections with the z-test and the Wilcoxon-Mann-Whitney test,
respectively, provided an additional assumption is introduced, namely that the
responses in the treated group are not only independent but also identically
distributed and that the same is true of the responses in the control group. It
is evident that under this assumption the null hypothesis of no treatment effect
is equivalent to the equality of the distributions in the two groups.

Consider example 3.4: let R(k) be the vector of responses and T(k) that of

the treatment assignments in stratum k, and set S
(k)
1 = R(k) ·T(k). Then S

(k)
1
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is the sum of the responses among the treated patients (those with treatment
equal to 1). Conditionally on the responses and on the value of the covariates,

S
(k)
1 is equivalent—in the sense that it yields an equivalent conditional test—to

S
(k)
0 := R(k) · 1−R(k) ·T(k) = R(k) ·

(
1−T(k)

)
,

where 1 is the nk-vector with coordinates equal to 1; this S
(k)
0 is of course the

sum of the responses among the control patients (those with treatment equal to
0). Thus the test statistic

S(k) :=
S
(k)
1

mk
− S

(k)
0

nk −mk
,

the difference between the average responses in the treated and control groups,

yields a conditional test that is equivalent to the one provided both by S
(k)
1

and S
(k)
0 . On the other hand, conditionally on the Tis and as a function of the

Ris, S
(k) is a difference between independent sample averages of independent

and identically distributed variables (thanks to the additional assumption), and
so, provided mk and nk − mk are not too small, it is approximately normally
distributed and therefore serves as the basis for the usual z-test. In fact, it turns
out (see pp. 174–175 of [39]) that the exact conditional test based on the inner
product statistic is asymptotically equivalent to the z-test comparing the mean
responses in the treated and control groups. [By ‘exact’ we mean that its type
I error is smaller than or equal to the size of the test (e.g. 0.05 or 0.01); the
type I error of an asymptotic test is approximately equal to the size of the test
(hence could exceed it somewhat).]

In example 3.5 the response vectors R(k) stand for the ranks of the nk mea-

surements made on the patients in stratum k. Consequently, S
(k)
1 = R(k) ·T(k)

is the sum of the ranks in the treated group and, as is well known (e.g. pp.
405–8 of [24]), forms the basis of the Wilcoxon-Mann-Whitney test. Moreover,

S
(k)
1 is approximately normally distributed, so the exact conditional test based

on it is also asymptotically equivalent to a well-known ‘unconditional’ test.

3.2. Testing for an overall effect

So far, our discussion has been centred on tests for a treatment effect within a
fixed stratum—tests involving units that share the same value of the covariates.
Testing per stratum is of interest when the particular value of the covariates
determines interesting subpopulations (e.g. women in a certain age group) and
the strata are not too small. However, in many applications the strata reflect a
range of representative conditions, subpopulations, types of patients, etc., and it
is of interest to test for an overall treatment effect, i.e. an effect averaged across
that range. In other applications each stratum consists of units that depend on
each other in some sense (e.g. they are siblings) and are sampled randomly from
a population (e.g. of families with two or more children) and the interest lies
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in the existence of a treatment effect in that population. In this subsection we
consider the problem of combining evidence for a treatment effect across strata.
A general approach to this problem is to develop a test based on a statistic
that is a sum or weighted sum of statistics computed per stratum and whose
distribution under the null hypothesis that no treatment effect exists in any of
the strata is determined from the joint distribution of all treatment assignments.
By the second part of A0 (by A0′ when stratifying on propensity scores) and
A1 (A1′ in case-referent studies), the latter distribution is given by the product
of probability functions of the form (3.4), one probability function per stratum.

Example 3.9. Consider the situation of example 3.1 in the guise of several tea
tasting experiments like the one described at the end of example 3.7. Let the K
different values of the covariate vectors represent K ladies and write S(k) for the
inner product statistic computed with the data from the k-th lady; S(k) can be
used to test whether the k-th lady possesses any discriminating power. Suppose
first that each lady has come forward with the claim that she can discriminate
between the two ways of preparing tea. A legitimate point of view would be to
test the null hypothesis that none of the ladies has discriminating powers. In
this case the rejection of the null would indicate that at least one of the ladies
has discriminating powers, and if rejection occurred then we would probably
want to identify the ladies more likely to be the discriminating ones—which
could be done by performing the K conditional tests separately and picking
the ladies with smaller p-values (taking s = 4 in the probabilities at the end of
example 3.7 shows that the smaller p-value attainable in each test is 1/70). To
test the null, one could use the Mantel-Haenszel statistic (p. 31 of [26])

S :=

K∑
k=1

S(k)

(the inner product of the vector of treatments obtained by concatenating the
vectors of treatments of the K ladies with the vector of responses obtained by
concatenating their vectors of responses). Under the null hypothesis, the S(k)s
have the same distribution—the multinomial distribution given at the end of
example 3.7—and are independent, so the null distribution of S can, in princi-
ple, be tabulated and the p-value of the test computed from it; alternatively the
p-value can be estimated by simulation (generating independent sets of K obser-
vations from the multinomial distribution and adding them to get observations
from the null distribution of S).

Whatever the result of this test (rejection or non-rejection of the null), any
inference derived from it would have to refer to the particular group of ladies
who made the claim—not, for instance, to an arbitrary person—and perhaps
even more specifically to the group of ladies at the time that the test was carried
out (for even a person’s tasting buds can change with time).

Now suppose that the ladies have been sampled randomly from a certain
population. A legitimate null hypothesis in this case would reflect the sampling
mechanism, and would therefore state that a lady randomly sampled from the
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population has no discriminating powers. The population being finite, this would
be equivalent to the hypothesis that no lady in the population has discriminating
powers. The test based on S, exactly with the same mechanics, would serve here
as well. The inferences from the test, however, even if based on a small fraction
of the population, would concern the whole population (not just the ladies who
turned up in the sample).

Example 3.10. Consider the two situations of example 3.8: In the first, S(k),
the difference between the average responses in the treated group and the av-
erage response in the control group, is used to test the null hypothesis within

stratum k; in the second, S
(k)
1 , the sum of the ranks in the treated group, is

used for the same purpose. In both cases, the data giving rise to the responses
in stratum k consist of two random samples, one drawn from a subpopulation
of treated patients and the other from a subpopulation of controls (in the first
case the responses are the measurements and in the second they are the ranks
of those measurements).

Suppose that the K strata represent disjoint and exhaustive classes of indi-
viduals of similar age, of the same sex, belonging to the same ethnic group, etc.
Then a null hypothesis pertaining to all strata is that in every class of individu-
als the distribution of the treated individuals is equal to the distribution of the
controls. To test this hypothesis we may consider

S :=

K∑
k=1

S(k) and S′ :=
K∑

k=1

S
(k)
1 ,

respectively in the first and second situations. As in example 3.9, if the result
of the test is found to be significant then the p-values of the tests per stratum
may be examined in order to identify the classes of individuals for which the
treatment effect is likely to be stronger.

The mechanics of the tests based on S and S′ are completely analogous to
those based on the Mantel-Haenszel statistic of example 3.9; thus, one can tab-
ulate the distribution of each statistic and use it to compute the p-value, or else
estimate the p-value by simulation. Under the additional assumption introduced
in example 3.8 one can even compute the approximate null distributions of S
and S′, which are normal (at least if the mk and nk −mk are not too small).

Evidently, S and S′ are not the only possible statistics that can be used to
test the null hypothesis just defined. For example, S′, often called the stratified
rank sum statistic, may be replaced by a statistic proposed by Hodges and
Lehmann which sometimes (namely when K is large compared to N ; cf. p. 33
of [26]) is more powerful (better at detecting departures from the null) than S′.
The Hodges-Lehmann statistic has exactly the same inner product form as S′,
but the responses on which it is based are defined differently: first, the original
measurements within each stratum have their sample means subtracted from
them, and then they are pooled into a single set and ranked; finally, these ranks
are used as the responses. For the rest, the mechanics of the resulting test are
again completely analogous to those of the Mantel-Haenszel statistic.
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Example 3.11. In the situation of example 3.3 let mk = nk−mk = 1 for all k,
let the responses be binary—1 standing for a positive or successful outcome—
and interpret the different values of the covariate vectors, x1,x2, . . . ,xK , as
labels of pairs of patients—siblings, identical twins, individuals matched on
personal characteristics, etc. Thus, each stratum contains a pair of patients,
only one of which is treated, and there are N = 2K patients in total. By A1,
within each stratum both treatment assignments have probability 1/2; under
the null (no treatment effect in stratum k), conditionally on the responses of
the two patients the two treatment assignments still have probability 1/2.

Evidently, it is not possible to test for a treatment effect per stratum. To
test for a treatment effect on the set of pairs of patients, or on a population
they may represent, we may consider the number of positive outcomes among
treated patients,

S :=
∑

k:Tk=1

Rk =

K∑
k=1

TkRk,

or the difference between the proportion of positive outcomes among treated
patients and the proportion of positive outcomes among controls,

D :=
1

K

∑
k:Tk=1

Rk − 1

K

∑
k:Tk=0

Rk =
1

K

K∑
k=1

TkRk − 1

K

K∑
k=1

(1− Tk)Rk.

Since K · D = 2
∑K

k=1 TkRk −
∑K

k=1 Rk = 2 · S −
∑K

k=1 Rk, conditionally on
the responses the distributions of S and D differ only by a change of scale and
location and hence yield equivalent tests (cf. the argument on p. 133, before
the remarks). In fact, both tests are equivalent to McNemar’s test. To see this,
recall that in the latter test the K pairs of responses corresponding to the paired
patients are arranged in the table

Response

in control

0 1 Totals

Response in 0 n1,1 n1,2 n1·
treated patient 1 n2,1 n2,2 n2·

Totals n·1 n·2 K

where n1,1 stands for the number of pairs whose treated and control patients
have both a negative outcome, n1,2 for the number of pairs whose treated patient
has a negative outcome and whose control has a positive outcome, etc., so that
n2· is the number of treated patients with a positive outcome and n·2 the number
of control patients with a positive outcome. McNemar’s statistic (pp. 492–3 of
[24]) is equivalent to n1,2 − n2,1, and clearly K ·D = n2· − n·2 = n2,1 − n1,2.

The test based on D can be carried out by tabulating the null distribution
of the statistic or by estimating the p-value by simulation. Asymptotically (or
for large ni,js), and provided the pairs of patients are randomly sampled from
a large population, the test is also equivalent to the McNemar test as this is
usually applied, appealing to a normal/chi-square approximation.
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Example 3.12. In a case-referent study (example 3.6) a matched set consists
of individuals sharing the same covariate vector, at least one of whom has the
disease. The data from such a study are sometimes arranged in a contingency
table, even though this disregards the structure of the matched sets:

Exposure

1 0 Totals

Disease 1 n1,1 n1,2 n1·
0 n2,1 n2,2 n2·

Totals n·1 n·2 N

A natural test statistic for the null hypothesis of no treatment effect (again
equivalent to

∑
i TiRi) is the difference between the proportions of individuals

exposed in the diseased and non-diseased individuals,

D :=

∑N
i=1 TiRi∑N
i=1 Ri

−
∑N

i=1 Ti(1−Ri)∑N
i=1 (1−Ri)

=
n1,1

n1·
− n2,1

n2·
.

Its null distribution is obtained by computing the formula for D for all per-
mutations of the Tis within each matched set, and an approximation to it is
obtained by permuting the Tis pseudo-randomly within matched sets (indepen-
dently in different matched sets) to get a pseudo random sample from the null
distribution of D. The usual approximate test for comparing two probabilities
cannot serve to approximate nor to replace the test based on D, since the Tis
are permuted within matched sets and, due to the sampling plan of the study,
the summands in n2,1/n2· need not be identically distributed.

3.3. The problem of few, sparse strata

Following stratification, a stratum can be included in the testing procedure only
if it contains at least two units with different values of treatment (otherwise
the conditional null distribution of treatment assignments, given by (3.4), is
degenerate at a single value of treatment). However, stratification usually yields
several strata with the same level of treatment and which therefore have to be
discarded. This is particularly likely to happen if the majority of units share the
same treatment or if the strata are too small. Unfortunately, strata are bound to
be small if there are too many covariates relative to the total number of units. For
example, even in the most favourable situation where the d coordinates of the
Xis are binary there are 2d distinct possible values for Xi and as many potential
strata; and if we are to get an average of two observations per stratum when the
coordinates of Xi are independent then a sample size of N = 2d+1 is required.
Sometimes, due to only a few and small strata being available for testing, no
test procedure can provide substantial evidence for a treatment effect because
none of the probabilities (3.4) is small enough. To illustrate these difficulties it
is enough to mention a quick example from subsection 3.4.2 of [26]: Fourteen
patients were divided into nine strata on the basis of three covariates; six of the
strata contained only patient, one contained only two treated patients, another
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contained two treated patients and two control patients, and a last one contained
one treated patient and one control. Clearly, only the last two strata can be used
for testing and there are only

(
4
2

)(
2
1

)
= 6×2 = 12 possible treatment assignments,

so the smallest probability attained by the distribution of treatment assignments
(and hence the smallest p-value attainable) is 1

12 ≈ 0.083.
By definition, matched sets contain at least two units with different values

of treatment. However, matching suffers from essentially the same difficulties as
stratification does: unless the dimension of the Xis is low, it is difficult to find
good matches for all units.

When it works—when propensity scores can be accurately estimated—the
Rosenbaum–Rubin approach mitigates these problems, and in some cases makes
use of most of the data. One may anticipate that the Rosenbaum–Rubin ap-
proach will be particularly useful in situations where the treatment takes only a
few of values, the sample size is large and the Xis have more than just a couple
of components; if the sample size or the dimension of Xi are small then strati-
fying/matching on the Xis, if possible at all, may still be the better approach.

3.4. Checking ‘balance’: assessment of strata and matched sets

Because Xi typically includes some continuous random variables, stratification
is often achieved by splitting the range of each covariate into intervals or finite
subsets and taking their Cartesian product as the strata. Thus, the conditional
probabilities often involve Xi ∈ Nx for some neighbourhood Nx of x rather

than the Xi = x appearing in the probabilities f
(x)
I . Fine partitions—partitions

that result from splitting the range of each covariate into many intervals or finite
subsets—conform better to assumptionsA1 andA1′ and therefore remove more
of the bias due to confounding, but they lead to fewer useable strata—strata
containing at least two different levels of treatment—and smaller sample sizes
per stratum, and hence to lower power in testing for a treatment effect and lower
efficiency in estimating the treatment effect. Conversely, coarser partitions yield
more and larger strata, and hence lead to tests with greater power of rejecting
the null hypothesis and to estimates with smaller variance; however, the tests
have a greater type I error and the estimates a greater bias than desired. Like in
many statistical procedures there is thus a trade-off between bias and variance
in the choice of the stratification, and this calls for means of assessing the quality
of a stratification. Under A1, an intuitively obvious way of checking whether
a given stratification is fine enough (and which evidently applies to matched
sets as well) consists of comparing the joint distribution of the covariates across
the different levels of treatment per stratum: if the levels of treatment appear
to be balanced—i.e. if the joint distribution does not appear to vary with the
treatment—then the stratification should be appropriate. Ideally, one should
choose the coarser stratification among all sufficiently fine stratifications, but in
practice the choice is not always straightforward.

In order to provide a justification for this method, suppose thatA1 holds with

f
(x)
I continuous in x (more precisely, in those coordinates of x that correspond
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to continuous covariates in Xi). Fix x ∈ R
d and a neighbourhood Nx of it, and

write as usual I = {i1, i2, . . . , in} for a set of unit labels and (ti)i∈I ∈ N
n
0 . For

each x′ ∈ Nx and each neighbourhood Nx′ of x′ contained in Nx we have

P (Ti = ti, i ∈ I|Xi ∈ Nx, i ∈ I)P (Xi ∈ Nx′ , i ∈ I|Xi ∈ Nx, Ti = ti, i ∈ I) =

P (Xi∈Nx′, Ti= ti, i ∈ I)

P (Xi ∈ Nx, i ∈ I)
=

P (Xi∈Nx′ , i ∈ I)

P (Xi∈Nx, i ∈ I)
P (Ti= ti, i ∈ I|Xi∈Nx′, i ∈ I)=

P (Xi ∈ Nx′ , i ∈ I|Xi ∈ Nx, i ∈ I)P (Ti = ti, i ∈ I|Xi ∈ Nx′ , i ∈ I).

If Nx is small enough,

P (Ti= ti, i∈I|Xi∈Nx, i∈I) ≈ f
(x)
I ((ti)i∈I)

≈ f
(x′)
I ((ti)i∈I) ≈ P (Ti= ti, i∈I|Xi∈Nx′ , i∈I),

so dropping the left- and rightmost probabilities here from the left- and right-
most members of the identities above yields the approximate identity

P (Xi ∈ Nx′ , i ∈ I|Xi ∈ Nx, Ti = ti, i ∈ I) ≈ P (Xi ∈ Nx′ , i ∈ I|Xi ∈ Nx, i ∈ I)

for x′ ∈ Nx. In words, conditionally on the covariate vectors of the units in
I being contained in a neighbourhood Nx their joint distribution is about the
same irrespectively of which units received which treatment.

To make this property operational one needs to assume that the pairs (Xi, Ti)
with Xi ∈ Nx constitute a random sample, or at least that they are identically
distributed, so that empirical distributions or sample means of the covariates
within subgroups of units receiving different treatments have a meaning and
hence can be compared. In terms of expectations, such an assumption implies
that if Nx is small then

E(Xi|Xi ∈ Nx, Ti = t) (3.6)

is practically independent of t and of i. One way of checking the quality of
a stratification is thus to compare sample versions of the expectation in (3.6)
for different values of t. Another, more thorough way, which is especially con-
venient when the strata are large, is to test the equality of the distributions
corresponding to different values of t. Illustrations of this method will be pro-
vided in section 6, although there, in order to save space, we shall only check
the equality of marginal distributions.

This method applies in particular when the covariates consist of propensity

scores, assuming A0′ and in particular the same propensity score f (x) ≡ f
(x)
i

for all units; however, there is another, perhaps more detailed way of assessing
the quality of a given stratification/matching based on the propensity score and
which follows from the following result of Rosenbaum and Rubin [28].

Writing f for a probability function on N0 and Sf = {x : f (x) = f}, we have

P
(
Ti = t

∣∣∣Xi = x, f (Xi) = f
)
= P (Ti = t|Xi = x) = f(t), x ∈ Sf ,
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and, as seen earlier (see (2.3)), P
(
Ti = t

∣∣f (Xi) = f
)
= f(t). Assuming that the

Xis are discrete and using these identities in

P
(
Xi=x

∣∣∣Ti = t, f (Xi)=f
)
=P

(
Xi=x

∣∣∣f (Xi)=f
)P (

Ti = t
∣∣Xi=x, f (Xi)=f

)
P
(
Ti = t

∣∣f (Xi)=f
)

gives

P
(
Xi = x

∣∣∣Ti = t, f (Xi) = f
)
= P

(
Xi = x

∣∣∣f (Xi) = f
)
, x ∈ Sf .

In other words, conditionally on the event
{
f (Xi) = f

}
the joint distribution of

the covariates of unit i is independent of that unit’s treatment assignment. An
analogous result is valid if the Xis are continuous and have densities.

The result is especially useful when there are only a couple of different treat-
ments. In particular, if the Tis are binary, 1 indicating that the unit is treated
and 0 that it is a control, it reads

P
(
Xi = x

∣∣∣Ti = 0, f (Xi)(1) = p
)

= P
(
Xi = x

∣∣∣f (Xi)(1) = p
)

= P
(
Xi = x

∣∣∣Ti = 1, f (Xi)(1) = p
)

for x such that p = f (x)(1)∈ ]0, 1[, and is called the balancing property of the
propensity score (pp. 297–9 of [26]). Thus, in this case, in order to assess the
quality of a stratification or matching one checks whether the subgroup of
treated units and the subgroup of control units within each stratum or matched
set have approximately the same distribution of covariates.

Under A1′, and if the responses are discrete, the assessment of a stratification
on the covariates is based on the approximate identity

P
(
Xi ∈ Nx′ , i ∈ I

∣∣∣Xi ∈ Nx, Ri = r, Ti = ti, i ∈ I
)
≈

P (Xi ∈ Nx′ , i ∈ I|Xi ∈ Nx, Ri = r, i ∈ I),

according to which the distribution of the Xis conditionally on their falling in
a neighbourhood Nx and on the responses being equal to a given r is about the
same irrespectively of which units received which treatment. If the responses are
continuous one replaces Ri = r by Ri ∈ Nr, say, in the approximate identity.

4. Estimation of a treatment effect

It is often of interest to estimate the magnitude of a treatment effect rather than
just testing for the existence of one. Naturally, this more ambitious task requires
different, stronger assumptions than those used for testing. In this section we
consider two assumptions that appear to be valid in many situations and in some
situations—when a stratification (typically a stratification on the propensity
score) succeeds in using practically the whole sample—lead to useful estimation
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procedures. In subsection 4.1, under the same assumptions, we digress a little
from stratification methods to consider an entirely different, perhaps more direct
method of estimating the magnitude of a treatment effect, based on estimating
‘counterfactuals’ by a non-parametric estimator of the response conditionally on
the covariates. Case-referent studies (examples 3.6 and 3.12) require a somewhat
different approach to estimation and are treated in subsection 4.2.

In the first place, we need to be able to quantify a treatment effect. Treatment
effect was defined at the beginning of section 2 in a very general way, namely
as the dependence of the responses on the treatments given the covariates (de-
pendence which could even vary with the units considered). Here we continue
to assume the basic model and hence to adopt the same definition of treatment
effect, but we want to quantify it. This can be done in many ways, depending
on the type of response and on what is considered practically relevant; however,
treatment effects are most conveniently quantified in terms of parameters of the
joint distribution of a unit’s response and treatment conditionally on the values
of its covariates, and on averaged versions of those parameters. This leads us to
assume, in addition to the basic model, that

A2 For any x ∈ R
d, conditionally on Xi = x the vector of the response and

treatment of an arbitrary unit i, (Ri, Ti), has a distribution function G(x)

that may depend on x but not on i.

An immediate consequence of A2 is that

f (x)(t) ≡ f
(x)
i (t) = P (Ti = t|Xi = x) (4.1)

is independent of i. Also, the distribution function of Ri conditional on the event
{Xi = x, Ti = t}, denoted by H(x,t), satisfies

P (Ti = t|Xi = x)H(x,t)(r) = G(x)(r, t), (4.2)

and therefore is also independent of i. (In contrast, whether the (Ri, Ti)s are
identically distributed depends on whether the Xis are identically distributed.)

Under A2 we can in principle quantify the treatment effect conditionally
on the covariates: If for example E(Ri) exists and the Tis are finite then the
covariance of Ri and Ti conditional on Xi = x,

κ(x) := E[RiTi|Xi = x]− E[Ri|Xi = x]E[Ti|Xi = x],

exists and may be used as a measure of the effect of treatment on the response
conditionally on the value of Xi. Under the null hypothesis of no treatment
effect we have κ(x) = 0, though of course κ(x) = 0 does not imply that there is
no treatment effect.

Apart from its relative simplicity—if we compare it to parameters expressing
the variation of H(x,t) or of its mean with t for fixed x—there are at least three
reasons for recommending κ(x): First, in most applications, if a treatment has
an effect on a response then that effect usually consists of an average increase
or decrease in the response, and hence can be detected by estimating κ(x) or
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averages of it for varying x. Secondly, κ(x) is the theoretical analogue of the
sample covariance introduced in subsection 3.1 for the testing of a treatment
effect, which was seen to be equivalent to the inner product or sum statistic.
Finally, and paralleling the property described in example 3.8, if the treatment
assumes only two values—say it is binary—then the covariance is essentially
equivalent to the difference between the mean responses under one and the
other treatment,

δ(x) := E[Ri|Xi = x, Ti = 1]− E[Ri|Xi = x, Ti = 0].

Indeed, it is easy to check that if Ti is binary then

κ(x) = δ(x) · f (x)(0) · f (x)(1).

For simplicity, we refer to κ(x) and δ(x) as the treatment effect at x (or con-
ditionally on Xi = x); and when referring to the treatment effect at x without
further specification we shall denote it by e(x).

Of course, there are other definitions of e(x) which are more convenient in
other situations. For example, if the responses are binary, so that the expec-
tations involved in the δ(x) above are conditional probabilities, a ratio or a
logarithm of ratios rather than a difference may be preferable.

Now suppose that E[e(Xi)] exists for each i; we define the overall treatment
effect as

ε := E[e(X)],

where the distribution of X is an average (to be specified) of the distributions
of X1,X2, . . . ,XN .

This is just one of the possible ways of averaging e(x) with respect to x. It
may be interpreted as the treatment effect on a unit drawn randomly (according
to a uniform distribution, for example) from the N units represented in the
observational data set, and it accommodates a few standard situations. For
example, if the Xis have the same distribution function F then the expectation
E[e(X)] may be taken with respect to F . If instead the Xis are ‘stratified’, in the
sense that there exists a partition I1, I2, . . . , IK of {1, 2, . . . , N} such that Xi has
distribution function Fk whenever i ∈ Ik (k = 1, 2, . . . ,K), then the expectation

may be taken with respect to F :=
∑K

k=1 Fkwk, where wk = #Ik/N . And if
the wks in the latter average do not reflect the proportions of elements of each
stratum in a certain population of interest then the expectation may be taken
with respect to F :=

∑K
k=1 Fkw

′
k, where the w′

ks are the correct proportions.

Remark. The overall treatment effect has to be distinguished from any pa-
rameter that quantifies differences between mean responses at different levels of
treatment; in fact, this distinction lies at the root of the problem of confounding
and is what prompts the need for ‘correcting for confounding’ by methods based
on stratification and matching. To elaborate a little on this let us consider the
situation of a binary treatment.

If Ti = 1 indicates that unit i receives treatment and Ti = 0 that it is kept
as a control, then the mean difference between the responses in the treated and
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control groups,

Δ := E[Ri|Ti = 1]− E[Ri|Ti = 0],

quantifies the difference between mean responses at the two levels of treatment.
Since E[Ri|Ti = t] is obtained by integrating E[Ri|Xi = x, Ti = t] with respect
to the distribution of Xi conditional on Ti = t, this Δ is obtained by integrating
E[Ri|Xi = x, Ti = 1] and E[Ri|Xi = x, Ti = 0] with respect to potentially
different distributions and subtracting the results. In contrast, ε is obtained by
integrating E[Ri|Xi = x, Ti = 1] − E[Ri|Xi = x, Ti = 0] with respect to the
same distribution.

Despite the differences in the computation of Δ and ε and the obvious cor-
rectness of the latter, one could be tempted to treat the observational study as
an experimental study and to test for a treatment effect by estimating Δ (which
indeed would be the correct thing to do in the latter type of study). This ‘naive
approach’ would ignore the fact that Xi and Ti are dependent, for which reason
Δ �= ε in general. For example, it can be seen that if the vectors (Xi, Ti, Ri)
are identically distributed, the distribution of Xi conditional on Ti = t has a
positive density fXi|Ti=t and the distribution of (Xi, Ri) conditional on Ti = t
has a density fXi,Ri|Ti=t then the bias of the naive approach is

ε−Δ =

∫ ∫
r

{(
fXi(x)

fXi|Ti=1(x)
− 1

)
fXi,R|Ti=1(x, r)−

(
fXi(x)

fXi|Ti=0(x)
− 1

)
fXi,R|Ti=0(x, r)

}
dx dr,

where fXi is a density ofXi; ifXi and Ti are independent then fXi = fXi|Ti=0 =
fXi|Ti=1 and both terms inside the integral vanish, so ε−Δ = 0; otherwise, only
a miraculous cancellation will bring the bias to 0.

Having defined parameters that quantify treatment effects, we need an as-
sumption that allows us to estimate and find confidence intervals for them:

A3 For any {i1, i2, . . . , in} ⊂ {1, 2, . . . , N}, conditionally on

Xi1 = xi1 ,Xi2 = xi2 , . . . ,Xin = xin , Ti1 = ti1 , Ti2 = ti2 , . . . , Tin = tin ,

the responses Ri1 , Ri2 , . . . , Rin are independent.

Except for the conditioning on the covariates, this corresponds to the as-
sumption of ‘no interference between units’ (pp. 41–42 of [26]). Thanks to it,
conditionally on their covariates and treatments the responses of a subset of
units form a random sample, so that standard statistical methods based on the
central limit theorem can in principle be used for estimating and testing hy-
potheses on e(x) and, by suitable modifications, on ε. As pointed out on p. 42
of [26], there are situations where A3 may not hold: for example, if treatment
consists of vaccination, non-vaccinated units in contact with vaccinated ones
may have better responses than ‘genuine’ controls.
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We now consider the problem of estimating and finding confidence intervals
for e(x) and ε. The estimation of e(x) is straightforward: Estimate e(x) by the
empirical covariance of the Tis and Ris,

ê(x) :=

∑
i:Xi=x RiTi

#{j : Xj = x} − R̄xT̄x,

where

T̄x :=
1

#{j : Xj = x}
∑

i:Xi=x

Ti and R̄x :=
1

#{j : Xj = x}
∑

i:Xi=x

Ri,

or by its unbiased version (with #{j : Xj = x} − 1 in place of #{j : Xj = x}).
If the treatments are binary one should instead use

δ̂(x) :=

∑
i:Xi=x RiTi

#{j : Xj = x, Tj = 1} −
∑

i:Xi=x Ri(1− Ti)

#{j : Xj = x, Tj = 0}

to estimate δ(x), since this parameter has a more straightforward interpretation
and is easier to estimate than the covariance.

To estimate ε one may take

ε̂ :=
1

N

N∑
i=1

ê(Xi).

This should be (approximately) unbiased for ε when this parameter is computed
by averaging the distributions of X1,X2, . . . ,XN with equal weights; if other
weights are used to compute ε then those weights must be used to compute ε̂.

The simplest general method for obtaining confidence intervals for e(x) and
ε (within the scope of our assumptions) is based on the normal approximation
to the distributions of ê(x) and ε̂. For binary treatments this approximation
amounts to treating the Tis as fixed and using the central limit theorem: Writing
SE(δ̂(x)) for the square root of the unbiased estimate of the variance of δ̂(x)
(namely the sum of the sample variance of the Ris in the treated group divided
by #{j : Xj = x, Tj = 1} − 1 and the sample variance of the Ris in the control
group divided by #{j : Xj = x, Tj = 0} − 1) and

SE

(
1

N

∑N

i=1
δ̂(Xi)

)2

=
1

N2

∑N

i=1
SE(δ̂(Xi))

2,

we have, provided neither #{j : Xj = x, Tj = 1} nor #{j : Xj = x, Tj = 0} is
‘too small’, that

Z(x) :=
δ̂(x)− δ(x)

SE(δ̂(x))
and Z :=

1
N

∑N
i=1 δ̂(Xi)− ε

SE
(

1
N

∑N
i=1 δ̂(Xi)

)
are approximately standard normally distributed, and hence may be used to
compute approximate confidence intervals for the unknown parameters.
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Clearly, these statements implicitly assume that the Xis are discrete, while
in reality they may have continuous coordinates and in general events such as
{Xi = x} must be seen as abbreviations of {Xi ∈ Nx} for some neighbourhood
Nx determined by the stratification/matching. So the estimation method pro-
posed is approximate not just because of the normal approximation but also
because the assumptions it relies on may in actuality hold only approximately
(even if formally they hold exactly). It is also clear from the definitions of ε and
ε̂ that the method is practicable only in situations where almost all the units
fall into useable and relatively large strata. Unfortunately, when stratifying the
data on many covariates a substantial portion of them will have to be left out,
even if the sample is large. The most favourable situation is perhaps the one in
which the one-dimensional propensity score can be accurately estimated (this
situation will be considered below); even then, because our normal approxima-
tion ignores the variability in the estimate of the propensity score and in the
subsequent stratification on it, the formula for the approximate variance of ε̂ and
the associated confidence intervals for ε will tend to be somewhat optimistic.
These observations will be illustrated by the examples of section 6.

A similar method can be used for more general types of treatment, but it is
somewhat more involved and the correctness of the corresponding approxima-
tion is even more uncertain. First, in order to be able to regard the Tis as fixed
and to use the normal approximation on the Ris it appears necessary to rewrite
κ(x) in terms of expectations conditional on Ti = t as well as on Xi = x. For
example, suppose the Tis only take the values 0, 1 and 2. Then it is seen that

κ(x) = f (x)(0)f (x)(1) {E[Ri|Xi = x, Ti = 1]− E[Ri|Xi = x, Ti = 0]}+

f (x)(1)f (x)(2) {E[Ri|Xi = x, Ti = 2]− E[Ri|Xi = x, Ti = 1]}+

2 f (x)(0)f (x)(2) {E[Ri|Xi = x, Ti = 2]− E[Ri|Xi = x, Ti = 0]}.

An estimate κ̂(x) of κ(x) is obtained by replacing E[Ri|Xi = x, Ti = t] and
the propensity scores f (x)(t) in this formula by their empirical counterparts.
Neglecting the variability of the Tis and of the estimates of f (x)(t), a formula
for the variance of κ̂(x) can be computed. This variance can be estimated in
terms of the sample variance of the Ris, yielding a standard error SE(κ̂(x)), and
the usual standardized version of κ̂(x), formed by subtracting κ(x) and dividing
by SE(κ̂(x)), can be used to compute approximate intervals for κ(x). Intervals
for the overall treatment effect are obtained by averaging the κ̂(x) estimates as
indicated for the case of binary treatments.

Note that nowhere has it been assumed that theXis form a random sample—
they could, for example, form a stratified sample from a population—nor that
the Tis are independent conditionally on the Xis—they are merely assumed
to have the same probability distribution given by (4.1). [For example, if the
number of treatments is limited then the treatment assignments to different
units may be dependent (but still exchangeable) conditionally on the covariates.]
It is only conditionally on the values of the covariates and treatment assignments
that the responses are assumed to be independent.
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However, if we consider estimating ε by the method just described but with
the propensity scores f (Xi) in place of the Xis then we probably need to assume
more, namely a combination of A0′ and A3, which together imply that the
(Xi, Ti, Ri)s form a random sample:

A3′ (X1, T1, R1), (X2, T2, R2), . . . , (XN , TN , RN ) are independent and identi-
cally distributed.

To see that this condition yields A3 with the f (Xi)s in place of the Xis—and
hence provides some justification for the estimation method when stratifying on
the propensity score—note that by A3′ we have, in the usual notation,

P
(
Ri ≤ ri, i ∈ I

∣∣∣f (Xi) = fi, Ti = ti, i ∈ I
)
=

∏
i∈I

P
(
Ri ≤ ri

∣∣∣f (Xi) = fi, Ti = ti

)
.

Finally, let us note that although our definition of overall treatment effect ε
involved conditioning on Xi an equivalent definition is obtained by conditioning
on f (Xi). In order to show this, it is enough to verify that integrating

P (Ri ≤ r|Xi = x, Ti = t)

with respect to the distribution of Xi gives the same result as integrating

P
(
Ri ≤ r

∣∣∣f (Xi) = f, Ti = t
)

with respect to the distribution of f (Xi). For simplicity we do this in the case
where Xi is discrete, when f (Xi) also is discrete: Using P

(
Ti = t

∣∣f (Xi) = f
)
=

f(t) (see (2.3)), we have

∑
f

P
(
Ri≤r

∣∣∣f (Xi)=f, Ti= t
)
P
(
f (Xi)=f

)
=
∑
f

P
(
Ri≤r, f (Xi)= f, Ti= t

)
P
(
Ti = t

∣∣f (Xi) = f
) =

∑
f

∑
x:f(x)=f

P (Ri ≤ r,Xi = x, Ti = t)

f(t)
=
∑
f

∑
x:f(x)=f

P (Ri ≤ r,Xi = x, Ti = t)

f (x)(t)
=

∑
f

∑
x:f(x)=f

P (Ri ≤ r,Xi = x, Ti = t)

P (Xi = x, Ti = t)

P (Xi = x, Ti = t)

P (Ti = t|Xi = x)
=

∑
f

∑
x:f(x)=f

P (Ri ≤ r|Xi = x, Ti = t)P (Xi = x) =

∑
x
P (Ri ≤ r|Xi = x, Ti = t)P (Xi = x),

as required.

Remark. The method of estimation described here is essentially the one pre-
sented in section 2.3 of Lunceford and Davidian [19], who review methods of
estimation based on stratification on the propensity score. A class of estimators



Methods for observational data 151

that we do not consider consists of weighted averages of the responses weighted
by functions of the propensity scores. These seem to be very popular but we
have found no evidence that they are superior to the natural, simple and trans-
parent estimator considered here. In fact, the arguments on pp. 279–294 of [10]
and the results of [11] indicate that the contrary is probably true in general.

4.1. Digression: an approach based on predicting ‘counterfactuals’

In general, the applicability of the methods considered in this work depends on
the availability of large samples. Since this is especially true of the method of
stratification on the propensity score function when the latter is estimated by
a non-parametric predictor, it is natural to ask whether, in situations where a
large sample is available, treatment effects can be estimated directly by a non-
parametric predictor of the response conditionally on the covariates and on the
treatment. To see that this is possible in principle, recall first from the beginning
of this section that integrating

e(x) = E[Ri|Xi = x, Ti = 1]− E[Ri|Xi = x, Ti = 0] =: ϕ(x, 1)− ϕ(x, 0)

with respect to the distribution of the Xis yields the treatment effect

ε = E[e(X)] = E[ϕ(X, 1)]− E[ϕ(X, 0)].

If N is large, this is close to

εN :=
1

N

∑N

i=1
ϕ(Xi, 1)− ϕ(Xi, 0).

Consequently, if N is large and if for each x ∈ R
d and t = 0, 1 we can find an

estimator ϕ̂N (x, t) of ϕ(x, t) = E[R|X = x, T = t] then we can estimate both
εN and ε by

ε̂N :=
1

N

∑N

i=1
ϕ̂N (Xi, 1)− ϕ̂N (Xi, 0). (4.3)

Now let Π(x, t) be a consistent estimator of ϕ(x, t) constructed from the
data; for example, Π(x, t) may be a random forest predictor or a non-parametric
regression (e.g. Nadaraya-Watson) predictor. Then an estimate of ϕ(Xi, 1) is

ϕ̂N (Xi, 1) := TiRi + (1− Ti)Π(Xi, 1),

and an estimate of ϕ(Xi, 0) is

ϕ̂N (Xi, 0) := (1− Ti)Ri + TiΠ(Xi, 0).

Indeed, if Ti = 1 then Ri is an unbiased estimate of ϕ(Xi, 1); and if Ti = 0
then Π(Xi, 1) is an approximately unbiased estimate of ϕ(Xi, 1), which in that
case can be regarded as the expected value of the response Ri of the (unob-
served) counterfactual observation (Xi, 1, Ri) associated with the observation
(Xi, 0, Ri). Similarly, if Ti = 0 then Ri is an unbiased estimate of ϕ(Xi, 0); and
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if Ti = 1 then Π(Xi, 0) is an estimate of ϕ(Xi, 0), the expected value of the
response of the counterfactual (Xi, 0, Ri) associated with (Xi, 1, Ri).

With these estimates of ϕN (Xi, 1) and ϕN (Xi, 0), the estimator (4.3) has
similarities with the ‘matching estimators’ studied in [1], with the parametric
estimator of Snowden, Rose and Mortimer [37], who attribute it to Robins [25],
and with the non-parametric estimator studied in [4]. We expect it to be ap-
proximately unbiased for the treatment effect provided Π(x, t) is a consistent
predictor. Because its bias is difficult to gauge—if only because it is intended
to estimate εN rather than ε—and its variance difficult to estimate (some simu-
lations of ours and the work of [1] concerning matching estimators suggest that
the bootstrap cannot be used to obtain variance estimates), such an estimator
may be of limited value. However, it can be useful as a check on the estimates
obtained by other means (e.g. by stratification on the propensity score). With
a very large sample one may even consider splitting the data into a number of
subsets of equal size, compute an estimate of the treatment effect with each sub-
set, and then compute a variance estimate from the sample of treatment effect
estimates; this variance estimate is typically an upper bound for the variance
of the treatment effect estimate based on the whole data set and hence may be
used to produce a conservative confidence interval for the treatment effect. The
method will be illustrated in subsection 6.6.

4.2. Case-referent studies

Case-referent studies serve to illustrate other ways of quantifying and estimating
a treatment effect. In principle, any measure of discrepancy e(x) between

P (R = 1|T = 1,X = x) and P (R = 1|T = 0,X = x) (4.4)

can be used to quantify the treatment effect in a matched set of units charac-
terized by the same value x of the covariate. Once such a measure has been
chosen we can integrate x out of it—more precisely: integrate it with respect to
P (X ≤ x|R = 0)—to get the corresponding overall treatment effect

ε := E[e(X)|R = 0],

where the conditioning on R = 0 reflects the fact that, by virtue of the sampling
scheme described in example 3.6, all the values of the covariates that show up
in the sample result from sampling conditionally on that event.

The problem is that the probabilities in (4.4) cannot be estimated from the
data in a case-control study, because the number of diseased individuals is prac-
tically fixed by the sampling scheme; and it is not obvious that there is a function
of those probabilities that can be estimated. Perhaps surprisingly, there is one
such function—one that is difficult to estimate with small samples (at least if
one does not possess a credible parametric model for the data) but still worth
considering. The function in question is the odds ratio, or, more precisely, the
odds ratio conditional on the event X = x, defined by

e(x) =
O(R = 1|T = 1,X = x)

O(R = 1|T = 0,X = x)
, (4.5)
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where

O(R = 1|T = t,X = x) =
P (R = 1|T = t,X = x)

1− P (R = 1|T = t,X = x)

is the odds of an individual with characteristics x being diseased given that he
was exposed to treatment t, an increasing function of P (R = 1|T = t,X = x).
Under the null hypothesis of no treatment effect, O(R = 1|T = t,X = x) is
independent of t and hence e(x) = 1, while if the exposure is associated with
the disease then P (R = 1|T = 1,X = x) > P (R = 1|T = 0,X = x) and
therefore e(x) > 1. The significance of the odds ratio in connection with case-
control studies is due to the property (first used by Cornfield [6] and easily
verified) that

e(x) =
O(T = 1|R = 1,X = x)

O(T = 1|R = 0,X = x)
=

px(1− qx)

qx(1− px)
, (4.6)

where we write

px := P (T = 1|R = 1,X = x) and qx := P (T = 1|R = 0,X = x);

that is, e(x) also compares the odds of an individual having been exposed given
that he is diseased with the odds of an individual having being exposed given
that he is not diseased. Although it is (4.5) that is regarded as meaningful—
because (assuming that disease is associated with exposure) it is usually the
exposure that causes the disease—the identity (4.6) shows that the odds ratio
is not just a function of the inestimable probabilities (4.4) but also a function
of the probabilities px and qx, which can be estimated, by

p̂x :=

∑
{i:Ri=1,xi=x} Ti

#{j : Rj = 1,Xj = x} =:
1

mx

∑
i:Ri=1,Xi=x

Ti

and

q̂x :=

∑
{i:Ri=0,xi=x} Ti

#{j : Rj = 0,Xj = x} =:
1

nx −mx

∑
i:Ri=0,Xi=x

Ti.

Since, besides being unbiased, p̂x and q̂x are approximately normal for large mx

and nx −mx,

ê(x) :=
p̂x(1− q̂x)

q̂x(1− p̂x)

may be taken as a slightly biased but consistent estimator of the ‘conditional’
odds ratio e(x), and consequently

ε̂ :=
∑

x
ê(x)

nx

n
,

with n =
∑

x nx, as a consistent and approximately normally distributed esti-
mator of the overall treatment effect, or ‘average odds ratio’, ε. For large mx

and nx − mx one can even compute estimates of Var[ê(x)], and from them a
rough estimate of Var(ε̂) and a corresponding confidence interval for ε.
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Unfortunately, as already hinted, this program is seldom practicable because
case-control studies are typically characterized by small values of mx. In the
absence of a reliable estimate of the average odds ratio, one may try to quantify
the treatment effect indirectly, as a function of px and qx. For example,

e′(x) := px − qx ≡ P (T = 1|R = 1,X = x)− P (T = 1|R = 0,X = x)

and ε′ := E[e′(X)|R = 0] could sometimes be useful measures of unconfounded
association between the treatment and the response, and they are comparatively
easy to estimate.

Remark. Note that A2 does not hold in a case-referent study, since the re-
sponses of different units in a matched set are not identically distributed, nor
does A3 (the number of positive responses in a matched set being fixed). What
we have instead is that conditionally on the covariates being equal to a given
x and on the responses being equal to a given r ∈ {0, 1} the treatments are
independent and identically distributed. This can be regarded as a version of
A2 (conditioning on the responses as well) combined with a version of A3 with
the responses and treatments interchanged.

5. A model for simulating observational data

Our purpose in this section is to define a simple model for simulating observa-
tional data. The model will be used in section 6 to illustrate several aspects of
the methods presented in sections 3 and 4. Evidently, the whole point of using
simulated data to study the workings of a statistical method is that one knows
exactly the answers one should get—for example: which conclusion concerning
the existence or non-existence of a treatment effect—and hence can ascertain
the correctness and accuracy of the method at least in some specific situations.

We shall define the model by specifying the distribution of a random vector
(X, T, R); once this is done we show how X, T and R arise from a special case
of the basic model of section 2.

Let a p-dimensional random vector U represent a set of covariates of an
individual randomly sampled from some population and let T indicate the indi-
vidual’s treatment assignment, T = 1 indicating that the individual is treated
and T = 0 that the individual is not treated—i.e. that the individual is a con-
trol. The distribution of U conditionally on T = t is normal with mean vector
μt and full-rank covariance matrix Σt (t = 0, 1). Thus the conditional density
of U given T = t is

fU|T=t(u) = (2π)−p/2|Σt|−1/2e−
1
2 (u−μt)

TΣ−1
t (u−μt) (u ∈ R

p, t = 0, 1).

Writing pt = P (T = t) and fT |U=u(t) = P (T = t|U = u) we have by Bayes rule

fT |U=u(t) =
pt|Σt|−1/2e−

1
2 (u−μt)

TΣ−1
t (u−μt)

p0|Σ0|−1/2e−
1
2 (u−μ0)

TΣ−1
0 (u−μ0) + p1|Σ1|−1/2e−

1
2 (u−μ1)

TΣ−1
1 (u−μ1)
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(t = 0, 1,u ∈ R
p). This probability function describes the effect of U on the

treatment assignment T .
In order to specify the distribution of an individual’s response R let us first

introduce a q-dimensional random vectorV to represent another set of covariates
and set X = (U,V). We wish that X influence R, that U and V be dependent,
but that T be influenced by X only through U (as already specified). The latter
requirement is that

fT |X=x(t) := P (T = t|X = x) = P (T = t|U = u) = fT |U=u(t),

for t = 0, 1, x = (u,v) ∈ R
p+q, which completes the specification of the distri-

bution of T conditionally on (U,V) and, provided U and V are given a joint
density, implies

fV|U=u,T=t(v) = fV|U=u(v) (t = 0, 1,u ∈ R
p,v ∈ R

q),

where both the left and right hand sides denote conditional densities. To specify
the distribution of U and V we require that the distribution of V conditionally
on U = u be normal with mean vector ν + B(u − μ), where ν ∈ R

q, μ :=
p0μ0 + p1μ1 and B is a q × p matrix, and full-rank covariance matrix M:

E[V|U = u] = ν +B(u− μ), Var[V|U = u] = M.

Having specified the joint distribution of T and X, let us now specify the dis-
tribution of the response R conditionally on (X, T ). We shall consider the case
where the response is a continuous quantity and set

R = μ+ σξ +A0(X)(1− T ) +A1(X)T, (5.1)

where μ ∈ R, σ > 0, A0 and A1 are real-valued functions defined on R
p+q,

and ξ is a standard normal random variable independent of X and T . Then
the distribution of R conditionally on T = t and X = x is normal with mean
μ+A0(x)(1− t) +A1(x)t and variance σ2:

E[R|X = x, T = t] = μ+A0(x)(1− t) +A1(x)t, Var[R|X = x, T = t] = σ2.

Thus an individual’s response is influenced by its ‘characteristics’ through A1

if the individual is treated and through A0 if the individual is not treated. The
exponential of R could, for example, be interpreted as the individual’s survival
time.

In this setting, the (mean) treatment effect on an individual with character-
istics x is

e(x) := E[R|X = x, T = 1]− E[R|X = x, T = 0] = A1(x)−A0(x),

and the overall treatment effect is

ε := E[e(X)] = E[A1(X)]− E[A0(X)].
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Integrating E[R|X = x, T = t] with respect to the distribution of X|T = t yields

E[R|T = t] = μ+ (1− t)E[A0(X)|T = t] + tE[A1(X)|T = t],

hence the mean difference between the responses in the treated and control
groups is

Δ := E[R|T = 1]− E[R|T = 0] = E[A1(X)|T = 1]− E[A0(X)|T = 0].

The ‘naive approach’ (see the first remark of section 4, on p. 146) to estimating
and testing for a treatment effect based on a random sample of vectors with
the same distribution as (X, T, R) would consist in estimating this Δ by the
difference between the sample means of the responses in the treated and control
groups. However, as pointed out earlier and is evident by comparing the expres-
sions of ε and Δ, we have Δ �= ε unless, for example, X and T are independent—
in which case E[A1(X)] = E[A1(X)|T = 1] and E[A0(X)] = E[A0(X)|T = 0].

As is evident from the very definition of ε, a correct approach is to estimate
e(x) by matching or stratifying on x—comparing individuals who differ with
respect to treatment but have the same characteristics x—and then average
the estimates obtained across the different values of x. In most studies this is
probably the only correct approach to testing for a treatment effect; with few
exceptions, assuming a regression model for the response as a function of (X, T )
and estimating the parameter(s) pertaining to T , as is often done to this day,
is at best a ‘sophisticatedly naive approach’, as amply demonstrated by [9] and
argued in chapter 14 of [30], for example.

Of course, the functions A0 and A1 can be almost anything. However, in
section 6 we shall take them to be linear, namely of the form

At(x) = x · βt (t = 0, 1,x ∈ R
p+q), (5.2)

where βt ∈ R
p+q. This is a convenient choice from a pedagogical point of view

(though perhaps not a very realistic one) because it allows the explicit calcu-
lation of e(x), ε and Δ, and an easy manipulation of these in terms of the
parameters β0, β1. Thus, with this choice we have

e(x) = x · (β1 − β0) and ε = (μ,ν) · (β1 − β0) = (μ,ν) · β1 − (μ,ν) · β0

(recall that E[X] = (E[U], E[V]) = (μ,ν)), and

Δ = (μ1,ν1) · β1 − (μ0,ν0) · β0,

where νt := E(V|T = t) = E(ν +B(U− μ)|T = t) = ν +B(μt − μ), t = 0, 1.
Comparing ε and Δ, we see that the latter has (μ1,ν1) and (μ0,ν0) where

the former has (μ,ν). If β0 and β1 are both equal to some β then ε = 0 and
there is no treatment effect; however, in this case the ‘misleading parameter’
Δ becomes Δ = (μ1 − μ0,ν1 − ν0) · β, which will not be zero if μ1 �= μ0 or
ν1 �= ν0 (i.e. if the covariates influence treatment assignment) and β �= 0 (i.e.
if the covariates influence the response).
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We close this section by expressing our model in terms of equations (2.1)
of the basic model. The covariates X = (U,V) can be thought of as arising
first, in two stages: from the generation of U according to a mixture of normal
distributions (with means μ0, μ1, covariance matrices Σ0 and Σ1, and mixture
probabilities p0, p1) and then from the generation of V according to a normal
distribution with mean ν +B(U− μ) and covariance matrix M, say by

V = ψ(U, U1),

for an appropriate function ψ and a uniform random variable U1 independent of
X (the particular choice of ψ being irrelevant). Next, the treatment assignment
is determined by a Bernoulli random variable with ‘success probability’ that
depends only on U and hence may arise as

T = τ(U, U)

for some function τ and a uniform random variable U independent of X and U1

(the particular form of τ is irrelevant provided it is consistent with the expression
for fT |U=u(t) given early in this section). Finally, the response is determined in
terms of the covariates, of the treatment and of ξ by

R = μ+ σξ +A0(X)(1− T ) +A1(X)T

=: ρ1(ξ,X, T ) ≡ ρ1(ξ,U,V, T )

≡ ρ1(ξ,U, ψ(U, U1), T )

=: ρ2(ξ, U1,U, T )

=: ρ(V,U, T ),

where V is a uniform random variable constructed from ξ and U1 (e.g. by al-
ternating the digits in the decimal expansions of their fractional parts), which
therefore is independent of the U involved in the generation of T . Thus, both
(U, T, R) and (X, T, R) satisfy the basic model (note that in the expression
R = ρ1(ξ,X, T ) the role of the V in R = ρ(V,U, T ) is assumed by ξ, which of
course can be written as a function of a uniform, and that T = τ(U, U) can
be written as T = τ1(U,X) for some τ1 that is constant in its last q variables),
so one can take care of confounding both by conditioning on X and by condi-
tioning on U, the latter being of course more efficient from a statistical point
of view.

If (X1, T1, R1), (X2, T2, R2), . . . , (XN , TN , RN ) arise independently and by
the same mechanism as (X, T, R) does, then they clearly satisfy A0, A0′, A1,
A1′, A2, A3 and A3′—all the assumptions required by the various methods of
stratification/matching on the Xis, on the Uis, or on the corresponding propen-
sity scores. Our illustrations will be based on simulated samples of such vec-
tors.
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6. Some illustrations based on simulated data12

In order to simulate data from the model presented in section 5 it is convenient
to fix the values of certain of its parameters once and for all. These parameters,
which we call primary parameters, are those that, except for (p0, p1), determine
the distribution of the vector of covariates X = (U,V):

• μ0 = E[U|T = 0] and μ1 = E[U|T = 1];

• Σ0 = Var[U|T = 0] and Σ1 = Var[U|T = 1];

• ν = E[V] and Var[V|U = u] = M;

• B, the matrix determining V from U by E[V|U = u] = ν +B(u− μ).

Having fixed the values of the primary parameters we may choose the sec-
ondary parameters—which determine the distribution of T conditionally on the
value of X and the distribution of R conditionally on (X, T )—differently in
different examples:

• p0 = P (T = 0) and p1 = P (T = 1), which determine μ := p0μ0 + p1μ1;

• β0 and β1, which determine the functions A0 and A1 of (5.2);

• μ and σ, which determine R conditionally on (X, T ) by (5.1).

Although we do not wish to fashion our data sets after a particular real
data set, it seems desirable to provide the distribution of X with a modicum of
verisimilitude. Thus we take as values of the primary parameters the parameter
estimates obtained by fitting the model for X to a subset of the SAheart or
‘South-African Heart Disease’ data set [32, 7]) consisting of the CHD (coronary
heart disease) status and eight potential risk factors of 192 patients with family
history of heart disease. More precisely, we identify positive and negative CHD
statuses with the events T = 1 and T = 0, respectively, fit the model for U
conditional on the event T = 0 to transformed versions of the variables13

systolic.blood.pressure,

cumulative.tobacco,

LDL.cholesterol,

adiposity,

type.A.behaviour,

age.at.onset,

in the subset of 96 patients not diagnosed with CHD and the model for U
conditional on T = 1 to transformed versions of the same variables in the subset
of 96 patients diagnosed with CHD, and this provides values for μ0, μ1, Σ0 and

12The results presented in this section may be reproduced by running R [23] scripts written
by the author and which can be had upon request.

13The names of the variables we use are slightly different from—and more informative
than—those used in the SAheart data set.
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Σ1.
14 Then we determine ν and B by fitting the relationship

E[V|U = u] = ν +B(u− E[U])

by the least squares method to the transformed versions of the six variables just
mentioned and the transformed versions of the variables

obesity,

alcohol,

which stand for V, in the whole set of 192 patients.
The transformations involved in this procedure are one-to-one and, of course,

aimed at making the marginal distributions of the data look normal. Appendix B
shows histograms of the eight transformed variables in the group without CHD
and in the group with CHD. These can be compared with the analogous plots
in appendix C, obtained from a data set simulated from the fitted model, the
group without CHD being now labelled as ‘control’ (T = 0) and the group with
CHD as ‘treated’ (T = 1). As required, there is an overall similarity between real
and simulated data. Also, the real data show no obvious signs of non-linearity
in the relationships between pairs of variables (scatter plots are not shown).

In the original data, the assignment to ‘treatment’ depends mainly on the
six variables represented by U and very little on the two variables represented
by V. This follows from a prediction analysis by the random forest algorithm
[18], summarized in figure B.3 (appendix B), in which CHD status is predicted
on the basis of the eight covariates. The variable importance plot of figure
C.3 (appendix C), obtained by a prediction analysis of a simulated data set,
gives an idea about the relative importance of the six variables represented by
U to the determination of treatment assignment (see [18] for an explanation
of variable importance). Comparison of this plot with the analogous plot of
figure B.3, based on the real data, indicates an overall agreement between the
model for (X, T ) and the data set used to estimate its parameters (simulations
suggest that the greater difference in importance between age.at.onset and
LDL.cholesterol observed in the simulated data set can be attributed largely
to sampling variation).

The following computer output provides the values of the primary param-
eters. The names of the variables are given in order to help fixing ideas; they
actually refer to the transformed versions of the variables.

μ0 and μ1:
mu.0 mu.1

systolic.blood.pressure 4.9097807 4.9599668

cumulative.tobacco -0.4337722 0.1350606

LDL.cholesterol 1.4126311 1.6997419

adiposity 25.4662500 28.6969792

type.A.behaviour 52.8020833 54.4479167

age.at.onset -0.5920987 0.1155519

14Although this is largely irrelevant for our purposes, the identification of treatment assign-
ment with CHD status could be justified on the grounds that diagnosis of CHD in a patient
should imply a special treatment. Of course, the response that we generate (for purposes of
fixing one truth) has no correspondence in the SAheart data set, but it could be thought of
as a function of age at death or as a measure of improvement in health after so many years.
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Σ0:
[, 1] [, 2] [, 3] [, 4] [, 5] [, 6]

systolic.blood.pressure 0.0128 0.0226 0.0085 0.3155 0.0848 0.0254

cumulative.tobacco 0.0226 0.9587 0.0594 1.5676 0.3252 0.4002

LDL.cholesterol 0.0085 0.0594 0.1447 1.0791 -0.2475 0.1157

adiposity 0.3155 1.5676 1.0791 55.3343 -4.5905 4.9472

type.A.behaviour 0.0848 0.3252 -0.2475 -4.5905 74.0552 -1.6215

age.at.onset 0.0254 0.4002 0.1157 4.9472 -1.6215 1.1272

Σ1:
[, 1] [, 2] [, 3] [, 4] [, 5] [, 6]

systolic.blood.pressure 0.0239 0.0182 -0.0009 0.1222 -0.2443 0.0340

cumulative.tobacco 0.0182 0.8575 -0.0129 0.5398 -0.1474 0.1534

LDL.cholesterol -0.0009 -0.0129 0.1477 1.1354 0.4164 -0.0058

adiposity 0.1222 0.5398 1.1354 47.3851 -2.0867 1.5402

type.A.behaviour -0.2443 -0.1474 0.4164 -2.0867 111.5130 -2.3206

age.at.onset 0.0340 0.1534 -0.0058 1.5402 -2.3206 0.5938

BT (i.e. the transpose of B):
obesity alcohol

systolic.blood.pressure 0.0392153533 1.152472046

cumulative.tobacco | 0.0089462434 0.283561635

LDL.cholesterol 0.0007067134 -0.542370013

adiposity 0.0177522162 0.009332837

type.A.behaviour 0.0006056793 -0.001832629

age.at.onset -0.0372922934 -0.203472847

M:
obesity alcohol

obesity 0.02409144 0.01541203

alcohol 0.01541203 1.97418432

ν:
obesity 3.2697225

alcohol -0.6140419

Subsections 6.1–6.6 illustrate several aspects of the methods presented in sec-
tions 3 and 4. The examples are based on simulated random samples of vectors
(Xi, Ti, Ri) from the model of section 5; as said earlier, such samples satisfy the
basic model as well as the assumptions necessary for the (approximate) validity
of the methods.

6.1. Stratification in a situation where no treatment effect exists

We begin with a situation where treatment has no effect, setting

β := β0 = β1 = (3, 7, 8, 4, 2, 8, 2, 10)/10.

We take p0 = 0.75 and p1 = 0.25 as the proportions of control and treated
patients. Together with μ0 and μ1 these yield the following value for μ:
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systolic.blood.pressure 4.9223272

cumulative.tobacco -0.2915640

LDL.cholesterol 1.4844088

adiposity 26.2739323

type.A.behaviour 53.2135417

age.at.onset -0.4151861

These choices lead to Δ = 2.78, so the naive approach will tend to conclude
for a treatment effect, while we know that e(x) = 0 for all x ∈ R

8 and hence
ε = 0. Finally, we take μ = 0 and σ = 1 in the error part of (5.1).

We simulate a sample of N = 10, 000 independent random vectors following
the model of section 5. The box plots of figure D.1 summarize the distributions
of the response and of the eight covariates in the treated and control groups.
With the possible exception of alcohol, the distributions of the covariates differ
clearly in the two groups, which suggests that they have to be taken into ac-
count in testing for a treatment effect. However, we know that obesity (just as
alcohol) has no influence on treatment assignment; so the apparent difference
between treated and control groups regarding this covariate is a result of its
dependence on the other six covariates, which do influence treatment.

Computing the difference between average responses in the treated and con-
trol groups we get Δ̂ = 2.66 as an estimate of Δ; the usual approximate 95%
confidence interval for Δ based on the normal approximation is [2.46, 2.85].
Thus, with this sample the naive approach would lead us to conclude that there
is a clear treatment effect. In order to test for a treatment effect we stratify the
sample on the covariates and use one of the tests described in subsection 3.2.15

The stratification of the sample is conveniently carried out by dividing the
range of each of the eight covariates into intervals determined by quantiles. If
quantiles of probabilities 1/ι̇, 2/ι̇, . . . , (ι̇− 1)/ι̇ are used then the range of each
covariate is split into ι̇ intervals and the 8-dimensional range of the vector of
covariates is partitioned into ι̇8 cells, each of which corresponds to a potential
stratum (many of the strata will be empty). To get us started let us take ι̇ = 4,
which leads to ι̇8 = 65, 536 potential strata. With our sample, the resulting
stratification contains 8565 non-empty strata and 389 useable strata (strata
with at least one control and one treated unit). Of course, splitting the range
of the variables into four intervals only may not be sufficient to reduce the bias
in testing for a treatment effect, which always exists because the covariates are
continuous and hence units within the same stratum are never fully comparable.

The following computer output shows the number of units, the number of
treated units, the number of controls, and the sample means of the responses of
treated and control units within a few strata. The strata, given in the rightmost
column, are denoted by the intervals of the variables to which the units compos-
ing them belong; for instance, the stratum denoted by 4/3/3/3/4/2/4/4 consists
of units with values of systolic.blood.pressure in the fourth interval, values
of cumulative.tobacco in the third interval, values of LDL.cholesterol in the
third interval, etc.

15The estimation method of section 4 is not applicable in our first two illustrations because
stratification on the covariates uses only a small portion of the data.
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sample.size no.treated no.controls mean.of.treated mean.of.control stratum
2 1 1 27.12426 29.22979 4/3/3/3/4/2/4/4
5 3 2 29.15665 28.35064 4/4/4/4/3/4/4/1
4 1 3 26.02765 26.56545 4/2/3/4/2/3/4/3
2 1 1 19.59144 22.07207 4/1/4/2/3/1/2/1
3 1 2 15.87238 17.71164 3/1/1/1/3/1/2/3
2 1 1 31.72296 29.00652 4/2/4/4/3/2/4/4
2 1 1 30.86837 31.00467 3/4/4/4/3/4/3/3
2 1 1 30.59349 25.82433 2/2/3/4/4/4/4/1
2 1 1 27.25200 25.49833 4/1/4/4/4/4/4/1
2 1 1 25.38917 27.22410 3/2/3/4/1/4/2/4

The scatter plot of figure D.2 (appendix D) compares the sample means of the
responses of the treated and control units within the 389 useable strata. Careful
examination of the plot indicates that there are more points above the 450 line
than below it, pointing to a treatment effect. And indeed, the scatter plots of
figure D.4 indicate that the stratification has failed to remove enough bias. These
plots represent pairs of the empirical versions of the conditional mean in (3.6)
for t = 0, 1 computed per stratum and, despite a superficial agreement with the
expectations, exhibit plenty of local structure around the 450 line. And, indeed,
a conditional test based on this first stratification provides strong evidence for
a treatment effect. Before presenting this result let us describe the conditional
test in general.

Suppose that the stratification is based on splitting the range of each covariate
into ι̇ intervals and consider the statistic

S(ι̇) :=
1

M(ι̇)

K(ι̇)∑
k=1

Sk(ι̇),

where K(ι̇) stands for the number of useable strata, M(ι̇) for the total number
of treated units, and Sk(ι̇) for the sum of the responses of the treated units in
stratum k. This is a version of the Mantel-Haenszel statistics of examples 3.9
and 3.10; the dependence on ι̇ emphasizes the fact that the strata involved in its
computation change with the number of intervals used in the stratification. For
each ι̇ the null distribution of S(ι̇) can be estimated as explained in section 3:
the treatments are pseudo-randomly permuted within the strata and the corre-
sponding value of S(ι̇) is computed a large number of times yielding a simulated
random sample whose empirical distribution estimates the null distribution of
S(ι̇). If the simulated random sample is large enough, the proportion of times in
which its elements exceed the observed value of S(ι̇) can be taken as an estimate
of the p-value of the test. For example, the histogram in figure D.3 provides an
approximation, based on 10,000 simulations, to the null distribution of S(ι̇) when
ι̇ = 5; an estimate of the p-value is obtained by integrating the histogram from
the observed value of S(ι̇)—indicated by the vertical dashed line—onwards.

In the stratification based on ι̇ = 4 the observed value of S(ι̇) is 26.36; the es-
timate of the p-value corresponding to it, based on 10,000 simulations, is 0.0142
(95% Wilson confidence interval of [0.0121, 0.0167]). This spurious evidence for
a treatment effect is a consequence of the inappropriately coarse stratification
and illustrates the need for checking and critically examining different stratifi-
cations.
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Table 2

Numbers of strata and p-values obtained with stratifications of five data sets based on
several values of ι̇ and on all eight covariates

Seed 2013 Seed 2014 Seed 2015 Seed 2016 Seed 2017ι̇
Strata P-value Strata P-value Strata P-value Strata P-value Strata P-value

4 389 0.0142 355 0.7727 360 0.9200 362 0.0815 387 0.1587
5 98 0.0395 102 0.7435 94 0.6233 122 0.3225 103 0.6965
6 22 0.7100 25 0.8256 22 0.4339 39 0.0956 27 0.5241
7 6 0.0633 5 0.7542 12 0.2232 17 0.1751 10 0.9507

The numbers of strata and p-values resulting from stratifications based on
ι̇ = 4, 5, 6, 7 are given in table 2 under the heading ‘Seed 2013’, which refers to
the seed of the pseudo-random number generator used to simulate the sample.
Although it appears from the scatter plots of figure D.5 that ι̇ ≥ 5 yields a
sufficient reduction of bias, it is only with ι̇ = 6 that a large p-value is obtained.
Ideally, one should go on with the calculations for larger ι̇, but with ι̇ = 7 we
only get 6 useable strata and it is impossible to go farther than that with this
data set. Unfortunately, the p-value estimated with ι̇ = 7 might leave one with
doubts; however, we know that the occurrence of this small p-value must be
attributed to chance, perhaps doing justice to the seed used to generate the
first data set. . .

In order to get some idea about how the results vary with the choice of ι̇ we
repeat the stratification and the testing procedures with different data sets of
size N = 10, 000. Table 2 also shows the numbers of strata and the p-values
obtained with other four data sets, headed by the corresponding seeds of the
pseudo-random number generator, and stratifications based on ι̇ = 4, 5, 6, 7.

The conditions under which the null hypothesis is tested—the strata, the
sample sizes within them, the distributions of the responses within the strata—
depend on ι̇ to some extent, so the p-values obtained with different stratifications
do not necessarily have to agree. However, for an application of the methods of
section 3 to be successful the stratification must exhibit a good balance between
the covariates in the different treatment groups—witnessed by scatter plots such
as those of figures D.5 and D.6—and yield consistently ‘large’ or ‘small’ p-values
over a few ‘large’ values of ι̇; for only then can one have some confidence that the
p-values are practically unbiased. The results based on the second data set (seed
2014) seem quite clear, all p-values being unanimous in providing no evidence
for a treatment effect, and the same can be said of the results based on the third
and on the last data set (seeds 2015 and 2017). The results obtained with the
fourth data set could raise some doubts: the relatively small p-value at ι̇ = 6
might suggest some evidence for a treatment effect, while the small sample size
could be blamed for the larger p-value at ι̇ = 7.

Things can become much clearer if the sample size is sufficiently large relative
to the number of covariates. To illustrate this we perform the procedure of
stratification and testing on the five data sets based only on the six variables
that influence treatment assignment—recall that the last two variables, alcohol
and obesity, do not influence treatment assignment and hence need not be
considered in the stratification (even though that could have not been surmised
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Table 3

Numbers of strata and p-values obtained with stratifications of five data sets based on
several values of ι̇ and on the six covariates that influence treatment assignment

Seed 2013 Seed 2014 Seed 2015 Seed 2016 Seed 2017ι̇
Strata P-value Strata P-value Strata P-value Strata P-value Strata P-value

7 195 0.7090 196 0.9864 210 0.8616 206 0.6092 213 0.8211
8 113 0.9591 103 0.2537 98 0.9648 91 0.2277 126 0.9998
9 63 0.4566 52 0.1236 49 0.9531 59 0.7717 61 0.8998
10 25 0.8344 25 0.5030 32 0.9060 36 0.1426 34 0.9979

from the box plots of figure D.1, it is quite clear from the prediction analyses
and hence has some justification). Table 3 shows the numbers of strata and the
p-values obtained with stratifications based on ι̇ = 7, 8, 9, 10. The p-values are
now unanimous in providing no evidence for a treatment effect and, with the
support of scatter plots such as those of figure D.7 (appendix D), which suggest
the correctness of stratifications based on ι̇ = 7, leave little room for doubts.

To give an idea of the numbers of units that are actually used in testing
based on stratification, let us mention that the 195 useable strata obtained
from the first data set when ι̇ = 7 and when only the six genuine confounders
are considered contain a total of 435 units (218 treated and 217 controls); when
ι̇ = 6, which (though not shown in table 3) also seems to yield a reasonably good
balance and a correct conclusion, the number of strata is 401 and the number
of units 1006 (487 treated and 519 controls). Thus, by stratification, the data
actually used in testing can easily be as few as 10% of the whole sample.

As a last exercise of this subsection we consider stratifications that ignore the
covariate with the greatest influence on treatment assignment, age.at.onset.
Interestingly, with the present choice of parameters the method of stratification
is quite robust to the omission of the principal confounder, often providing no
evidence for a treatment effect, at least for the sample size of N = 10, 000.
However, if p0 and p1 are interchanged then the omission of age.at.onset

usually leads to the wrong conclusion. For example, if we simulate a new data set
of size N = 10, 000 (with seed 2018) with p0 = 0.25 and perform stratifications
based on ι̇ = 10, 11, . . . , 14 we get 175, 123, 83, 58 and 30 useable strata and
corresponding p-values of 0.257, 0.029, 0.054, 0.009 and 0.064, which provide
evidence for a treatment effect; the scatter plots of figures D.8–D.11 (appendix
D) indicate no lack of balance in the distribution of the covariates, though they
do indicate the existence of a treatment effect (top-left plots).

6.2. Stratification in a situation where treatment effect exists

We take p0 = 0.75 and p1 = 0.25 as in most of the previous subsection, thus
getting the same value of μ, but now set

β0 = (3, 7, 8, 4, 2, 8, 2, 10)/10, β1 = 1.2β0.

The treatment effect resulting from these choices is ε = 4.66, whereas the mean
difference between the mean responses in the treated and control groups is Δ =
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7.87; thus in this case the naive approach only runs the risk of overestimating
the evidence for a treatment effect.

As in the preceding subsection we take μ = 0 and σ = 1 and the first seed
used there (2013) to simulate a random sample of N = 10, 000 vectors. For
convenience we leave out obesity and alcohol (which have no influence on
treatment assignment). If we compute the difference between average responses
in the treated and control groups we get Δ = 7.72 as an estimate of Δ. The
corresponding 95% confidence interval, [7.50, 7.94], is far to the right of the true
treatment effect.

Guided by the results of the preceding subsection we test for a treatment
effect on the basis of stratifications obtained with ι̇ = 7, 8, 9, 10; the scatter plots
in appendix E indicate that these stratifications are appropriate. The resulting
numbers of useable strata are 195, 113, 63 and 25 (cf. first column of results in
table 3), and the p-values are practically equal to 0 (e.g. Wilson 95% confidence
interval of [0, 0.00038]), a clear indication of the existence of a treatment effect.

Because Δ > ε, it is clear that the evidence for a treatment effect can only
become stronger if an important confounder such as age.at.onset is not con-
sidered in the stratification.

6.3. Stratification on the propensity score in a situation where no
treatment effect exists

We consider the same situation as in subsection 6.1, but instead of stratifying
the sample in terms of all the covariates we stratify it according to the esti-
mated propensity score. Actually, in order to illustrate what one may expect in
favourable circumstances, we begin by stratifying on the true propensity scores,
namely on fT |U=u(t) with t = 1 and u = Ui (cf. the beginning of section 5):

λ(Xi) :=
p1|Σ1|−

1
2 e−

1
2 (Ui−μ1)

TΣ−1
1 (Ui−μ1)

p0|Σ0|−
1
2 e−

1
2 (Ui−μ0)

TΣ−1
0 (Ui−μ0) + p1|Σ1|−

1
2 e−

1
2 (Ui−μ1)

TΣ−1
1 (Ui−μ1)

,

where Xi = (Ui,Vi).
Split the interval [0, 1] (the theoretical range of λ(Xi)) into 1/� subintervals

of length �. If I1, I2, . . . , I1/� denote these intervals (ordered from left to right
on the real line) then the k-th stratum is defined as the set of units i for which
λ(Xi) ∈ Ik. As we have seen, the testing and estimation procedures of sections
3 and 4 should be approximately valid (provided � is neither too large nor too
small) when applied to the resulting strata. Alternatively, one may split [0, 1]
into intervals determined by the quantiles of probabilities �, 2�, 3�, etc., as is
often done in the literature (e.g. [29]). Both methods lead to similar results
in our case, but we find the first method somewhat more natural: a difference
between stratifying on the covariates and stratifying on the propensity score is
that the latter typically uses most of the data, and it seems somewhat unnatural
to force all strata to contain approximately the same number of observations (as
they will if quantiles are used) even though the range of the propensity score is
not uniformly populated.
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Table 4

Numbers of useable strata and total numbers of observations in them, p-values of the two
tests for treatment effect, and estimates and 95% confidence intervals (CI) for ε obtained by

stratifying the data on the true propensity score using three values of �

� No. strata No. obs. P-value 1 P-value 2 Estimate of ε (95% CI)
0.010 94 9873 0.6289 0.3208 (75) -0.127 (-0.378, 0.124)
0.025 39 9941 0.6574 0.9190 (35) -0.022 (-0.442, 0.399)
0.050 20 10,000 0.7250 0.4116 (18) 0.127 (-0.176, 0.431)

Table 4 shows the results of testing for and estimating the treatment effect
obtained by stratifying the first sample used in subsection 6.1 (indicated by ‘Seed
2013’ in table 2) with three values of �: 0.01, 0.025, 0.05. The number of useable
strata (second column of the table) ranges from 94 to 20, and the total number
of useable observations (third column) is always close to N = 10, 000. These
numbers already suggest that stratification based on the propensity score may
represent an enormous gain in efficiency. In particular, the fact that only a few
units are discarded suggests that the estimation method of section 4 can be used
to the full to estimate the overall treatment effect. And, indeed, the estimates of
ε (with 95% confidence intervals) and the p-values of the tests of ε = 0 against
ε �= 0 (which consist of rejecting the null if and only if the interval does not
contain 0), shown in the last two columns of table 4, agree with the expectations
for all �. These estimates and p-values are based on strata containing more than
five controls and more than five treated units, the number of such strata being
indicated between parentheses after the p-value in the penultimate column; still,
most units are used, and most strata possess bigger numbers of treated and
control units. The other p-values in table 4, under the heading of ‘P-value 1’,
are the p-values of the Mantel-Haenszel test of subsection 6.1; they are consistent
with the p-values based on the tests of ε = 0 for all values of �.

As before, the correctness of results such as these has to be judged on the
basis of how balanced the distributions of treated and control units are within
the strata. Because much more data are involved in the present analysis than
in the analyses of subsections 6.1 and 6.2, it is convenient to check for balance
by testing the equality of the distributions of the covariates in the control and
treated groups per stratum, obtaining a p-value per covariate and stratum, and
then checking the uniformity of the p-values per covariate. In this procedure the
tests are not to be interpreted formally—if only because the covariates generally
have slightly different distributions in the two groups (due to stratification on
continuous variables)—but rather as indicators of how good the balance between
control and treated units is. If the balance is good, then the p-values of the many
two-sample tests comparing the two groups will be approximately uniformly
distributed.

The probability plots in appendix F serve to assess the uniformity of the
p-values obtained from Anderson-Darling tests (R package kSamples of Scholz
and Zhu [34]) comparing the distribution of the covariates in the treated and
control groups. Figures F.1–F.3 in appendix F, based on the stratifications with
� = 0.01, 0.025, 0.05, indicate an overall agreement with the expected uniform
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pattern (except perhaps regarding obesity), and thus support the results of
table 4. The p-values shown above the probability plots come from Kolmogorov-
Smirnov tests of uniformity carried out per covariate; they should be interpreted
as relative measures of ‘uniformity’ since in general (certainly when the propen-
sity scores are estimated from the data) the p-values whose uniformity is being
tested are somewhat dependent and we know that they are not exactly uniformly
distributed.

Having seen that the method of stratification on the propensity score must
work in favourable situations—when the propensity score is known exactly
or very approximately—let us turn to the more realistic situation where the
propensity score function is unknown (although, as always, the possible con-
founders are known and hence the study is free of hidden bias) and therefore
must be estimated. If it is known that the propensity score is well approximated
by a function depending only on a small number of parameters then these pa-
rameters can in principle be estimated from the data and should lead to a good
balance in the distribution of the covariates in the treated and control groups
and hence to the correct conclusions. Thus, if we estimate the pt, μt and Σt

from the simulated data and use them to estimate λ(Xi) then the results (not
shown here, but see the next subsection) are excellent and entirely consistent
with those obtained with the true propensity scores, which is not surprising since
as shown in the first plot of figure F.4 the propensity score estimates obtained
in this way are rather close to the true propensity scores.

It is doubtful, however, that the propensity score function will always be well
approximated by a simple function depending on a few parameters. For example,
if Σ0 �= Σ1 then the use of a logistic regression model—which, as pointed out by
Hade and Lu [11], is very often adopted as the model for the propensity score—
in place of our λ(Xi) may (and will with the present values of the parameters)
lead to glaring errors. Still, there appears to be a belief in the literature (cf.
the articles cited in [11]) that the logistic regression model should provide a
sufficiently accurate approximation to the true propensity score function as long
as all the relevant covariates and their powers, the interactions between them,
and the interactions between the treatment indicator and the covariates and
their powers, are included in it. Even if this were true (we think it is not), it
does not seem obvious that ‘overfitting’ the propensity score function by fitting
a logistic model with many parameters to the data will always lead to the correct
results.

Except in situations where a relatively simple parametric model manifestly
leads to good balance between the distributions of the covariates in the treated
and control groups, one should at least try to estimate the propensity score func-
tion by a non-parametric, consistent estimator. For the present analyses we have
considered two types of estimators: random forest classifiers as implemented by
Liaw and Wiener [18] in the R package randomForest, and non-parametric re-
gression estimators as implemented by Hayfield and Racine [13] in the R package
np. While non-parametric regression estimators are known to be consistent un-
der very general conditions (including those of our simulation), it is not known
under what conditions random forests are consistent. However, random forests
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Table 5

Numbers of useable strata and total numbers of observations in them, p-values of the two
tests for treatment effect, and estimates and 95% confidence intervals (CI) for ε obtained by

stratifying the data on the estimated propensity score using different values of �

� No. strata No. obs. P-value 1 P-value 2 Estimate of ε (95% CI)
0.010 87 9961 0.7192 0.7572 (72) 0.036 (-0.195, 0.268)
0.025 36 9974 0.6816 0.6133 (32) 0.069 (-0.197, 0.334)
0.050 19 9998 0.5615 0.1207 (17) 0.230 (-0.060, 0.520)

often perform better (in terms of classification error, sensitivity and specificity)
than most classifiers, and a simpler variant of random forests has been shown
to be universally consistent in [5], which suggests that random forests are con-
sistent in many situations. In our case the random forest does perform better
than the non-parametric regression estimator, whose estimates of the propen-
sity score are rather inaccurate; we shall only describe results based on random
forests.

The optimal values of error rate (probability of an incorrect classification),
sensitivity and specificity, namely those of the Bayes rule associated with the
model for (T,U) (the rule that classifies a new unit with covariates U = u
as treated if and only if fT |U=u(1) > 1/2) can be estimated by simulation
as 0.188, 0.427 and 0.939, respectively. The corresponding parameters of the
random forest classifier are estimated as 0.200, 0.372 and 0.942, so in terms of
classification errors the performance of the random forest is not far from being
optimal. Fortunately, the good performance in terms of prediction accuracy also
translates into reasonably balanced strata.

Indeed, figures F.5–F.7 (based on stratifications with � = 0.01, 0.025, 0.05, as
above) exhibit a rather good balance between treated and control units regard-
ing all the important covariates. Accordingly, all the results of testing for and
estimating the treatment effect, shown in table 5, conform to the expectations,
except for the fact that the confidence intervals for ε are somewhat narrower
than they should be, as follows by comparing them with those of table 4 and as
we had anticipated in section 4.

Despite these good results, the experience we have gained from various sim-
ulations with the present model suggests that non-parametric propensity score
estimates are sometimes so inaccurate that no satisfactory balance between
treated and controls is achieved and the tests and estimates lead to wrong con-
clusions. That such estimates are always relatively inaccurate if compared to
parametric ones—even when they lead to good balance and correct conclusions—
is seen by figure F.4. Also, the settings of the random forest (or those of any
other predictor) that yield the best propensity score estimates, and hence the
best balance of the covariates, are somewhat dependent on the particular data
set.16 It may therefore be necessary to produce estimates of propensity scores
under different settings and assess their quality in terms of the balance they
provide.

16In the present simulation we have set the parameter ntree equal to 20,000 and used the
default value of mtry in the randomForest implementation of [18].
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Remark. In a simulation study, Lee, Lessler and Stuart [16] concluded that the
use of random forests and other non-parametric predictors to estimate propen-
sity scores provides estimates of the treatment effect that are almost unbiased.
However, the simulation scenarios considered by these authors were based on
generating covariates from a normal distribution and then generating the treat-
ment conditionally on the covariates. In our setting the confounders are gener-
ated from a mixture of normal distributions and the method of estimation (based
on the weighted estimators mentioned in the remark preceding subsection 4.1)
used in [16] is often inapplicable (because many propensity score estimates are
0 or 1) and when it is applicable it yields estimates with very large variances.
The simulation results of [11] indicate that the results of [16] are somewhat op-
timistic and can be explained in terms of the overlap between the distributions
of the confounders in the treated and control groups.

6.4. Stratification on the propensity score in a situation where
treatment effect exists

We take up the situation of subsection 6.2 and the sample of 10,000 units used
there. Thus we have an overall treatment effect of ε = 4.66; the difference
between average responses in the treated and control groups, Δ̂ = 7.72, is close
to the theoretical Δ = 7.87; and the corresponding 95% confidence interval for
Δ, [7.50, 7.94], lies well to the right of the treatment effect.

The plan of analysis is the same as in the preceding subsection, but the pre-
sentation of the results will be shortened, because many of the outcomes—in
particular the figures in appendix F—are unaffected by the introduction of the
treatment effect. Table 6 shows the results based on stratifications on the true
propensity score, on the random forest estimate of it, and on the correct para-
metric estimate of it (that is, on λ(Xi) with the parameters p0, p1,μ0,μ1, etc.,
replaced by estimates computed from the sample), with � = 0.025. All three
stratifications yield overwhelming evidence for a treatment effect, good esti-
mates and plausible confidence intervals for ε. As might be expected, the less
accurate estimate of ε is the one obtained with the random forest. And, again,
the interval obtained with the random forest estimates of λ(Xi) is unrealistically
narrow, a reflection of the fact that our estimate of SE(ε̂) ignores the variability
in the estimation of the propensity score function and in the subsequent strat-
ification on it. Figure G.1 in appendix G indicates an overall good balance in
the distribution of the covariates in the treated and control groups when λ(Xi)
is estimated parametrically and stratified with � = 0.025; and it is plausible
that the poorer balance in terms of adiposity and type.A.behaviour, which
are among the weaker determinants of treatment, hardly contributes any bias
to the corresponding estimate of ε.

In order to illustrate the consequences of overlooking important confounders
let us see what happens if we estimate the propensity scores by a random for-
est without taking account of LDL.cholesterol, the second most important
confounder. Figure G.2 reveals an extreme lack of balance with respect to the
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Table 6

Numbers of useable strata and total numbers of observations in them, p-values of the two
tests for treatment effect, and estimates and 95% confidence intervals (CI) for ε obtained by

stratifying the data on the true propensity score, on the propensity score estimated by a
random forest, and on the propensity score with its parameters estimated parametrically

(i.e. based on the correct model), using � = 0.025

Propensity score No. strata No. obs. P-value 1 P-value 2 Estimate of ε (95% CI)
True 39 9941 0.0000 0.0000 (35) 4.635 (4.145, 5.125)

Random forest 36 9974 0.0000 0.0000 (32) 4.759 (4.452, 5.066)
Parametrically 39 9949 0.0000 0.0000 (35) 4.564 (3.992, 5.137)

omitted confounder. This is as expected and not particularly significant because
in an actual analysis where the data set misses an important confounder one
cannot examine the balance with respect to it, but it does show how the compar-
ison of treated and control units within strata can be biased. More significant is
the concomitant lack of balance with respect to the most important confounder,
age.at.onset (systolic.blood.pressure, in terms of which balance is just
as bad, is less important as a confounder): in an actual application, such lack
of balance would warn us not to trust the corresponding estimates of treatment
effect.

With stratifications based on � = 0.010, 0.025, 0.050, these estimates are 5.283
(CI of [5.035, 5.531]), 5.269 (CI of [5.004, 5.534]), and 5.424 (CI of [5.152, 5.696]),
respectively, all of them suggesting an effect greater than the actual ε = 4.66.
(The number of strata and the number of observations that result from these
stratifications are very similar to those of table 5.) Interestingly, the bias is
present in nearly every stratum, as seen by figure G.3 where the strata are ranked
according to the propensity score estimate. This must correspond with the fact
that in the plot of age.at.onset of figure G.2 only a few points approach the
straight line.

The bias in the estimates must of course be attributed to the inaccuracy of the
propensity score estimates; indeed, figure G.4 illustrates what the omission of
the second most important confounder does to those estimates (compare it with
figure F.4). In an actual application it may be difficult to determine whether
the lack of balance observed with respect to important covariates is due to the
omission of a confounder or to the inaccuracy of the predictor of treatment status
(which may itself be the result of small sample size or of an incorrect choice of
prediction model). In this connection one may wonder whether it is sometimes
possible to fit a parametric model to a data set not containing an important
confounder in such a way as to force balance with respect to the confounders
considered; does the omitted confounder then become automatically balanced,
guaranteeing the correctness of the treatment effect estimate?

6.5. Matching on the Mahalanobis distance

A more involved but sometimes better method than stratification is matching
on a distance between units, such as the Mahalanobis distance between their
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covariates—often applicable (possibly after transformation of variables) when
the covariates are numeric, and especially when they represent continuous mea-
surements. Chapter 10 of [26] gives a good introduction to matching methods,
and the R package optmatch of Hansen and Klopfer [12] provides a user-friendly
implementation of full matching, a method of creating matched sets that is op-
timal in a certain sense. Although the role of matching in our analyses is com-
pletely analogous to that of stratification, matching is really more complicated
than stratification; in the following subsection we describe the ideas behind it
very briefly, with just enough detail to make the illustration fully intelligible—
readers who are interested mainly in the numerical results may prefer to go
straight to subsection 6.5.2.

6.5.1. Matching

In essence, matching consists of computing distances D(Xi,Xj) between the
covariates of treated units i and controls j and forming matched sets of treated
and control units at a small distance of each other. Thus, given a distance
function D, matching requires a way of quantifying the closeness between the
treated units and the control units in a set. If a generic matched set—or potential
matched set—is represented by M = (I, J), where I is a set of indices of treated
units and J a set of indices of control units, the average distance of M ,

DM =
1

#I ×#J

∑
i∈I,j∈J

D(Xi,Xj),

provides a measure of how close or well-matched the elements of M are. In
realistic situations where treated and controls differ systematically with respect
to the confounders, DM will tend to increase with the size of M , and hence large
matched sets will tend to have bigger average distances than small matched sets.

Since good matched sets can be characterized by small average distances,
one might think that the forming of matched sets is best achieved by matching
first the treated and control units that are closest, then matching the treated
and control units that are closest among the remaining units, and so on. But
this process, an example of ‘greedy matching’, normally does not lead to the
best results. For example, if (i, j) is the pair of treated and control units at the
smallest distance, say D(Xi,Xj) = d, and (i′, j′) are such that

D(Xi′ ,Xj′) = d+ 2ε and D(Xi,Xj′) = d+
ε

2
= D(Xi′ ,Xj),

then the pairing of i with j and of i′ with j′ will yield average distances of d
and d + 2ε, and hence an average average distance of d + ε, while the pairings
of i with j′ and of i′ with j will both yield an average distance of d + ε/2
(bigger than the minimum distance d) but a smaller average average distance:
d + ε/2 < d + ε. In other words, and more generally formulated, choosing the
early matches to be as close as possible often entails poorer matches later on,
leading to matches of variable quality and of lower average quality as well.
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For this reason, it is better to determine a collection of matched sets in terms
of a global measure of distance than to determine matched sets by minimizing
their average distances on a sequential basis. By a collection of matched sets
we mean a set M = {M1,M2,M3, . . .} of elements Mi = (Ii, Ji), Ii being a
set of indices of treated units and Ji a set of indices of control units, such that
Ii∩ Ij = ∅ and Ji∩Jj = ∅ whenever i �= j. The average of the average distances
of such a collection M, called simply the distance of M, is defined by

D(M) =
∑

M∈M
wMDM ,

where the wM s are positive weights (
∑

M wM = 1), and is an overall measure of
the quality of a set of matched sets which, when minimized with respect to M,
leads to more balanced and overall better sets of matched sets. Interestingly, the
choice of the weights has little influence on the structure of the matched sets
formed: if the wM s are neutral in the sense that w(I,J) = w(I\{i},J\{j})+w({i},{j})
(where i ∈ I, j ∈ J) then the optimal collection of matched sets is a full
matching, that is, a collection in which each matched set consists either of one
control and at least one treated unit or of one treated unit and at least one
control (proposition 30, p. 310, of [26]).17

The determination of the optimal full matching by minimization of D(M)
over a specified class of collections M is formally equivalent to a type of well-
studied optimization problems (minimization of cost flows in networks) for which
convergent and efficient algorithms exist and have been implemented in statis-
tical packages (for references and further information on the algorithms and on
packages implementing them see chapter 10 of [26]). Moreover, in these algo-
rithms the class of collections M over which D(M) is to be minimized can be
specified indirectly by requiring that the Ii and Ji making up the matched sets
Mi = (Ii, Ji) be contained in fixed subsets I and J of indices of treated and
control units. In this way, by considering different choices of I and J , one has
the possibility of discarding ‘undesirable units’ (such as a treated unit that is
too distant from all controls) from the minimization process.

6.5.2. Illustration

For our illustration we make use of the function fullmatch of the R package
optmatch [12] with the matrix of Mahalanobis distances as input in order to
get a full matching of the sample of subsection 6.2. With the rows representing
labels of treated units and the columns representing labels of control units,
and writing as usual Xi = (Ui,Vi), we define the (i, j)-entry of the matrix of
Mahalanobis distances by

D(Xi,Xj) =

√
(Ui −Uj)TΣ̂T(Ui −Uj),

17For example, weights w(I,J) proportional to #I +#J are neutral.
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where Σ̂ = (Σ̂0 + Σ̂1)/2 and Σ̂0 and Σ̂1 are the sample covariance matrices
of the Ui vectors of the control and treated units, so that only the genuine
confounders are used in the matching. The matching problem associated with
this 2500 × 7500 matrix is actually too large to be handled by the fullmatch

function, and we need to set most of its entries to ∞ in order to preclude the
inclusion in the algorithm of matches which most probably should not be part
of an optimal solution anyway—i.e. matches with large average distances. Thus,
we redefine the (i, j)-entry of the matrix as ∞ unless

D(Xi,Xj) ≤ C ·D(μ̂0, μ̂1),

where C is a positive constant and μ̂0, μ̂1 are the sample means of the Ui

vectors of the control and treated units, and then enter the redefined matrix as
input in fullmatch. Different values of C will typically lead to different optimal
full matchings; the smaller C, the smaller the average distances involved and
the smaller the number of matched units tends to be.

The matched sets obtained by full matching look very much like the strata
obtained in subsections 6.1 and 6.2, except that all matched sets have either
at most one treated unit or at most one control unit; the following output
summarizes 10 strata obtained with a full matching based on C = 0.5:

sample.size no.treated no.controls mean.of.treated mean.of.control stratum
3 1 2 29.82007 25.18421 1.131
2 1 1 14.49381 16.22594 1.346
5 1 4 28.29192 24.02718 1.350
4 1 3 31.31730 28.16151 1.101
3 1 2 27.86204 21.63332 1.145
5 1 4 23.79148 19.80277 1.174
4 1 3 30.71736 25.29307 1.195
2 1 1 34.04405 30.86613 1.305
2 1 1 36.64107 23.65283 1.525
2 1 1 36.76584 31.43874 1.287

The number of matched sets is 526 and the total number of units contained
in them is 1269, so the full matching based on C = 0.5 uses somewhat more
data than do the stratifications of subsections 6.1 and 6.2 based on the same
set of confounders and ι̇ = 6, 7.

The quality of the full matching can be appreciated as in stratification: the
scatter plots in appendix H indicate good balance with respect to the six con-
founders when C = 0.5; a critical look at figure H.2, however, will show that
much bias remains in many of the strata if C = 1. Accordingly, in the situation
where there is no treatment effect the p-value of the Mantel-Haenszel test of
subsection 6.1 is 0.4308 if C = 0.5, but practically 0 if C = 1, while when there
is a treatment effect the p-value is practically 0 with both choices of C.

6.6. Estimation of the overall treatment effect by predicting
‘counterfactuals’

As an illustration of the method described in subsection 4.1 we consider using
the ε̂N of (4.3) to estimate the treatment effect in the situation of subsection
6.2 and based on the sample used in subsections 6.2–6.5. Taking Π(x, t) as a
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random forest we get ε̂N = 4.68. This is remarkably close to ε = 4.66, but is
actually a fortunate result because other simulations indicate that the average
of ε̂N is closer to 4.8 or 4.9, so that εN suffers from a bias of about 0.2. If we
split the sample into five subsets and compute (4.3) with each, we get treatment
effect estimates of 4.61, 4.56, 4.42, 4.39 and 4.90. From these we get 0.102 as an
estimate of the standard error of ε̂2000, which leads to the nominal (conservative)
95% confidence interval of [4.47, 4.88] for ε. This is narrower than the intervals
presented in table 6.5; however, the putative smaller variance of ε̂N is probably
offset by a somewhat bigger bias. At any rate, in this case the method based
on predicting counterfactuals seems to provide clear evidence for a treatment
effect, and its estimate of ε is consistent with the one obtained by stratifying
on the estimated propensity score.
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Appendix A: Selection of covariates from a causal diagram

Pearl ([21], p. 114) uses the following example to illustrate the selection of sets
of confounders based on causal diagrams:

This scheme is really a condensed form of writing a rather particular model,
namely

X1 = ϕ1(U1), X2 = ϕ2(U2), X3 = ϕ3(X1, X2, U3),

X4 = ϕ4(X1, U4), X5 = ϕ5(X2, U5), X6 = ϕ6(T, U6),

T = τ(U,X3, X4), R = �(V,X3, X5, X6),

where U1, U2,. . . , U6, U and V are independent standard uniform random vari-
ables and ϕ1, ϕ2,. . . , ϕ6, τ and � are given functions.
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Given a subset X of the variables X1, X2,. . . , X6, one can check by inspection
of L(R|X = x, T = t) whether or not the assumptions of the basic model hold.
For example, starting with X = X3, which acts both on R and on T , we have
for x ∈ R

L(R|X = x, T = t) =

L
(
�(V,X3, ϕ5(X2, U5), ϕ6(T, U6))

∣∣X3 = x, τ(U,X3, X4) = t
)
=

L
(
�(V, x, ϕ5(X2, U5), ϕ6(t, U6))

∣∣ϕ3(X1, X2, U3) = x, τ(U, x, ϕ4(X1, U4)) = t
)
.

Since the law of X2 conditional on the equations ϕ3(X1, X2, U3) = x and
τ(x, ϕ4(X1, U4), U) = t generally depends on t (because X1 is involved in both),
the law of R conditional on these equations also generally depends on t through
ϕ5(X2, U5), and not only through ϕ6(t, U6), so the basic model cannot hold.
Equivalently, the basic model is not satisfied because R and T are functions of
variables other thanX3 which are not independent conditionally onX3—namely
the variables X1 and X2 which enter into T and R through X4 and X5, respec-
tively, and conditionally on X3 = x satisfy the equation ϕ3(X1, X2, U3) = x.

If instead we consider X = (X3, X4), then the basic model holds: writing
x = (x3, x4), we have

L(R|X = x, T = t) =

L
(
�(V,X3, ϕ5(X2, U5), ϕ6(T, U6))

∣∣X = x, τ(U,X3, X4) = t
)
=

L
(
�(V, x3, ϕ5(X2, U5), ϕ6(t, U6))

∣∣X = x, τ(U, x3, x4) = t
)
=

L
(
�(V, x3, ϕ5(ϕ2(U2), U5), ϕ6(t, U6))

∣∣X = x, τ(U, x3, x4) = t
)
=

L
(
�(V, x3, X5, ϕ6(t, U6))

∣∣(X3, X4) = (x3, x4)
)
,

so the comparison of L(R|X = x, T = t) with L(RX = x, T = t′) for t �= t′

allows the determination of the treatment effect (which in this case happens to
act through ϕ6, though that is irrelevant for our purposes).

Similarly, the basic model holds with X = (X3, X5), since

L(R|X=x, T = t)=L(�(V,X3, X5, ϕ6(T, U6))|X=(x3, x5), τ(U,X3, X4)= t) =

L(�(V, x3, x5, ϕ6(t, U6))|X = (x3, x5), τ(U, x3, ϕ4(ϕ1(U1), U4)) = t) =

L(�(V, x3, x5, ϕ6(t, U6))|X = (x3, x5)) =

L(�(V, x3, x5, ϕ6(t, U6))),

which depends on t only through the last variable of �, and it also holds with
X = (X1, X3):

L(R|X = x, T = t) =

L(�(V,X3, X5, ϕ6(T, U6))|X = (x1, x3), τ(U,X3, X4) = t) =

L(�(V, x3, ϕ5(ϕ2(U2), U5), ϕ6(t, U6))|X = (x1, x3), τ(U, x3, ϕ4(x1, U4)) = t) =

L(�(V, x3, ϕ5(X2, U5), ϕ6(t, U6))|X1 = x1, ϕ3(x1, X2, U3) = x3) =

L(�(V, x3, X5, ϕ6(t, U6))|X1 = x1, X3 = x3).
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Appendix B: Figures illustrating the South-African heart disease
data set

Fig B.1. Histograms of the transformed variables of men without CHD.
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Fig B.2. Histograms of the transformed variables of men with CHD.
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Fig B.3. Prediction analysis based on a random forest.
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Appendix C: Figures illustrating a simulated data set

Fig C.1. Histograms of the covariates of the sample of controls.
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Fig C.2. Histograms of the covariates of the sample of treated.



Methods for observational data 181

Fig C.3. Prediction analysis based on a random forest.
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Appendix D: Figures pertaining to subsection 6.1

Fig D.1. Box plots of a subset of the simulated data by treatment group.



Methods for observational data 183

Fig D.2. Scatter plot comparing the mean response between treated and control units within
strata in a stratification based on ι̇ = 4.

Fig D.3. Histogram of a sample from the null distribution of the test statistic corresponding
to a stratification based on ι̇ = 5.
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Fig D.4. Scatter plots comparing the covariates in the treated and control groups per stratum
in a stratification based on ι̇ = 4.
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Fig D.5. Scatter plots comparing the covariates in the treated and control groups per stratum
in a stratification based on ι̇ = 5.
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Fig D.6. Scatter plots comparing the covariates in the treated and control groups per stratum
in a stratification based on ι̇ = 6.
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Fig D.7. Scatter plots comparing the covariates in the treated and control groups per stratum
in a stratification based on ι̇ = 7 and on the six covariates influencing treatment.
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Fig D.8. Scatter plots comparing the covariates in the treated and control groups per stratum
in a stratification based on ι̇ = 10 and on five of the covariates influencing treatment.
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Fig D.9. Scatter plots comparing the covariates in the treated and control groups per stratum
in a stratification based on ι̇ = 11 and on five of the covariates influencing treatment.
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Fig D.10. Scatter plots comparing the covariates in the treated and control groups per stratum
in a stratification based on ι̇ = 12 and on five of the covariates influencing treatment.
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Fig D.11. Scatter plots comparing the covariates in the treated and control groups per stratum
in a stratification based on ι̇ = 14 and on five of the covariates influencing treatment.
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Appendix E: Figures pertaining to subsection 6.2

Fig E.1. Scatter plots comparing the covariates in the treated and control groups per stratum
in a stratification based on ι̇ = 8 and on the six covariates influencing treatment.
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Fig E.2. Scatter plots comparing the covariates in the treated and control groups per stratum
in a stratification based on ι̇ = 10 and on the six covariates influencing treatment.
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Appendix F: Figures pertaining to subsection 6.3

Fig F.1. Probability plots assessing the uniformity of the p-values obtained from Anderson-
Darling tests comparing the distribution of the covariates in the treated and control groups
per stratum in a stratification on the true propensity score based on � = 0.01.
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Fig F.2. Probability plots assessing the uniformity of the p-values obtained from Anderson-
Darling tests comparing the distribution of the covariates in the treated and control groups
per stratum in a stratification on the true propensity score based on � = 0.025.
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Fig F.3. Probability plots assessing the uniformity of the p-values obtained from Anderson-
Darling tests comparing the distribution of the covariates in the treated and control groups
per stratum in a stratification on the true propensity score based on � = 0.05.
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Fig F.4. Scatter plots comparing the true propensity score with estimates of it obtained para-
metrically (by fitting the correct model to the data) and by a random forest classifier.
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Fig F.5. Probability plots assessing the uniformity of the p-values obtained from Anderson-
Darling tests comparing the distribution of the covariates in the treated and control groups
per stratum in a stratification on the estimated propensity score based on � = 0.01.
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Fig F.6. Probability plots assessing the uniformity of the p-values obtained from Anderson-
Darling tests comparing the distribution of the covariates in the treated and control groups
per stratum in a stratification on the estimated propensity score based on � = 0.025.
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Fig F.7. Probability plots assessing the uniformity of the p-values obtained from Anderson-
Darling tests comparing the distribution of the covariates in the treated and control groups
per stratum in a stratification on the estimated propensity score based on � = 0.05.
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Appendix G: Figures pertaining to subsection 6.4

Fig G.1. Probability plots assessing the uniformity of the p-values obtained from Anderson-
Darling tests comparing the distribution of the covariates in the treated and control groups
per stratum in a stratification on the parametric estimate of the propensity score based on
� = 0.025.
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Fig G.2. Probability plots assessing the uniformity of the p-values obtained from Anderson-
Darling tests comparing the distribution of the covariates in the treated and control groups
per stratum in a stratification (based on � = 0.025) on the propensity score estimated without
LDL.cholesterol.
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Fig G.3. Estimates of treatment effect per stratum obtained from a stratification (based on
� = 0.025) on the propensity score estimated by a random forest without LDL.cholesterol (the
strata are ranked in increasing order of the propensity score estimate, the dashed horizontal
line represents the true overall treatment effect, and the dotted lines represent 95% confidence
intervals per stratum).

Fig G.4. Scatter plot comparing the true propensity score with a random forest estimate of it
that does not make use of LDL.cholesterol.
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Appendix H: Figures pertaining to subsection 6.5

Fig H.1. Scatter plots comparing the covariates in matched sets of treated and control groups
obtained by full matching based on the Mahalanobis distance and C = 0.5.
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Fig H.2. Scatter plots comparing the covariates in matched sets of treated and control groups
obtained by full matching based on the Mahalanobis distance and C = 1.
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